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Abstract 

The aim of this study is to propose a photovoltaic (PV) module simulation model with high accuracy under practical working 
conditions and strong applicability in the engineering field to meet various PV system simulation needs. Unlike previous model-
building methods, this study combines the advantages of analytical and metaheuristic algorithms. First, the applicability of various 
metaheuristic algorithms is comprehensively compared and the seven parameters of the PV cell under standard test conditions are 
extracted using the double diode model, which verifies that the artificial hummingbird algorithm has higher accuracy than other 
algorithms. Then, the seven parameters under different conditions are corrected using the analytical method. In terms of the correc-
tion method, the ideal factor correction is added on the basis of previous methods to solve the deviation between simulated data and 
measured data in the non-linear section. Finally, the root mean squared error between the simulated current data and the measured 
current data of the proposed model under three different temperatures and irradiance is 0.0697, 0.0570 and 0.0289 A, respectively.
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Introduction
Accurate modelling is essential for photovoltaic (PV) systems. 
Over the past few decades, significant progress has been made 
in understanding the behaviour of these systems through math-
ematical modelling. Widely used models simulate actual PV 
cells by fitting the current–voltage data (I–V) measured under all 
operating conditions [1].

In the literature, there are mainly two types of PV cell and 
module models: the single-diode [2–7] and double-diode (DD) 
[8–13] models. These equivalent models require estimation of five 
and seven parameters, respectively. Accurate extraction of PV cell 
model parameters is crucial not only to evaluate their perform-
ance but also to improve design, optimizing manufacturing pro-
cesses and quality control [14]. Therefore, there is an urgent need 
for feasible parameter identification techniques.

The methods and steps for parameter extraction of the single- 
and double-diode models are essentially the same, with the only 
difference being the number of model parameters. However, mul-
tiple studies have shown that the single-diode model neglects 
recombination losses in the space-charge region, while the DD 
model can more accurately reflect the behaviour of solar panels 
[15–18], particularly at low irradiance levels [19]. Therefore, this 
study adopts the DD model for parameter extraction.

The non-linear, multivariate and multimodal characteristics of 
PV models make parameter extraction a challenging and signifi-
cant task. In recent years, various methods have been proposed 
for parameter extraction of PV models, which can be broadly clas-
sified into two categories: key-point-based methods and I–V char-
acteristic curve-based methods [20].

The key-point-based method is a commonly used analytical 
method that simulates the extraction of parameters from the 
I–V curve by using three key points of the manufacturer’s cata-
logue I–V curve. The authors have simplified some aspects of this 
method to reduce the number of unknown parameters or make 
some approximations. However, this method is largely based on 
the correctness of several key points on the I–V curve, such as the 
open-circuit voltage, short-circuit current, the maximum power 
current and the maximum power voltage [21–24]. Essentially, 
the analytical method summarizes all measured I–V data using 
selected points. If these selected points are assigned incorrectly, 
the error in parameter extraction can be significant. Therefore, 
although the analytical method is convenient to use, it often 
produces uncertain and unsatisfactory results, requiring a large 
amount of computation, complex mathematical operations and 
significant time and cost [25].

The I–V characteristic curve-based method for PV cell par-
ameter identification is currently popular and involves the use 
of metaheuristic algorithms, which are global optimization tech-
niques based on population iteration. These algorithms can solve 
various complex problems, particularly complex and highly 
non-linear optimization problems [26, 27]. One of their most crit-
ical advantages is that they do not require an exact mathematical 
model of the system under study [28], thus significantly redu-
cing the computational burden. Many metaheuristic algorithms 
have been reported to be remarkably fast for identifying PV cell 
parameters, including the genetic algorithm (GA) [29, 30], par-
ticle swarm optimization (PSO) [31–33], the whale optimization 
algorithm (WOA) [34], the differential evolution algorithm (DE) 
[34–36], the sine–cosine algorithm (SCA) [37] and others. These 
methods utilize basic formulas to solve parameters and utilize 
all data points more comprehensively while avoiding mathem-
atical complexity. However, optimal performance still requires a 
reasonable setting of population size, search range and search 
strategy. As metaheuristic algorithms continue to evolve, better-
performing ones are proposed for solving multimodal optimiza-
tion problems, such as the improved grey wolf optimizer (IGWO) 
[38], white shark optimizer (WSO) [39], artificial hummingbird al-
gorithm (AHA) [40] and others.

The main challenge with metaheuristic algorithms lies in the 
algorithms themselves, as their convergence depends on random 
and heuristic search strategies [41]. Additionally, since the extrac-
tion of PV model parameters is a complex multimodal optimiza-
tion problem, it requires more robust metaheuristic algorithms. 
As a result, researchers are continually working to develop more 
accurate, reliable and efficient metaheuristic algorithms for solar 
PV cell model parameter extraction. This is an ongoing process 
that requires constant exploration and improvement to meet the 
growing demand for renewable energy.

However, while utilizing the aforementioned heuristic algo-
rithms to compute PV cell parameters, they commonly acquire 
parameters solely from I–V characteristic curves that were 
measured under varying conditions. The objective is to confirm 
that the I–V characteristic curve, simulated by utilizing param-
eters that were acquired through the newly proposed algorithm, 
is more closely aligned with the experimental data than when 
utilizing other algorithms [42–44]. However, the extracted param-
eters are only mathematical abstractions, lacking actual physical 
meanings.

Within practical engineering applications, we strive to utilize 
scarce data to simulate data that are boundless. This has been 
acknowledged within analytical approaches, in which param-
eters under reference conditions are acquired by formulating and 
streamlining equations [6,16,43,44]. However, for PV cell output 
characteristics under different conditions, the acquired param-
eters are commonly adjusted under actual operating conditions. 
However, the analytical approach itself condenses all measured 
I–V data via selected points, thereby presenting some uncertain-
ties.

After thoroughly weighing the merits and demerits of these 
two approaches, our research used all data points on the I–V char-
acteristic curve under reference conditions. We utilized the latest 
metaheuristic algorithm, which has demonstrated remarkable 
efficacy in engineering quandaries, to extract seven parameters. 
Additionally, we introduced a novel modification methodology 
for the seven parameters within analytical approaches that was 
applicable to metaheuristic algorithms. This approach serves to 
verify the margin of error between the simulated data and the 
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Fig. 1:  Equivalent circuit to the DD model
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measured data under different conditions, such as temperature 
and irradiance.

1  PV models and problem formulation
1.1  Solar cells
The DD model has been widely used to simulate the characteris-
tics of solar cells. The equivalent circuit of the DD model is shown 
in Fig. 1.

Based on the Shockley equation, in the DD model, the output 
current is calculated as follows [45, 46]:

IPV = Iph − Id1 − Id2 − Ip
= Iph − Io1

¶
exp

î
q(UPV+IPVRs)

n1kT

ó
− 1

©
−

Io2
¶
exp

î
q(UPV+IPVRs)

n2kT

ó
− 1

©
− UPV+IPVRs

Rsh� (1)
where IPV represents the output current, Iph denotes the 

photo-generated current, Id1 and Id2 represent the first and 
second diode currents, Ip denotes the shunt resistor current, 
Io1 and Io2 are the saturation and diffusion currents, UPV repre-
sents the output voltage, Rs represents the series resistance, 
q = 1.60217646 × 10−19 C denotes the electron charge, n1 and n2 
represent the recombination and diffusion diode ideality con-
stants, Rsh represents the shunt resistance, T is the cell tem-
perature in Kelvin and k = 1.380653 × 10–23 J/K is the Boltzmann 
constant.

Equation (1) is the fundamental mathematical expression 
for PV cells, which describes the relationship between internal 
parameters and output characteristics. However, calculating the 
precise values of the parameters (Iph, Io1, Io2, Rs, Rsh, n1, n2) within the 
equation is challenging since they are closely tied to the intensity 
of illumination and the temperature of the solar panel.

1.2  Model of PV panel module
PV modules are composed of a certain number of PV cells con-
nected in series and/or parallel. The parameter extraction 
method for PV modules essentially breaks down the modules 
into individual PV cells by their series–parallel connections for 
analysis. Therefore, in this study, the measurement data for the 
PV module was transformed into those of a single PV cell using 
a series–parallel form. We employed the DD model based on PV 
cells to calculate the seven parameters, which were subsequently 
substituted into Equation (2), the expression for the output cur-
rent of the PV module [45, 46]:

IPV/Np = Iph − Io1

ß
exp
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n1kT
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ß
exp
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ò
− 1

™
− UPV/Ns+IPVRs/Np

Rsh� (2)
where Ns and Np are the number of solar cells in series and par-
allel, respectively.

1.3  Problem formulation
The task of extracting parameters for a solar PV model is typ-
ically reworked into a numerical optimization problem by 
minimizing the distance between the measured and simu-
lated data [47, 48]. The error function employed is frequently 
expressed as the square root mean squared error (RMSE), as 
follows:

RMSE (X) =

Ã
1
N

N∑
i=1

f(UPV, IPV,X)
2

� (3)
where N denotes the number of measured I–V data.

In this study, Equation (3) is expressed as follows:

f (UPV, IPV,X) = Iph − Io1

ß
exp

ï
q (UPV + IPVRs)

n1kT

ò
− 1

™

−Io2

ß
exp

ï
q (UPV + IPVRs)

n2kT

ò
− 1

™
− UPV + IPVRs

Rsh
− IPV

� (4)

X =
{
Rs,Rsh, Iph, Io1, Io2, n1, n2

}
� (5)

On the other hand, in order to display the absolute error of 
the measured current and simulated current under each voltage, 
Equation (6) is used to express the difference between the real 
current value and the measured current value:

Current Absolute Error = |f (UPV, IPV,X)|� (6)

2  Parameter extraction of PV models
This study specifically selected two novel algorithms that 
have been validated and applied in engineering applications 
over the past 2 years for the purpose of extracting the seven 
parameters of solar cells. These two algorithms were then 
comprehensively compared with 15 other algorithms that 
have previously been employed in the field of solar cell par-
ameter identification.

In addition to the algorithms mentioned above, the full names 
and abbreviations of other algorithms are as follows [20]: sparrow 
search algorithm (SSA), simulated annealing (SA), grey wolf 
optimizer (GWO), moth-flame optimization (MFO), multi-verse 
optimizer (MVO), salp swarm algorithm (SS), artificial vulture op-
timization algorithm (AVOA), gorilla troop optimizer (GTO), flow 
direction algorithm (FDA), pelican optimization algorithm (POA), 
chameleon swarm algorithm (CSA) and northern goshawk opti-
mization (NGO).
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Fig. 2:  Three flight behaviours in 3D space
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2.1  AHA
AHA is an optimization technique inspired by the foraging and 
flight of hummingbirds, as presented in [40].The three main 
models of this algorithm are presented as follows.

2.1.1  Guided foraging
In this foraging model, three flight behaviours are used in foraging 
(omnidirectional, diagonal and axial flight). Fig. 2 presents these 
three flight behaviours in 3D space. The equation simulating this 
guided foraging and a candidate food source can be obtained as 
follows:

vi(t+ 1) = xi,ta(t) + h.b.(xi(t)− Xi,ta(t))h ∼ N(0, 1)� (7)
where xi,ta(t) represents the position of the target food source, h 
denotes the guided factor and follows the normal distribution of 
N (0,1) and xi(t) is the position of the i-th food source at time t.

The position update of the i-th food source is as follows:

xi(t) =

®
xi(t) f(xi(t)) ≤ f(vi(t+ 1))
vi(t+ 1) f(xi(t)) > f(vi(t+ 1))

� (8)
where f(xi(t)) and f(vi(t + 1)) are the value of function fitness for xi(t) 
and vi(t + 1), respectively.
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Initialize Hummingbird
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Set Algorithm
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Iteration Number
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Guided Foraging

Territorial Foraging
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Calculate Fitness

Calculate FitnessUpdate Location

Update Location

Output Optimal
Solution Space

Update Location

Migration Foraging

Calculate Fitness

Fig. 3:  The algorithm flowchart of AHA

Table 1:  The parameters for the PV model

Type Number of series Number of parallels Area (m2) Isc (A) Voc (V) Im (A) Vm (V) Pm (W)

xSi12922 36 1 0.3429 4.9996 21.8684 4.5932 17.4484 80.1431
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2.1.2  Territorial foraging
The following equation represents the local search of humming-
birds in the territorial foraging strategy:

vi(t+ 1) = xi(t) + g.b.(xi(t)) g ∼ N(0, 1)� (9)
where g denotes the territorial factor and follows the normal 
distribution of N (0,1) and b denotes the D-dimensional solution 
space.

2.1.3  Migration foraging
The mathematical equation for the migration foraging of a hum-
mingbird is presented as follows:

xwor(t+ 1) = lb+ r.(ub− lb)� (10)
where xwor represents the source of food with the worst popula-
tion rate of nectar refilling, r is a random factor, and ub and lb are 
the upper and lower limit ranges, respectively.

The specific algorithm flowchart is shown in Fig. 3.

2.2  PV models
In this study, we applied data from the public data repository 
of the I–V curve established by the National Renewable Energy 
Laboratory (NREL) [49] for parameter estimation and result val-
idation. NREL has measured numerous experimental data under 
different illumination and temperature conditions, including 
~200 (I–V) data points collected every 5 or 15 minutes for various 
PV cells that cover 1 year.

The study used a large number of experimental I–V curves 
of PV cells made of multicrystalline silicon (mSi) and mono-
crystalline silicon (xSi) from Eugene for validation. Specifically, 
we selected 188 pairs of I–V data of monocrystalline silicon 
(xSi12922) under reference conditions with irradiance of 1012.7 
W/m2 and temperature of 24.9℃ as the benchmark data; the 
module parameters are provided in Table 1. The data underlying 
this article are available in the article and in the online 
Supplementary Data.

2.3  Parameter extraction
The appropriate range of the parameter search plays a crucial role 
in determining the convergence interval and convergence rate of 
optimization algorithms, as well as ensuring the rationality of the 
parameters. Moreover, in order to prevent the extracted param-
eters from losing their physical meaning and becoming mere nu-
merical values, it is necessary to fully understand the physical 
significance represented by each parameter and determine the 
suitable search range accordingly.

Due to the fact that the materials used to produce PV cells 
are not ideal conductors and possess a certain degree of resist-
ance, it is necessary to incorporate a series resistance Rs [50, 
51]. Additionally, cracks that are unavoidably generated in the 
manufacturing process may cause leakage within these gaps,  

Table 2:  The search range of the parameters

Parameters Value range

Rs (Ω) [0, 5]

Rsh (Ω) [0, 800]

Iph (A) [0, 6]

Io1 (A) [0, 0.01]

Io2 (A) [0, 0.01]

n1 [0.8, 1.2]

n2 [1.8, 2.2]
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resulting in short circuits in the circuit. Hence, a shunt resist-
ance Rsh needs to be added to prevent such short circuits [9,52,53]. 
Rs typically has a value of several ohms at most, while Rsh has a 
comparably larger value of hundreds of ohms [54–56]. The short-
circuit current of the PV cell is determined by the photo current 
Iph, which generally has a numerical value close to that of the 
short-circuit current [57–59]. The sizes of two reverse saturation 
currents Io1 and Io2 depend on the internal parameters of the diode 
and their values are relatively small [30,60,61], roughly in the 
order of 10–6 A.

Regarding the specific values of the ideality factors n1 and n2, 
it is challenging to measure them with equipment and express 
them in formulas. According to [62], it was assumed that the 
ideality factor of Diode 1 is equal to 1 and that of Diode 2 is >1.2, 
while [63] assumed that the ideality factor of Diode 1 is equal to 
that of Diode 2. However, these assumptions are not always cor-
rect. The ideality factor indicates how similar the characteristics 
of a diode are to an ideal diode. The value of the ideality factor 
generally ranges from 1 to 2, and improper selection of these 
values can significantly affect the accuracy of the model [41]. In 
this study, n1 and n2 were set at ~1 and ~2, respectively. Table 2 
shows the search range of the parameters.
This study used the RMSE as the fitness function for parameter ex-
traction. Sixteen other algorithms were selected for comparison and 
Fig. 4 shows the change in fitness function values of each algorithm 
during the iteration process. All heuristic algorithms continuously 
reduced their values of the fitness function during the iteration 
process and finally stabilized. Fig. 5 displays the best fitness func-
tion values of all heuristic algorithms during 800 iterations, while 
Fig. 6 shows the running time of all heuristic algorithms. The com-
puter system used in this study was Windows 10, with an Intel(R) 
Core(TM) i7-7700HQ CPU @ 2.80GHz 2.80 GHz processor. All codes 
were programmed using MATLAB® 2022a. The initial population for 
all algorithms was set at 400, with a maximum iteration of 800.

The best extraction parameters and corresponding RMSE 
values for various algorithms in the DD model, sorted into 
descending order of their RMSE values, are presented in Table 3.

Table 3:  The best extraction parameters and RMSE values for 17 algorithms

Algorithm Rs (Ω) Rsh (Ω) Iph (A) Io1 (μA) Io2 (μA) n1 n2 RMSE 
(A)

SCA 0 0.267311 5.5 0 0 0.8 2.2 9.43E–01

PSO –0.021347 381.072138 4.971673 3.53E+05 –9.84E+05 6.916198 12.803541 1.04E–01

GWO 5.65E–05 90.379642 5.004939 0 59.839329 0.864872 2.079667 5.74E–02

SSA 0 800 5.00018 0 57.055914 0.8 2.07054 5.72E–02

AVOA 0.000741 759.093363 5.004278 0 46.786369 1.017758 2.036336 5.324E–2

SS 0.000849 521.12508 5.004339 0 44.541544 0.80482 2.027975 5.27E–02

MVO 0.001306 750.96043 5.002829 0 33.351716 1.197479 1.978969 4.93E–02

SA 0.002727 800 4.994532 2.83E–05 12.093643 1.128449 1.825721 3.79E–02

MFO 0.002914 799.999999 4.993449 0 10.109841 0.8 1.8 3.61E–02

GTO 0.002914 800 4.993449 1.27E–25 10.109841 0.830664 1.8 3.61E–02

POA 0.002914 800 4.993457 0 10.109918 1.2 1.8 3.60E–02

CSA 0.002914 800 4.993449 1.08E–21 10.109841 0.810575 1.8 3.60E–02

NGO 0.002913 799.999999 4.993449 0 10.109841 0.895412 1.8 3.60E–02

FDA 0.006972 789.153975 4.976341 4.24E–03 3.231627 1.152771 1.8 8.70E–03

IGWO 0.007086 22.259203 4.985826 9.96E–03 4.034159 1.193525 1.896538 5.90E–03

WSO 0.007179 13.116042 4.994842 7.33E–03 5.425701 1.174306 1.955255 4.70E–03

AHA 0.007187 12.905787 4.994944 4.41E–03 3.163286 1.149679 1.831975 4.62E–03
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Fig. 7:  Comparison of simulated data (AHA) and measured data
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The simulated data obtained by applying the seven parameters 
calculated by using AHA to the current output equation of the 
PV module is compared with the measured data, as shown in 
Fig. 7.

When selecting the three algorithms with representative 
RMSE from the above algorithm, the simulated output current 
values are calculated using their extracted parameters and then 
compared with the actual measured values under reference 
conditions with irradiance of 1012.7 W/m2 and temperature of 
24.9oC. The absolute error of the output current is shown in Fig. 8.

As shown in Fig. 8, it can be observed that the AHA algorithm 
has smaller output current errors within the input voltage 
range and better stability compared with the other algorithms. 
It should be noted that all algorithms have a sharp increase 
in the computed errors near the open-circuit voltage. This is 
due to the difficulty in accurately measuring current values 
near the open-circuit voltage using measurement equipment. 
Fortunately, this does not affect the overall output characteris-
tics of the PV cell.

3  Results and discussion
3.1  Application of extraction parameters
PV modules operate under different weather conditions and their 
parameters are therefore influenced by temperature and irradi-

ance. However, all parameters are given under standard test con-
ditions. As a result, extrapolating all these parameters to different 
operating conditions is crucial. The dependence of the PV model 
parameters on temperature and irradiance can generally be in-
corporated into the mathematical model using a suitable set of 
translation formulas [64]. Using this approach, a I–V relationship 
was achieved that took into account the irradiance and tempera-
ture conditions. Supervised principles [65] were used to consider 
the dependence on temperature and irradiance levels in this rela-
tionship mathematically. Combining the parameter modification 
methods proposed in [64, 66], this study adopted the following 
modification methods.

The photo current:

Iph =
G

Gref
[Iph, ref + αIsc (T− Tref)]

� (11)
The reverse saturation currents:

Io1 = Io1,ref

Ç
T
Tref

å3

exp

ñ
1

n1K

Ç
EG,ref
Tref

− EG
T

åô

� (12)

Io2 = Io2,ref

Ç
T
Tref

å3

exp

ñ
1

n2K

Ç
EG,ref
Tref

− EG
T

åô

� (13)
The resistances:

Rs = Rs, ref
Å

T
Tref

ã3
Ç
1− 0.217 ln

Ç
G
Gref

åå

� (14)

Rsh =
Gref
G

Rsh, ref
� (15)

The subscript ‘ref’ denotes the values of different parameters 
under the reference condition. For the bandgap energy of the 
material, for silicon solar cells, its value at TSTC = 25oC is set at 
1.121 eV. The value is provided as a function of the cell tem-
perature.

The band gap energy:

EG = 1.16− 7.02× 10−4T2

1108+ T
[eV]

� (16)
The ideal factors:

n1 = n1, ref� (17)

n2 = n2, ref� (18)
Using the above modifications, the I–V and P–U curves are 

simulated under different levels of irradiance and compared with 
real measured data as shown in Fig. 9.

It is observed that the simulated data have significant devi-
ations at low irradiance levels, mainly due to the overall down-
ward shift of the simulated data in the non-linear section 
between the maximum power point and the open-circuit voltage 
point compared with the measured data. Therefore, it is neces-
sary to analyse the effect of each parameter on the curves.

3.2  Sensitivity analysis of seven parameters
The physical meanings of the seven parameters have been briefly 
explained earlier. Among them, Iph appears separately in the 
DD output equation and is not coupled with other parameters, 
making it easier to analyse. From the diode circuit diagram, it can 
be seen that Iph is the source of the PV cell output current and 
its magnitude determines the maximum value of the output cur-
rent, namely the short-circuit current. It can be seen from the 
curve that the corrected value of Iph is reasonable, as there is no 
significant deviation near the short-circuit current.
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D
ow

nloaded from
 https://academ

ic.oup.com
/ce/article/7/6/1219/7425144 by Aalto U

niversity user on 24 N
ovem

ber 2023



Parameter identification and generality analysis of photovoltaic module  |  1227

The other six parameters have complex relationships, making 
immediate analysis difficult. In this study, the impact of the six 
parameters on the curves was identified to judge the possible 
problems with parameter corrections.

The simulation curve obtained by appropriately scaling the 
other six parameters obtained under the reference conditions is 
compared with the original curve, as shown in Fig. 10.

It can be seen that the impact of the series resistance Rs and 
the shunt resistance Rsh on the curve is reflected in the deviation 
of the maximum power point inward or outward, and the influ-
ence of Rsh is negligible. However, the deviations of the curves 
in Figs. 10a and b are not consistent with those shown in Fig. 9, 
indicating that there is no issue with the parameter correction 
for Rs and Rsh.

Regarding the reverse saturation currents Io1 and Io2, as well as 
their corresponding ideality factors n1 and n2, since they represent 
the same physical characteristics, their changes should be syn-
chronous. Therefore, in the following study, Io is used to denote 
the synchronous variations of Io1 and Io2, and n is used to denote 
the synchronous variations of n1 and n2.

As shown in Figs 10c and d, the influence of Io and n on the 
curve is similar, both of which can cause the curve to shift down-
ward as a whole in the non-linear range. It can be surmised that 
errors in the correction of Io and n in the seven-parameter adjust-
ment under different radiation intensities may lead to deviations 
in the simulated data.

Furthermore, it should be noted that even a small scaling of the 
value of n can cause significant deviations in the curve. The Io correc-
tion expression only contains the correction of T and the change in 
the Io value due to the variation in radiation intensity is not affected. 
At the same time, as shown in Equation (1), the change in the n value 
will also cause a change in the factor multiplied by Io. Therefore, the 
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influence of n is reflected not only in the shift of the curve, but also 
in the change in the factor multiplied by Io. That means that the 
change in the n value will be converted into a change in the Io value. 
Therefore, the influence of Io and n on the curve is similar.

3.3  Modification of the ideal factors
Due to the difficulty in determining the relationship between the 
ideality factor and the light intensity or temperature in most lit-

erature, n values are usually not corrected under actual conditions 
and are directly adopted based on their reference conditions.

However, Ghani et al. [67], Khan et al. [68], Cuce et al. [69] and 
Deshmukh et al. [70] suggest that the ideality factor decreases lin-
early with an increase in temperature, while Khan et al. [71] and 
Singh et al. [72] believe that it remains nearly constant. Chegaar et 
al. [73] and Khan et al. [74] found that the ideality factor increases 
with an increase in light intensity, while Khan et al. [75] suggest 
that it decreases with an increase in light intensity. Additionally, 
Lim et al. [76] proposed that the dependence of the ideality factor 
on the light intensity is not monotonic.

In summary, most scholars believe that the ideality factor is 
highly insensitive to environmental conditions and can even be 
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irradiances. (a) I–V characteristic curve; (b) P–V characteristic curve.
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Fig. 13:  The current absolute error under different irradiances

Table 4:  The RMSE values for each irradiance

G (W/m2) RMSE (A)

1012 0.0062

818 0.0495

620 0.0360

398 0.0338

202 0.0288
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Fig. 14:  The measured data and the simulated data at different 
temperatures
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Fig. 15:  Refined simulated data and unrefined simulated data for 
T = 30°C
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ignored. However, from the graph, it can be observed that even 
slight variations in the ideality factor can have a significant im-
pact on the output curve. Therefore, this study needs to make 
certain modifications to the ideality factor to match the output 
curve in different situations.

Since the magnitude of the variation in the ideality factor is 
minimal, this study uses a linear variation of the ideality factor 
with respect to irradiance for correction purposes.

3.3.1  Modification under irradiance
To begin with, the curve corresponding to G = 620 W/m2, T = 24.9℃ 
was selected for the correction of the parameters. Following a thor-

ough verification, it was established that the modification of the 
ideality factor as n = (1 + 0.016)nref resulted in data that were more 
closely aligned with experimental observations compared with 
unrefined data. A comparison of the refined and unrefined data 
against experimental data, shown in Fig. 11, highlights a superior 
conformity of the corrected data to the experimental trends.

Therefore, Equation (19) was utilized to correct and validate 
the data at other irradiance levels (G = 1012, 818, 398 and 202 W/
m2) under T = 24.9℃, as shown in Fig. 11:

n = nref ×
ï
1+

0.016
1012.7− 620

×
(
Gref − G

)ò
� (19)

Based on Fig. 12, it can be observed that, to a certain extent, 
the linear expression for the irradiance correction of ideal factors 
exhibits a degree of universality.
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temperatures
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Fig. 17:  The current absolute error under different temperatures

Table 5:  The RMSE values for each temperature

T 
(℃)

RMSE (A)

18 0.0282

30 0.0257

40 0.0364
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Fig. 18:  Refined simulated data and measured data under 
comprehensive conditions
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Fig. 19:  The current absolute error under comprehensive conditions

Table 6:  The RMSE values under various conditions

Condition RMSE (A)

G = 988 W/m2, 
T = 17.8℃

0.0697

G = 589 W/m2, T = 42℃ 0.0570

G = 308 W/m2, T = 32℃ 0.0289
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Fig. 13 illustrates the absolute error of the output current 
under different levels of irradiance. As mentioned earlier, it is dif-
ficult for the measuring instrument to accurately measure the 
current value near the open-circuit voltage. For example, nega-
tive values of current are frequently measured around the open-
circuit voltage, leading to a significant increase in error values 
near the open-circuit voltage. Therefore, the simulated data error 
conforms to the actual characteristics.
The RMSE values for each irradiance are shown in Table 4.

3.3.2  Modification under temperature
We will now employ the same methodology to verify the per-
formance of simulated data at different temperatures. Due to 
the measurement data, the control data with identical irradi-
ance but different temperatures cannot be obtained. Therefore, 
three groups of data, namely T = 18℃, G = 1052 W/m2, T = 30℃, 
G = 1018 W/m2 and T = 40℃, G = 1012 W/m2, are selected in this 
section for the study of temperature correction. The simulated 
data and the measured data under these three conditions are 
shown in Fig. 14.

It can be observed from Fig. 13 that similar issues to those seen 
under different irradiance levels also arise in the simulated data 
under different temperatures. Considering that the ideal factor 
n is sensitive to temperature to some extent, we adopt the same 
methodology to correct the ideal factor for temperature. First, we 
corrected the curve for T = 30 °C and, through several verifica-
tions, found that when n = (1 + 0.005)nref, the corrected data were 
more consistent with the experimental data compared with the 
uncorrected data, as shown in Fig. 15.

Therefore, Equation (20) was used to correct and validate the 
data at other temperature levels, resulting in the results shown 
in Fig. 16:

n = nref ×
ï
1+

0.005
30− 25

×
(
T− Tref

)ò
� (20)
Based on Fig. 16, it can be observed that, to a certain extent, the 
linear expression for temperature correction of ideal factors also 
exhibits a degree of universality. Fig. 17 illustrates the absolute 
error of output current under different temperature levels.
The RMSE values for each temperature are shown in Table 5.

3.3.3  Modification under comprehensive conditions
When the corrections for temperature and irradiance are com-
bined, the linear superposition of their influences on the ideal 
factor is obtained. Based on this, the present study proposes 
Equation (21) for the correction of the ideal factor under different 
temperature and irradiance conditions:

n = nref ×
ï
1+

Å
0.016

1012.7− 620
×

(
Gref − G

)
+

0.005
30− 25

×
(
T− Tref

)ãò
� (21)

The present study also randomly selected data under different 
temperature and irradiance conditions to further validate the 
corrected parameters, as shown in Fig. 18. Fig. 19 illustrates the 
absolute error of the output current under those conditions.
The RMSE values under each condition are shown in Table 6.

Although the absolute error of the output current under com-
posite conditions seems to be larger than that under single con-
ditions, it is completely acceptable considering the error of the 
measuring instrument under real conditions and the difference 
between the actual and the physical models, and the output cur-
rent of the module is often one order of magnitude higher than 
the absolute error.

4  Conclusion
This paper briefly introduces the existing parameter extraction 
methods and uses the latest metaheuristic algorithm to solve 
the problem of the nonlinearity, multivariable and multimode 
of PV cell dual diodes, thus extracting the seven parameters of 
PV cells. The new algorithm is compared with classic parameter 
extraction algorithms to verify its applicability and accuracy in 
the field of parameter extraction. Considering practicality in en-
gineering, this study combines the advantages of metaheuristic 
algorithms in parameter extraction and the advantages of analyt-
ical methods in reference condition-based parameter correction 
to propose a method of performing parameter correction after 
parameter extraction using metaheuristic algorithms to meet en-
gineering applications. In particular, on the deviation observed in 
the simulated data, this study has proposed targeted corrections 
for the ideal factor of the diode under different conditions to fur-
ther improve the accuracy of the model.
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