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Abstract
The aim of magnetorelaxometry imaging is to determine the distribution of
magnetic nanoparticles inside a subject by measuring the relaxation of the
superposition magnetic field generated by the nanoparticles after they have first
been aligned using an external activation magnetic field that has subsequently
been switched off. This work applies techniques of Bayesian optimal exper-
imental design to (sequentially) selecting the positions for the activation coil
in order to increase the value of data and enable more accurate reconstruc-
tions in a simplified measurement setup. Both Gaussian and total variation
(TV) prior models are considered for the distribution of the nanoparticles. The
former allows simultaneous offline computation of optimized designs for mul-
tiple consecutive activations, while the latter introduces adaptability into the
algorithm by using previously measured data in choosing the position of the
next activation. The TV prior has a desirable edge-enhancing characteristic,
but with the downside that the computationally attractive Gaussian form of
the posterior density is lost. To overcome this challenge, the lagged diffusiv-
ity iteration is used to provide an approximate Gaussian posterior model and
allow the use of the standard Bayesian A- and D-optimality criteria for the TV
prior as well. Two-dimensional numerical experiments are performed on a few
sample targets, with the conclusion that the optimized activation positions lead,
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in general, to better reconstructions than symmetric reference setups when the
target distribution or region of interest are nonsymmetric in shape.

Keywords: magnetorelaxometry imaging, Bayesian experimental design,
A-optimality, D-optimality, adaptivity, edge-promoting prior,
lagged diffusivity

(Some figures may appear in colour only in the online journal)

1. Introduction

This work considers Bayesian optimal experimental design (OED) for choosing positions and
orientations of activation coils in a simplifiedmodel formagnetorelaxometry imaging (MRXI).
We implement both an offline algorithm for simultaneous optimization of multiple consecutive
activations assuming a Gaussian prior for the imaged magnetic nanoparticle (MNP) distribu-
tion and an adaptive algorithm based on a total variation (TV) prior and the lagged diffusivity
iteration as introduced for sequential x-ray imaging in [19].

1.1. MRXI

In MRXI, the goal is to determine the distribution of MNPs inside a physical body from meas-
urements on the relaxation of a superposition magnetic field generated by an alignment of the
magnetic moments of the MNPs. The MNPs are aligned using an external activation magnetic
field, which is then switched off, and the change in the magnetic field due to the relaxation of
the MNPs is finally measured at sensors outside the examined body.

MNPs have a diameter of a few nanometers. They consist of ferro- or ferrimagnetic mater-
ial and can be manipulated with an external magnetic field [24]. MNPs are employed in
biomedicine [30]: they have applications in different types of cancer treatment, e.g. in mag-
netic drug targeting [38] and magnetic hyperthermia [28]. In these applications, it is important
to have an estimate on the MNP distribution inside the subject because it directly affects how
the treatment transpires.

As in [15], we approximately model the dependence of the MRXI measurements of the
relaxation magnetic field on the distribution of the MNPs via a linear forward model by work-
ing in the linear range of the Langevin function that is used for expressing the magnetization
of the MNPs exposed to an external magnetic field. As further simplifications, we model the
coil used for producing the external activation fields as a dipole and assume that each meas-
urement sensor records the strength of the relaxation magnetic field (exactly) at a given point
in a given direction. The consecutive positions and orientations of the activation dipole are the
design parameters we aim to optimize.

After discretization, the forward model corresponds to a measurement matrix that depends
nonlinearly on the design parameters, with a possibility to explicitly calculate the derivatives
of this nonlinear dependence, which facilitates implementation of differentiation-based optim-
ization algorithms. Due to a certain symmetry in the measurement model, the system matrix
depends essentially in the same way on the measurement positions and directions as on the
specifications of the activation dipoles, which means that the introduced techniques could as
well be used for designing the configuration of the measurement sensors.
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1.2. Bayesian experimental design

ABayesian optimal design p∗ is defined as a maximizer over the design spaceP for the expect-
ation of the utility function Eu,y[U(p;c,y)] with respect to the data y ∈ Y and the model para-
meters c ∈ C [9]. That is,

p∗ = argmax
p∈P

ˆ
Y

ˆ
C
U(p;c,y)π (c |p,y)π (y |p) dcdy, (1.1)

where π(c |p,y) and π(y |p) are the posterior distribution of the parameter c and the marginal
distribution of the data y, respectively, under the design p. Two of the most common choices for
U are a negative quadratic loss function that measures the squared distance from c to a specific
point estimator such as the posterior mean and the expected information gain for which U is
related to the Kullback–Leibler distance between the posterior and prior distributions.

In our setting of MRXI, the design parameter vector p encodes the consecutive positions
and orientations of the dipole-like activation coil, c corresponds to the discretized MNP distri-
bution, and y is the vector of measurements on the magnetic field at the sensors. As the meas-
urement model relating c and y is linear, assuming a Gaussian prior and an additive Gaussian
noise model considerably simplifies the optimization targets corresponding to the aforemen-
tioned two utility functions: employing a quadratic loss function or maximizing the informa-
tion gain lead to minimizing a weighted trace or the determinant of the posterior covariance,
respectively. These correspond to so-called A- and D-optimal designs [2, 9]. What is more,
the posterior covariance is independent of the measurements, meaning that the experimental
design can be performed offline, i.e. prior to taking any measurements, and simultaneously for
several consecutive activations.

If a smoothened TV prior is utilized for the MNP distribution, it is not possible to get rid of
the double integral over the potentially high-dimensional spaces in (1.1) without further sim-
plifications. However, if one proceeds sequentially, choosing the specifications for the next
activation only after computing a maximum a posteriori (MAP) estimate for the MNP distri-
bution via the lagged diffusivity iteration [39] based on the measurements from the previous
activations, it is possible to interpret the MAP estimate as the mean of a Gaussian distribution
whose covariance matrix is available as a side product of the iteration [5, 8]. Basing the selec-
tion of the specifications for the next dipole activation on this covariance structure, one can
devise a sequential Bayesian OED algorithm that adapts to the already collected data and has
potential to produce edge-promoting experimental designs; see [19] for an application of this
idea to sequential x-ray imaging. Let us also note that the sequential optimization approach
can be extended to a non-parametric setting with convex priors (such as the smoothened TV)
for which the posterior has good approximation properties by Gaussian distributions in the
neighborhood of non-parametric MAP estimators [18].

1.3. Our contribution

The main contribution of this work is the application of Bayesian OED to a simplified two-
dimensional model ofMRXI, where the activation coils and measurement sensors are modeled
as point-like objects with orientations. OED has previously been studied in the framework of
MRXI in [11, 27, 35, 36], of which only the master’s thesis [27] considers a Bayesian setting.
The paper [11] also considers model selection for MRXI in a probabilistic framework, but
instead of Bayesian OED the authors resort to information theoretic arguments.
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The presented numerical experiments tackle OED both with a Gaussian prior and simultan-
eous offline optimization of several activations and with a smoothened TV prior and sequen-
tial adaptive optimization of the activations. In both cases, the reconstruction accuracy for the
optimal designs is compared to symmetric reference setups, demonstrating that the employ-
ment of Bayesian OED improves the performance of MRXI. However, as the objective func-
tions considered when deducing the ‘optimal’ designs suffer from multiple local optima, and
a greedy approach is used when optimizing the activations sequentially, there is no certainty
that globally optimal designs are actually found in all experiments.

For the simultaneous design of activations, the optimization is performed by Newton’s
method or gradient descent due to the high-dimensional design space, which makes the
approach prone to finding local optima. In the sequential algorithm, where only the posi-
tion and orientation of the next activation dipole need to be optimized at a time, an exhaust-
ive search is also considered in order to evaluate the optimality of the designs produced by
the differentiation-based methods. The numerical experiments focus mainly on A-optimality,
but extending all presented considerations to the case of D-optimality would be conceptually
straightforward.

The considered sequential approach to Bayesian OED has previously been investigated for
choosing optimal projection geometries in x-ray imaging with a Gaussian prior in [7] and
with a TV prior in [19]. However, these papers do not tackle simultaneous optimization of
many projection geometries with a Gaussian prior due to computational restrictions.Moreover,
compared to x-ray tomography with a limited projection aperture, the measurement matrix for
a single activation in MRXI is more ill-conditioned and provides information about the entire
imaged object. Hence, the functionality of the sequential OED algorithm with the smoothened
TV prior for MRXI is not obvious based solely on the material in [19].

Our method relies on a well-defined discretization of an underlying non-parametric
Bayesian OED problem. Non-parametric approach for OED in Bayesian inverse problems
has been formalized by Alexanderian (see [2] and the references therein), and it provides the
theoretical underpinnings for many applications emerging, e.g. in inverse problems related to
PDEs (see, e.g. [2, 3, 6, 12, 26, 40]) or nonlinear systems [20]. Stability properties of the expec-
ted utility concerning model approximations in Bayesian OED were recently investigated in
[14]. This finding suggests that, in our framework, each optimization step in the sequential
D-optimal approach remains robust when subjected to discretization and linearization of the
Langevin function. However, rigorous study of such robustness is part of future work. For
more general review on Bayesian OED, see [1, 9, 31, 34].

This text is organized as follows. The (simplified and discretized) measurement model of
MRXI is described in section 2. Section 3 introduces the Bayesian framework for inverse prob-
lems and recalls the probabilistic interpretation of the lagged diffusivity iteration from [5, 19].
In section 4, the optimality targets for A- and D-optimal designs are introduced, and their min-
imization is considered. Section 5 presents the complete optimization/reconstruction algorithm
for the sequential design process, and section 6 is dedicated to numerical experiments. Finally,
section 7 lists the concluding remarks.

2. Measurement model and its discretization

MRXI consists of twomain phases that are excitation and relaxation. In the excitation phase, an
external magnetic field is generated by using electromagnetic coils, called activations in what
follows. The activations realign the magnetic moments of the MNPs so that the superposition
field that they generate can be measured with magnetic field sensors outside the imaged object.

4
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In the relaxation phase, the activations are switched off, allowing the magnetic moments of the
MNPs to reorient through Néel and Brownian relaxations until equilibrium is reached [23].
Néel relaxation describes the rotation of the magnetic moment within the core of an MNP
and Brownian relaxation the rotation of the entire MNP. Note that magnetic field sensors can
only measure a change in a magnetic field, meaning that the MRXI measurements actually
correspond to the change in the field over some time period during the relaxation phase.

Ideally, a single MRXI measurement equals the strength of the superposition magnetic field
created by the MNPs at a given location in a given direction. To achieve this, the external
activation magnetic field should vanish immediately after it is switched off and the employed
measurement sensor should be able to measure the change in the magnetic field precisely at a
single point, both of which are impossible conditions to satisfy in practice. Be that as it may,
in the following analysis we assume such idealized measurements and refer to [21, 25] and
references therein for information on the practical limitations of MRXI instrumentation.

The imaged object is represented by a domain Ω⊂ Rd, with d= 3, and the density of the
MNPs in Ω is modeled by c ∈ L2+(Ω), where

L2+ (Ω) =
{
v ∈ L2 (Ω) | ess inf v⩾ 0

}
accounts for the presumed nonnegativity of theMNP density. The aim ofMRXImeasurements
is to reconstruct c based on measurements on (the relaxation of) superposition magnetic fields
generated by the MNPs under a series of activations.

2.1. Modeling the activations

Consider an external activation coil at a ∈ Rd \Ω, with its shape described by a smooth enough
(closed) path Γa ⊂ Rd. Assume furthermore that

γa : [0,L]→ Rd

gives an arclength parametrization for Γa. According to the Biot–Savart law, the magnetic field
induced when a constant net current J runs through the coil is given as

Ba (x) =
µ0

4π
J
ˆ L

0

γ ′
a (τ)× (x− γa (τ))

|x− γa (τ) |3
dτ, x ∈ Rd \Γa, (2.1)

where | · | denotes the Euclidean norm. A common approach to modeling electromagnetic coils
is to approximate the coil path with linear segments. This approximation is explained in [16]
and used for an example on MRXI in [25]. The issue with such a numerical implementa-
tion is the computational complexity of the MRXI forward model, especially when the coils
are approximated to a high precision. Moreover, the detailed modeling of the coils is case-
dependent, and it is not obvious that such details have a considerable effect on the general
conclusions on the applicability of Bayesian OED to MRXI. For these reasons, we model the
activations as electromagnetic dipoles; cf [15]. In particular, such a simplified model correctly
captures the spatial decay rate of the activation magnetic fields, which is an important factor
contributing to the level of illposedness for the considered imaging problem.

Our use of dipole activations can be motivated, e.g. by assuming that Γa consists of a single
circular loop of radius ρ in the (d− 1)-dimensional plane that contains the center point of the
loop a and has the unit vector ν as its normal. If ρ is small compared to |x− a|, it is well
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known that Ba(x) can be approximated by the field of a magnetic dipole at a. More precisely
(see, e.g. [37]),

Ba (x) =±µ0

4π

(
3(x− a)(x− a)⊤

|x− a|5
− I

|x− a|3

)
α+O

(
ρ4

|x− a|5

)
, (2.2)

where I ∈ Rd×d is the identity matrix, α= πρ2Jν has an interpretation as a dipole moment,
and the sign depends on the direction of the current in the loop and the chosen orientation for
ν. In the following, we drop the latter term in (2.2) and also simplify/abuse the notation by
writing

Ba (x) =

(
3(x− a)(x− a)⊤

|x− a|5
− I

|x− a|3

)
α, x ∈ Rd \ {a} ,

where α ∈ Rd is a dipole moment that includes all physical constants and will together with a
act as a design parameter in our numerical experiments.

2.2. Modeling the measurements

Let M : Ω→ Rd describe the magnetization generated by the MNPs inside the imaged object
due to the external magnetic field. The superposition field generated by the magnetization is
expressed as

BM (w) =
µ0

4π

ˆ
Ω

(
3(w− x)(w− x)⊤

|w− x|5
− I

|w− x|3

)
M(x) dx, w /∈ Ω,

that is, as a field induced by a density of magnetic dipoles over Ω described by the magnetiza-
tion. According to the basic theory on idealized paramagnetic materials [32], themagnetization
M generated during the excitation phase can be modeled as (cf [15])

M(x)∝ L(qBa (x))c(x) , x ∈ Ω, (2.3)

where q> 0 is a MNP-dependent physical constant, Ba is the activation magnetic field and
L : R→ R is the Langevin function

L(τ) = coth(τ)− 1
τ
=

1
3
τ +O

(
|τ |3
)

(2.4)

applied in (2.3) componentwise.
Since in MRXI the argument of L in (2.3) can be assumed to be in the linear range of the

Langevin function [15], we drop the second term on the right-hand side of (2.4). Assuming
further that a measurement sensor at s ∈ Rd\Ω measures the (relaxation-induced change in
the superposition) magnetic field in the direction of a vector σ ∈ Rd that describes the sensor’s
orientation, the corresponding measurement is modeled as

6
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ys,σ = σ⊤BM (s) = σ⊤
ˆ
Ω

(
3(s− x)(s− x)⊤

|s− x|5
− I

|s− x|3

)
Ba (x) c(x) dx. (2.5)

Observe that in (2.5) all constants have been included in the measurement direction vector σ.

2.3. Complete model and its discretization

Combining our activation and measurement models and recalling the assumption to be able to
measure the strength of the actual superposition magnetic field via measuring its relaxation,
the complete measurement model for a single measurement due to a single activation reads

ys,σ,a,α = (Kσ,a,αc)(s) :=
ˆ
Ω

κσ,a,α (s,x)c(x) dx, (2.6)

where the integral kernel is

κσ,a,α (w,x) = σ⊤

(
3(w− x)(w− x)⊤

|w− x|5
− I

|w− x|3

)(
3(x− a)(x− a)⊤

|x− a|5
− I

|x− a|3

)
α.

The integral operator Kσ,s,a : L2(Ω)→ L2(D), implicitly defined by (2.6), is compact due to
the boundedness (or smoothness) of its kernel, assuming the domain for the possible positions
of the sensor locations D is bounded and satisfies D∩Ω= ∅ [33]. This gives an explanation
for the ill-posedness of the considered MRXI problem [15]. Observe also that (2.6) repres-
ents a linear dependence between the MNP concentration c ∈ L2+(Ω) and the measurement
ys,σ,a,α ∈ R, parametrized by the two vector pairs (a,α) and (s,σ) that define the activation
dipole and the measurement sensor, respectively. Moreover, it is easy to check via transposi-
tion that κσ,a,α(s, ·) = κα,s,σ(a, ·), which means that changing the roles of the pairs (a,α) and
(s,σ) does not change the measurement, i.e. ys,σ,a,α = ya,α,s,σ . In particular, our approach for
designing the activation pattern introduced in what follows could as well be used for designing
the positions of the measurement sensors.

The relation (2.6) can be discretized as

ys,σ,a,α ≈
Nc∑
j=1

(ks,σ,a,α)j cj = k⊤s,σ,a,αc (2.7)

where c1, . . . ,cNc are the degrees of freedom in the employed parametrization for the MNP
concentration and we have abused the notation by denoting now with c a vector in RNc . The
coefficient vector ks,σ,a,α is defined by the function κσ,a,α(s, ·) and the quadrature rule util-
ized for numerically evaluating the right-hand side of (2.6). In our numerical experiments,
the two-dimensional3 domain Ω is divided into a homogeneous grid of Nc pixels with centers
x1, . . . ,xNc , the degrees of freedom for the MNP concentration are cj = c(xj), j = 1, . . . ,Nc, and

(ks,σ,a,α)j = ωκσ,a,α (s,xj) , j = 1, . . . ,Nc,

where the weight ω is the area of a single pixel.
Let us assume that there are Ns measurements for each activation; the corresponding para-

meter pairs (sj,σj), j = 1, . . . ,Ns, are not considered as design parameters, but they are pre-
defined and the same for each activation. According to (2.7), a full set of measurements for a
single activation can thus be modeled as

yp = K(p)c ∈ RNs , (2.8)

3 The interpretation of MRXI measurements in two spatial dimensions is considered in section 6.
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where p= (a,α) denotes the design parameter pair, i.e. the position and moment for the activ-
ation dipole, and

K(p) =

 k⊤s1,σ1,a,α
...

k⊤sNs ,σNs ,a,α

 ∈ RNs×Nc .

Analogously, after k sets of measurements corresponding to the activations defined by a
sequence of design parameters pj = (aj,αj), j = 1, . . . ,k, the discretized noiseless measure-
ment model reads

yk =

y1...
yk

=K(pk)c, with K(pk) =

K(p1)
...

K(pk)

 ∈ RkNs×Nc , (2.9)

where pk denotes a concatenation of all k design variables. This is the model that is used for
(sequential) Bayesian OED in the following without any further reference to the continuum
model (2.6). In particular, we do not insist on the positivity of the discretized MNP concentra-
tion in what follows.

3. Prior models and lagged diffusivity iteration

In this section, a Bayesian model for the measurements deterministically described by (2.9)
is introduced and two different prior models for the discretized MNP concentration are con-
sidered. The first prior model is Gaussian, which enables optimization of the measurements
in an offline mode and, in particular, simultaneous optimization of the specifications of sev-
eral sequential activations. The second one is a smoothened TV prior, which makes sequential
optimization of the activations truly adaptive, that is, the previously collected measurement
data affect the subsequent activation designs.

Consider the probabilistic measurement model for a single activation, i.e. for a single patch
of Ns rows in (2.9),

Yj = K(pj)C+Ej, j = 1, . . . ,k, (3.1)

where C is the discretized MNP concentration now modeled as a random vector, and the
noise Ej is assumed to follow a zero-mean Gaussian distributionN (0,Γnoise,j), where Γnoise,j ∈
RNs×Ns is symmetric and positive definite. The maximum number of activations is denoted by
Na, meaning that 1⩽ k⩽ Na in all following considerations. The noise processes E1, . . . ,ENa
are assumed to be mutually independent.

The prior for the MNP density C is assumed to be independent of the noise processes and
to follow a probability density of the form

π (c)∝ exp(−γΦ(c)) , (3.2)

where the role of γ > 0 is separately specified for the two considered priors. According to the
Bayes’ formula and assuming the measurement model (3.1), the posterior density for c after k
activations is

π (c |yk) ∝ π (yk |c) π (c)

∝ exp

(
−1
2
(yk−K(pk)c)

⊤
(Γnoise,k)

−1
(yk−K(pk)c)− γΦ(c)

)
, (3.3)

8
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where Γnoise,k := diag(Γnoise,1, . . . ,Γnoise,k) ∈ RkNs×kNs is a block diagonal matrix defined by
the noise covariance matrices for the previous measurements.

3.1. Gaussian prior

Let us first assume that a priori C∼N (ĉ0,Γ0), where ĉ0 ∈ RNc is the prior mean and the
symmetric positive-definite Γ0 ∈ RNc×Nc is the prior covariance. Hence, γ = 1/2 and

Φ(c) = (c− ĉ0)
⊤
Γ−1
0 (c− ĉ0)

in (3.2). For a Gaussian prior, it is well known that the posterior π(c |yk) is also a Gaussian
(see, e.g. [22]), with the covariance

Γk = Γ0 −Γ0K(pk)
⊤
(
K(pk)Γ0K(pk)

⊤
+Γnoise,k

)−1
K(pk)Γ0 (3.4)

= Γk−1 −Γk−1K(pk)
⊤
(
K(pk)Γk−1K(pk)

⊤
+Γnoise,k

)−1
K(pk)Γk−1 (3.5)

and the mean

ĉk = ĉ0 +Γ0K(pk)
⊤
(
K(pk)Γ0K(pk)

⊤
+Γnoise,k

)−1
(yk−K(pk) ĉ0)

= ĉk−1 +Γk−1K(pk)
⊤
(
K(pk)Γk−1K(pk)

⊤
+Γnoise,k

)−1
(yk−K(pk) ĉk−1) ,

where the latter recursive formulas follow by treating the posterior after the previous meas-
urement as the prior for the newest one.

It is important to notice that the posterior covariance after k measurements depends on the
previous experimental designs via K(pk) (cf (2.9)), but it does not depend on the correspond-
ing measurement data. As the optimization targets considered in section 4 are functions of the
posterior covariance only, the optimal designs do not depend on measured data either. Hence,
the optimization of the measurement setup can be performed offline, with no other reason to
resort to greedy sequential optimization of the activations than the computational cost related
to considering a high-dimensional decision variable. As a consequence, we aim to simultan-
eously optimize all activation designs pNa when considering a Gaussian prior for the MNP
concentration.

3.2. TV prior and lagged diffusivity

For smoothened TV, the scaled negative log-prior Φ is defined as

Φ(c) =
ˆ
Ω

φ (|∇c|) dx, with φ(t) =
√
t2 + T2 ≈ |t|, (3.6)

accompanied by the information that c vanishes at the pixels next to the boundary of Ω. Note
that the spatial gradient in (3.6) operates on the discretized pixelwise MNP concentration vec-
tor c ∈ RNc in a suitable approximate manner; in what follows, this is achieved by treating the
components of c as nodal values with respect to a weakly differentiable finite element basis.
The small parameter T > 0 ensures the differentiability of φ, which is required by the lagged
diffusivity iteration, and in this case γ > 0 in (3.2) controls the strength of the prior. With this
choice, the posterior (3.3) is obviously not Gaussian, which typically makes the evaluation of
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an optimality target of the form (1.1) computationally demanding. To circumvent this prob-
lem, we adopt the approach in [19] and iteratively approximate Φ(c) by quadratic terms in the
spirit of the lagged diffusivity iteration [39]; see also [4, 17]. With a suitable stopping con-
dition, this technique automatically produces a Gaussian approximation for the posterior of c
after k activations; the covariance matrix for this approximate posterior can then be deployed
when determining the experimental design for the next activation. In particular, this approach
leads to a sequential OED algorithm that adapts to the measurement data in hand.

To set the stage for introducing a Bayesian version of the lagged diffusivity iteration, let us
identify c with its interpolant in a piecewise linear finite element basis {ϕj}Ncj=1 ⊂ H1

0(Ω). A
straightforward differentiation reveals that

∇cΦ(c) = Θ(c)c, c ∈ RNc ,

where

Θi,j (c) :=
ˆ
Ω

1√
|∇xc(x) |2 + T2

∇ϕi (x) ·∇ϕj (x) dx, i, j = 1, . . . ,Nc, (3.7)

for any c ∈ RNc interpreted as an element of H1
0(Ω) via the introduced finite element basis. In

particular,Θ is positive definite and thus invertible since it corresponds to a finite element dis-
cretization of an elliptic partial differential operator accompanied by a homogenous Dirichlet
boundary condition; see [19] for more details as well as for an explanation on how the matrix
Θ(c) can alternatively be formed via finite differences.

Let us then assume that we have been able to deduce (an approximation of) the MAP estim-
ate ĉk−1 for the posterior (3.3) after k− 1 activations, with Φ defined by (3.6). If k= 1, our
initial guess for the MNP concentration plays the role of ĉk−1. The aim is to use the lagged
diffusivity iteration to compute theMAP estimate ĉk for the posterior (3.3) after k activations in
such away that we simultaneously form aGaussian approximation for (3.3). The lagged diffus-
ivity iteration is started by setting ĉ(0)k = ĉk−1. The subsequent iterates are defined recursively
via

ĉ( j)k = Γ
( j−1)
k K(pk)

⊤
(
K(pk)Γ

( j−1)
k K(pk)

⊤
+ γΓnoise,k

)−1
yk, (3.8)

where Γ
( j−1)
k =Θ(ĉ( j−1)

k )−1 can be interpreted as the covariance matrix for a zero-mean

Gaussian prior multiplied by γ. The iterate itself ĉ( j)k has an interpretation as the corresponding
posterior mean after performing measurements corresponding toK(pk). Although not needed
explicitly in the lagged diffusivity iteration itself, the posterior mean can be accompanied by
a Gaussian density with the covariance

Γ
( j)
k = γ−1

(
Γ
( j−1)
k −Γ

( j−1)
k K(pk)

⊤
(
K(pk)Γ

( j−1)
k K(pk)

⊤ + γΓnoise,k

)−1
K(pk)Γ

( j−1)
k

)
; (3.9)

see once again [19] for more details.
This iterative process is continued until a suitable stopping criterion is satisfied, say, at

j= J; the criterion employed in our numerical experiments is considered in section 5. One
then defines ĉk = ĉ(J)k to be the reconstruction after k projection images, i.e. an approximation
of theMAP estimate for (3.3). Moreover, the covariance matrix for the associated approximate
Gaussian density Γk = Γ

(J)
k is used for choosing the design parameter vector pk+1 defining the

next activation. In particular, the covariance matrix (3.9) only needs to be evaluated once at
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j= J when the iteration is terminated. For more details on the lagged diffusivity iteration see
[10, 13, 39].

4. Computing optimal designs

In this section, we recall the concepts of A- and D-optimal designs and consider numerically
solving the associated optimization problems. The presentation is intentionally compact; we
refer to [2, 9] and [29], respectively, for more information on the optimality conditions of
Bayesian OED and the tools of nonlinear optimization.

4.1. A- and D-optimality

The A- and D-optimality criteria aim to minimize the (weighted) trace and the determinant of
the (Gaussian) posterior, respectively, with respect to the design parameters. The design para-
meter vector is denoted by ξ and the considered posterior covariance by Σ(ξ). These entities
can have two meanings corresponding to two different settings:

1. The design ξ parametrizes pNa , i.e. it defines the specifications of all activations, andΣ(ξ) =
ΓNa(pNa(ξ)) is the final posterior for a Gaussian prior defined by (3.4) with k= Na.

2. Themeasurements corresponding to the first k− 1 activations have already been performed,
ξ parametrizes the kth activation, and Σ(ξ) is defined in accordance with (3.5) as

Σ(ξ) = Γk−1 −Γk−1K(p)⊤
(
K(p)Γk−1K(p)⊤ +Γnoise,k

)−1
K(p)Γk−1, (4.1)

where p= p(ξ) and Γk−1 is the covariance of a Gaussian distribution that the MNP con-
centration is assumed to follow after k− 1 measurements.

The main motivation for considering the latter case is the method for sequentially building
approximate Gaussian posteriors under a smoothened TV prior reviewed in section 3.2, but it
can in principle also be used for deducing greedy sequential designs under a Gaussian prior
(cf e.g. [7]).

In our setting, an A-optimal design is defined as

ξA = argmin
ξ

ΨA (ξ) , with ΨA (ξ) = tr
(
AΣ(ξ)A⊤) . (4.2)

It minimizes the expected squared distance of the unknown from the posterior mean in the
seminorm defined by the positive semidefinite matrix A⊤A for a given A ∈ RNc×Nc ; see, e.g.
[2, 9] for more details. In our numerical tests, A is usually the identity matrix I, indicating that
all degrees of freedom in the MNP concentration are considered equally important. However,
certain diagonal elements of the identity matrix can also be set to zero in order to only account
for the reconstruction error in the other degrees of freedom. Such a diagonal matrix is denoted
by IROI, where ‘ROI’ indicates that the reconstruction error over some region of interest (ROI)
is minimized. In our numerical tests, where Ω is divided into Nc homogeneous pixels with
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constant concentration values, an estimate of the expected L2-error over the ROI for a design
ξ can be computed as

Ψ̃A (ξ) =

√
|Ω|
Nc

ΨA (ξ), (4.3)

where A= IROI and |Ω| denotes the area of Ω.
A D-optimal design maximizes the information gain when the prior is replaced by the

posterior [9], which in our setting can be expressed as

ξD = argmin
ξ

ΨD (ξ) , with ΨD (ξ) = log(detΣ(ξ)) . (4.4)

The minimization target ΨD equals the negative of the information gain up to an additive
constant and scaling, and the inclusion of a logarithm in ΨD follows from information theory,
but it also makes the evaluation of ΨD more stable (cf [7]). It would also be possible to only
consider information gain over some ROI [7], but such a case is not considered in the numerical
examples of this work.

In the rest of this section, the minimization target is denoted generically as Ψ : RNξ → R,
where Nξ is the number of parameters required for parametrizing the positions and moments
of the considered activation dipoles. The precise parametrization employed in our numerical
tests is introduced in section 6; at this stage, it is enough to note that the parametrization is
smooth and such that no constraints are needed for the decision variables, meaning that one can
resort to differentiation-based methods of global optimization. In particular, the needed first
and second order derivatives can be calculated explicitly using the employed parametrization
and applying basic matrix differentiation formulas to (4.2) and (4.4); see [27] for more details.

4.2. Minimization of the target functions

Our standard algorithms for minimizingΨ are gradient descent and Newton’s method accom-
panied by an inexact bisection line search that utilizes the Wolfe conditions. As the target
function generally suffers from several local minima, the choice of the initial guess for the
employed minimization algorithm plays a crucial role. The algorithm could, e.g. be restarted
from multiple initial guesses, and among the resulting designs, the one producing the smallest
value for the optimization target could be chosen as the final minimizer. However, we simply
resort to randomization or some heuristic for choosing a single initial guess in our numerical
experiments.

The complete algorithm for optimizing an activation design is a combination of either
algorithm 1 (gradient descent) or algorithm 2 (Newton’s method) and algorithm 3, which is an
inexact bisection line search that is terminated when the Wolfe conditions are satisfied with
predefined parameters. HΨ denotes the Hessian of the optimization target and inequalities
between (symmetric) matrices are interpreted in the sense of the partial ordering induced by
positive-definiteness. In particular, the if-clause of algorithm 2 guarantees that H is strictly
positive-definite, and d is thus a descent direction for Ψ at ξi.

The parameter β1, which is used in the first Wolfe condition, describes a sufficient decrease
in the value of the target function: the step size is accepted if it results in a decrease in the target
function that is at least β1 times the decrease predicted by the directional derivative at the base
point of the line search. The parameter β1 is often chosen to be quite small, which is already
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Algorithm 1. (Gradient descent).

Choose a tolerance ϵ> 0, an initial guess ξ0, the maximum number of iterations
NGD, and a step size parameter λ> 0. Initialize i= 0.
while |∇Ψ(ξi)|> ϵ and i < NGD do

▷ Compute the search direction d= d̃/|d̃|, with d̃=−∇Ψ(ξi).
▷ Select the step size λ̄ based on algorithm 3 with an initial guess λ.
▷ Set ξi+1 = ξi + λ̄d.
▷ Update i = i+ 1.

end while
return ξi

Algorithm 2. (Newton’s method).

Choose a tolerance ϵ> 0, an initial guess ξ0, the maximum number of iterations
NNewton, a positiveness constraint δ>0, and a step size parameter λ>0. Initialize i=0.
while |∇Ψ(ξi)|> ϵ and i < NNewton do

if HΨ(ξi)⩾ δI then
▷ Set H= HΨ(ξi).

else
▷ Set H= HΨ(ξi)+ (δ−µ)I, where µ is the smallest eigenvalue of HΨ(ξi).

end if
▷ Compute the search direction d= d̃/|d̃|, with d̃=−H−1∇Ψ(ξi).
▷ Select the step size λ̄ based on algorithm 3 with an initial guess λ.
▷ Set ξi+1 = ξi + λ̄d.
▷ Update i = i+ 1.

end while
return ξi

enough for guaranteeing a decrease in the target function. The parameter β2 controls the so-
called curvature condition. If the slope at the point proposed by the step size is larger than β2

times the initial slope, the curvature condition is satisfied. As the initial slope is guaranteed to
be negative by algorithms 1 and 2, this means that the rate of decrease at the proposed point
can be at most β2 times the rate of decrease at the base point of the line search. The parameter
β2 is often chosen to be quite close to one.

5. Sequential edge-promoting optimization of activations

If a Gaussian prior, i.e. case 1 in section 4.1 is considered, all essential material for imple-
menting our algorithm for optimizing the activation designs has already been included in
section 4. However, if case 2 of section 4.1 is tackled, the optimization routine must at each
iteration be combined with a lagged diffusivity iteration for computing an approximation
of the MAP estimate for the posterior (3.3) with Φ defined by the smoothened TV regular-
izer (3.6). The purpose of this section is to summarize this combined procedure as a concise
algorithm, i.e. algorithm 4, which is essentially the same as the one presented in [19, section 5].
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Algorithm 3. (Bisection method with the Wolfe conditions).

Choose the maximum number of iterations NWolfe and a pair of scaling parameters β1,β2 ∈ (0,1)
satisfying β1 < β2. Initialize a counter as l= 0 and the lower and upper bounds for the bisection
method with γ1 = 0 and γ2 =∞. The initial step size λ> 0, the considered base point ξi, and the
search direction d are given as inputs.
while l< NWolfe do

if Ψ(ξi +λd)−Ψ(ξi)> λβ1∇Ψ(ξi)
⊤d then

▷ Set γ2 = λ.
▷ Set λ= 1

2 (γ1 + γ2).
else if ∇Ψ(ξi +λd)⊤d< β2∇Ψ(ξi)

⊤d then
▷ Set γ1 = λ.

if γ2 =∞ then
▷ Set λ= 2γ1.

else
▷ Set λ= 1

2 (γ1 + γ2).
end if

else
return λ̄= λ

end if
▷ Set l= l+ 1.

end while
return λ̄= λ

Algorithm 4. (Edge-promoting sequential design).

Select the prior parameters T > 0 and γ > 0 and a tolerance for the stopping criterion τ > 0.

Initialization:
▷ Set ĉ0 = 1 ∈ RNc .
▷ Define Γ0 := Θ(̂c0)

−1 according to (3.7).

Iteration:
for k= 1, . . . ,Na do

▷ Solve for the next activation pk := p(ξk), where ξk is a solution to (4.2) or (4.4), with Σ(ξ)
defined via (4.1), deduced by algorithm 1, algorithm 2 or an exhaustive search (cf [7]).

▷ Form the system matrix K(pk) and ‘measure’ the data yk.
▷ Set j= 0, ĉ(0)k = ĉk−1, and∆Φ = τ + 1.
while∆Φ > τ do

▷ Set j = j+ 1.
▷ Compute ĉ( j)k according to (3.8).
▷ Compute∆Φ = |Φ(̂c( j−1)

k )−Φ(̂c( j)k )|/Φ(̂c( j)k ).
end while
▷ Define ĉk = ĉ( j)k as well as Γk = Γ

( j)
k formed according to (3.9).

end for

return ĉNa , ΓNa , and (p1, . . . ,pNa).

In addition to the sequentially optimized activation p1, . . . ,pNa , algorithm 4 also returns
the final reconstruction ĉNa and the associated spread estimator ΓNa , i.e. the mean and the
covariance of the final approximative Gaussian posterior for the MNP concentration after Na
activations. A motivation for the stopping criterion of the lagged diffusivity iteration in the
inner loop can be found in [4, 19]. Note that we also employ an exhaustive algorithm for com-
puting the optimal sequential designs in algorithm 4 to be able to deduce upper limits for the
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performance of this adaptive edge-promoting approach to the activation design in MRXI. We
refer to [7, 19] for considerations on efficient implementation of such an exhaustive optimiz-
ation routine in the framework x-ray imaging.

6. Numerical experiments

All numerical experiments are performed in a two-dimensional setting, with Ω⊂ R2 being a
disk of radius ρ> 0 centered at the origin. In particular, all spatial variables, dipole moments
and sensor orientations introduced in section 2 are modeled as two-dimensional vectors. This
can be considered an approximation for a (somewhat unrealistic) setting, where the MNPs are
concentrated around a single cross-section of a three-dimensional body, modeled byΩ, and the
sensors and activations lie in the two-dimensional plane defined by Ω, with their orientations
and dipole moments being parallel to that same plane.

To be more precise, the sensors and activations are placed on a circle with radius 1.1ρ, and
their orientations and activations are modeled by unit vectors. In all tests, there are Ns = 36
sensors that are equiangularly spaced and oriented toward the origin. The position and moment
of an activation are parametrized by two angular variables, with one of them defining the
position on the measurement circle and the other giving the orientation of the activation. In
particular, the decision variable ξ considered in section 4 is a concatenation of two or sev-
eral such angular variables, whose periodicity enables using gradient descent and Newton’s
method for estimating optimal designs without any additional constraints. However, observe
that reversing the orientation of an activation only changes the signs of all associated (noise-
less) measurements, which does not affect the A- or D-optimality of the design in question.
Hence, the deduced optimal designs are post-processed for visualization purposes by reversing
the orientations of those activations that originally point toward the interior of themeasurement
circle.

The integral kernel in (2.6) depends explicitly and smoothly on the parameter pair (a,α)
defining the position and moment of an activation dipole, and thus the kernel also depends
explicitly and smoothly on the two angular decision variables defining an activation in our
parametrization. In particular, one can straightforwardly, yet tediously deduce the first and
second derivatives of the elements of the measurement matrix K(pk) in (2.9) with respect to
the angular decision variables defining the components of pk. The gradient and Hessian of the
optimization target, defined by (4.2) or (4.4), can thus also be given explicitly by resorting to
basic rules of matrix differentiation, independently of whether one or several activations are
optimized simultaneously. We do not write down the formulas for these derivatives here but
refer to [27] for more details.

The measurement noise is assumed to have independent components with a common stand-
ard deviation η > 0. The disk Ω is discretized by initially constructing a uniform pixel grid for
an origin-centered square with side length 2ρ and then removing the pixels that lie outside
Ω. The MNP concentration is modeled as a piecewise constant function with respect to such
a pixelification of Ω, with c carrying the corresponding constant concentration values. Three
levels of discretization are used: the number of components in c is Nc = 4293 for computing
reconstructions, a coarser grid with Nopt = 901 pixels is used for optimizing the designs, while
measurement data is simulated withNdata = 5140 degrees of freedom to avoid an inverse crime.
We refer to [7, 19] for technical details on performing the optimization of the measurement
design on a sparser grid by resorting to interpolation between pixelifications.

The free parameters in algorithms 1–4 are set to ϵ= 10−5, λ= 1, NGD = NNewton = 50,
δ = 10−5, NWolfe = 15, β1 = 10−10, β2 = 0.9, T= 10−6, γ= 10 and τ = 10−3. The effect of
the last three parameters on the performance of algorithm 4 is discussed in [19], where the
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same values are used in x-ray imaging. The low value for β1 means that even a small decrease
in the objective function is considered sufficient in the bisection line search. Due to the exist-
ence of several local minima for the A- and D-optimality objective functions (cf [7, 27]), the
parameters controlling algorithms 1–3 may have a considerable effect on the proposed exper-
imental designs since gradient descent and Newton’s method can, e.g. converge to different
local minima even when starting from the same initial guess. We do not claim that the aforel-
isted parameter choices are optimal. If one resorts to exhaustive search in algorithm 4, the
value of the optimization target is evaluated on a equidistant grid of 100× 100 points over
[0,2π)× [0,2π) to deduce the decision variable pair that minimizes the considered optimiza-
tion target.

Remark 6.1. Although we have ignored many physical parameters in section 2 and the orient-
ations/moments of the sensors/activations have been scaled to unit length, there still remain
two parameters that can be tuned in the experiments: the radius ρ of Ω and the noise level η.
As the ignored physical parameters and the magnitudes of the activations only scale the meas-
urements, controlling the domain size and the noise level still provide sufficient flexibility for
modeling the physical properties of the measurement setup.

6.1. Gaussian prior

Our first two experiments consider a Gaussian prior and simultaneous optimization ofNa = 10
activations. The prior covariance is given elementwise as

(Γ0)i,j = γ2 exp

(
−
|xi − xj|2

2ℓ2

)
, (6.1)

where ℓ > 0 is the so-called correlation length, γ > 0 is the pixelwise standard deviation, and
xi and xj are the coordinates of the pixels with indices i and j. We employ the same stand-
ard deviation γ= 1 in all experiments with a Gaussian prior, but the correlation length varies
between individual tests.

6.1.1. Gaussian Test 1: a homogeneous disk. In the first experiment, we select the stand-
ard deviation of the noise, the radius of the imaged domain and the correlation length
for the prior as η= 1, ρ= 0.5 and ℓ= 0.15, respectively. The initial positions and orienta-
tions of the activations are independently drawn from the uniform density over [0,2π], and
algorithm 2, i.e. Newton’s method, is used for finding both A- and D-optimal designs. For the
A-optimality target function defined in (4.2), the weight A is chosen to be the identity matrix,
meaning that the reconstruction quality is considered equally important everywhere in Ω.

The initial activation configuration is visualized in the left-hand image of figure 1, and the
middle and right images show the estimated A- and D-optimal activation designs, respect-
ively. For both A- and D-optimality, the optimized activations lie approximately equidistantly
around the object and point roughly away from its center (after a possible reorientation by
180 degrees), though in the D-optimal design the directions vary considerably more. This sug-
gests that in the case of nonadaptivity and a radially symmetric target, placing the activations
symmetrically is a reasonable approach, which cannot be considered very surprising.

The left-hand image in figure 2 shows the expected L2(Ω) reconstruction error Ψ̃A, defined
in (4.3), as a function of the iteration number of Newton’s method. Similarly, the right-hand
image illustrates the evolution of the properly scaled information gain (cf [7])

Ψ̃D (ξ) =
1
2
(log(detΓ0)−ΨD (ξ))
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Figure 1. Gaussian Test 1. Left: initial activation configuration. Center: approximate
A-optimal design. Right: approximate D-optimal design. The black arrows depict the
sensors and the red arrows the optimized activations.

Figure 2. Gaussian Test 1. Left: the expected L2(Ω) reconstruction error Ψ̃A as a func-
tion of the iteration number when deducing the A-optimal design. Right: the information
gain Ψ̃D as a function of the iteration number when deducing the D-optimal design. The
horizontal lines depict the values of Ψ̃A (left) and Ψ̃D (right) for equidistant activations
pointing away from the center of Ω.

during the optimization procedure for a D-optimal design. The horizontal lines in figure 2
depict the values of Ψ̃A and Ψ̃D for a precisely equidistant configuration of activations point-
ing exactly away from the center of Ω. For both A- and D-optimality, the optimized target
function values are close to those for the reference design, with the deduced A-optimal design
even slightly surpassing the reference value, possibly thanks to the slight variations in the
activation directions. The final D-optimal design corresponds to a lower information gain than
the reference design, which suggests the optimization process got stuck in a local optimum.

6.1.2. Gaussian Test 2: a semidiscoidal ROI. Our second test with a Gaussian prior investig-
ates a setting where the ROI is the left half ofΩ, as illustrated in figure 3. Only A-optimality is
considered. The initial guess for the set of activations is the same random configuration as used
in the first test, shown on left in figure 1. Newton’s method is employed for finding approxim-
ate A-optimal configurations for two sets of parameter values: η= 1, ρ= 0.5 and ℓ= 0.15 as in
the first test, and η= 0.1, ρ= 5 and ℓ= 1.5. The resulting A-optimal activation configurations
are visualized in the middle and right-hand images of figure 3, respectively. In both cases, the
activations are again oriented approximately away from the center of the domain, but their
locations have clearly shifted toward the ROI on the left-hand side of Ω. This phenomenon is
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Figure 3. Gaussian Test 2. Left: ROI is the left half ofΩ. Center: approximate A-optimal
design for η= 1, ρ= 0.5 and ℓ= 0.15. Right: approximateA-optimal design for η= 0.1,
ρ= 5 and ℓ= 1.5. The black arrows depict the sensors and the red arrows the optimized
activations. The images are not in scale, but the diameter of the right-hand version of Ω
is ten times larger than of that at the middle.

Figure 4. Gaussian Test 2. The expected L2(Ω) reconstruction error Ψ̃A as a function
of the iteration number. Left: η= 1, ρ= 0.5 and ℓ= 0.15. Right: η= 0.1, ρ= 5 and
ℓ= 1.5. The horizontal lines depict the values of Ψ̃A for the considered set of parameters
and equidistant activations pointing away from the center of Ω.

more pronounced for the latter parameter combination, presumably due to the larger size of
the imaged object that makes activations on the side opposite to the ROI less useful.

Figure 4 illustrates the evolution of the expected L2(Ω) reconstruction error Ψ̃A during
Newton’s iterations for the two sets of parameter values. Again, the horizontal lines denote
the expected errors for a reference design consisting of equally spaced activations oriented
away from the center of Ω. The optimized configurations show a greater advantage over the
reference design when compared to the experiment with the ROI covering all of Ω. This is to
be expected since the reference design has not been adapted to the current setup where only
the left side of the object is of interest.

6.2. TV prior and sequential designs

Next, we apply the adaptive edge-promoting algorithm 4 to the piecewise constant test
phantom illustrated in the left-hand image of figure 5, with two different choices for the noise-
size parameter pair (η,ρ). Only A-optimality is considered in this adaptive sequential context.
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Figure 5. TV Test 1. Left: target MNP concentration. Right: relative L2(Ω) reconstruc-
tion errors as functions of the number of activations in algorithm 4 when the specifica-
tions of the activations are deduced by Newton’s method, Gradient descent, exhaustive
search and the deterministic reference procedure.

6.2.1. TV Test 1: P-shaped inclusion. The target is characterized by a homogeneous back-
ground contaminated by a P-shaped inhomogeneity located in the bottom-right quadrant of
Ω and carrying unit MNP density. The size of the domain and the measurement noise level
are defined by the parameter values and ρ= 0.5 and η= 0.1, respectively. The target is delib-
erately chosen to demonstrate advantages of Bayesian OED: if the P-shaped inclusion were
positioned close to the center of Ω, the optimal design would most likely approximately cor-
respond to activations placed equiangularly around the object, and the optimization would not
provide a clear benefit. However, considering a target that exhibits interesting features only in
a small subregion of Ω close to its boundary leads to optimal designs where the activations are
concentrated close to the particular area of interest.

Algorithm 4 is run for a total ofNa = 15 iterations, considering all three options for sequen-
tially deducing the specifications of the activations: gradient descent, Newton’s method and
an exhaustive search. For comparison, algorithm 4 is also run so that the optimization step on
the first line of the for-loop is skipped and the next activation is chosen deterministically from
a reference set: The full reference set of activations consists of 15 equiangularly positioned
dipoles pointing away from the center of Ω. The activations are introduced one by one into the
lagged diffusivity-based reconstruction algorithm so that new activations are placed in turns
onto each quadrant of the measurement circle. The images in the right-hand column of figure 6
show the reference setups with five, ten and fifteen activations included. The reference activa-
tions are also used as the initial guesses when Newton’s method and gradient descent are used
for sequential optimization of the activations in algorithm 4.

The right-hand image in figure 5 shows the relative L2(Ω) reconstruction error as a func-
tion of the number of activations for the four options of sequentially choosing the activation
designs in algorithm 4. The deterministic reference designs perform the worst apart from the
cases of 3–6 activations for which they seem to be able to deduce useful information on the
left and top edges of the target shape, cf figure 6. The exhaustive search performs arguably
the best in general, but gradient descent and Newton’s method typically only correspond to
slightly larger reconstruction errors, and they even outperform the exhaustive search, e.g. for
the final set of 15 activations. Although the reconstructions corresponding to gradient descent
and Newton’s method seem to typically be of a similar quality, they are not exactly the same as
the associated reconstruction errors differ. These observations highlight two aspects: (i) The
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Figure 6. TV Test 1. Reconstructions and activation designs produced by algorithm 4
with the corresponding relative L2(Ω) reconstruction errors. The rows correspond to
5, 10, and 15 activations, and the numbers indicate the order in which the activations
were introduced to the experimental design. Left: Newton’s method. Center: exhaustive
search. Right: reference designs.

relative performance of gradient descent and Newton’s method is case-dependent due to the
existence of several local minima in the target function; the tendency of these optimization
methods to jump between local minima could be tuned by the initial step size parameter λ
in algorithms 1 and 2. (ii) Due to the sequential nature of algorithm 4, it is possible that not
finding the global, but only local minima by a differentation-based method when determining
individual activations leads to a more optimal combination of activations than employing the
exhaustive search.

According to our experience from other numerical tests not documented here, gradient des-
cent produces on average approximately as optimal designs as Newton’s method, but the run
time of our nonoptimizedMATLAB implementation of algorithm 4 is typically slightly shorter
with Newton’s method. This advantage is explained by the possibility to explicitly calculate all
needed second derivatives, the small size of the Hessian in algorithm 2 and the better theoret-
ical convergence rate of Newton’s method close to a local minimum. In the presented example,
algorithm 4 was 32% faster with Newton’s method than with gradient descent.

Figure 6 shows the reconstructions and optimal designs produced by algorithm 4 after five,
ten and fifteen activations when the sequential designs are deduced by Newton’s method (left),
exhaustive search (middle) and the deterministic reference procedure (right). According to a
visual investigation, the differences in the reconstruction quality are not huge. On the other
hand, it is obvious that Newton’s method and the exhaustive search find different (sequential)
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Figure 7. TVTest 1. Visualizations of the A-optimality targetΨA as a function of the two
angular decision variables on [0,2π]× [0,2π] during a run of algorithm 4with Newton’s
method for the phantom in the left-hand image of figure 5. The vertical axis corres-
ponds to the position of the activation on the measurement circle of radius 1.1ρ and the
horizontal axis to the direction of the activation dipole. Left: ΨA after four activations.
Right: ΨA after nine activations. The circle depicts the initial guess for deducing the
next activation, the star shows the local minimum found by Newton’s method, and the
cross indicates a global minimizer.

local minima in the optimization target: both methods concentrate the activations close to the
location of the P-shaped inclusion, but already after five activations the designs are consider-
ably different. This is due to the existence of multiple local minima that makes the performance
of differentiation-based optimization routines suboptimal without further modifications, such
as using several different initializations. Figure 7 illustrates this problem by visualizing the A-
optimality target function after four and nine activations when Newton’s method is employed.
Newton’s method does not locate the global (sequential) minimizers in either case, although
the found local minima are luckily of almost as good quality in terms of the A-optimality
criterion as the global ones.

6.2.2. TV Test 2: P-shaped inclusion with a larger domain. Our second test on sequential
edge-promoting Bayesian ODE essentially repeats the previous experiment with the noise and
size parameters reset to η= 0.01 and ρ= 5, i.e. the noise level is lower but the object is lar-
ger than previously. Moreover, the MNP concentration in the P-shaped target is now chosen
to be 10 instead of 1. The right-hand image of figure 8 shows the relative L2(Ω) reconstruc-
tions errors for the four methods for determining the specifications of the activation dipoles in
algorithm 4. This time, Newton’s method and gradient descent lead to roughly equally accur-
ate reconstructions as the exhaustive search, with the deterministic procedure for choosing the
activation designs again performing the worst. In fact, compared to the previous test with a
smaller Ω, the deterministic reference procedure results now in much larger reconstruction
errors compared to the other three options, presumably due to the larger size of the imaged
object that makes activations, e.g. on the top-left side of Ω less informative.

Figure 9, which is organized in the same way as figure 6 for the previous test, demonstrates
that the optimal designs produced by algorithm 4 with both Newton’s method and the exhaust-
ive search have the activations more tightly packed around the interesting area in Ω than in the
preceding test. Although these optimized designs seem qualitatively very similar, there are
differences in their fine details due to the effect of local minima. As the difference between
the reference and optimized designs is considerable, it is hardly surprising that there is also
a larger difference between the corresponding reconstruction errors compared to the previous
test with a smaller target domain.
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Figure 8. TV Test 2. Left: the target-shape compared to the much smaller one from
figure 5, with the MNP concentration also increased from 1 to 10. Right: relative L2(Ω)
reconstruction errors as functions of the number of activations in algorithm 4 when the
specifications of the activations are deduced by Newton’s method, Gradient descent,
exhaustive search and the deterministic reference procedure.

Figure 9. TV Test 2. Reconstructions and activation designs produced by algorithm 4
with the corresponding relative L2(Ω) reconstruction errors. The rows correspond to
5, 10, and 15 activations, and the numbers indicate the order in which the activations
were introduced to the experimental design. Left: Newton’s method. Center: exhaustive
search. Right: reference designs.

22



Inverse Problems 39 (2023) 125020 T Helin et al

7. Concluding remarks

This work investigated the application of Bayesian OED techniques to MRXI in a simplified
two-dimensional simulated setting. The numerical experiments tested the general applicability
of the studied approach to simultaneous optimization of several activations with a Gaussian
prior and to sequentially choosing optimal activations with a smoothened TV prior following
the ideas in [19]. The presented results demonstrate that choosing the activations according
to the A-optimality criterion can improve reconstruction quality, especially when the imaged
object or the ROI is nonsymmetric, which makes symmetric reference designs suboptimal.

The numerous local minima in the optimization targets (cf figure 7) constitute a major
obstacle for efficiently applying Bayesian OED to realistic MRXI, a problem for which no
solutions were proposed in this work. Moreover, no effort was made to model practical meas-
urement settings of MRXI, that is, to account for the inherently three-dimensional nature of
the measurements, the shape of the imaged object, accurate models for activations and meas-
urements, and the effect of realistic values for the involved physical quantities. Designing
optimization algorithms that are robust to local minima and working with more detailed and
realistic measurement models are interesting topics for future research on Bayesian OED for
MRXI.
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