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Abstract: We consider the nonlocal quasilinear elliptic problem:
“Amtt(x) = HOO(IM(Qf W)(X))Pg(u(x))  in Q,

where Q is a smooth domain in R¥, 8 2 0, I, 0 < a < N, stands for the Riesz potential, f, g : [0, a) - [0, =),
0 < a < o, are monotone nondecreasing functions with f(s), g(s) > 0 for s> 0, and H,Q : Q —» R are non-
negative measurable functions. We provide explicit quantitative pointwise estimates on positive weak super-
solutions. As an application, we obtain bounds on extremal parameters of the related nonlinear eigenvalue
problems in bounded domains for various nonlinearities f and g such ase, (1 + u)’,and (1 - u)?, p > 1. We
also discuss the Liouville-type results in unbounded domains.

Keywords: quasilinear elliptic equations, m-Laplace operator, Liouville-type theorems, eigenvalue problems
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1 Introduction

This work discusses positive supersolutions to the nonlocal quasilinear elliptic problem:
“Amtt(x) = HOO(IM(Qf W)(X))Pg(u(x))  in Q, D
with B 2 0. Here, Q is a domain in RV:
Anu(x) = div([Vu()™ 2Vu(x)), 1<m< e,

is the m-Laplace operator and

I (QF W)() = [Iax = »)QO)F (y))dy,
Q

where I, : R¥Y - R,

-

A .
I(x) = lxlNa_ﬂ, with 4, = —N,
-

which is the Riesz potential of order 0 < a < N. We assume that
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(© f,g:10,a)— [0,),0 < a < o, are the monotone nondecreasing functions with f(s), g(s) > 0 for s > 0.
Moreover, we assume that H, Q : Q - R are nonnegative measurable functions.

Our motivation for the study of (1.1) comes from the general Choquard equation:
=Au(x) = (I;*uP)(x)u(x)? in Q, 1.2

and some of its variants have received a lot of attention in the literature [1,4,5,8,12-17,23-26,28,30,33,34,36-41,46]. For
a=p=2,q=1,and Q = R3 Problem (12) was introduced in [42] and it is known as the Choquard or Choquard-
Pekar equation. It arises, for example, as a model in quantum theory of a Polaron at rest [19,42], an electron trapped
in its own hole, in an approximation to the Hartree-Fock theory of one-component plasma [34], and in a self-
gravitating matter model (see [32,35]), where it is referred to as the Schrédinger-Newton equation.

Using nonvariational methods, Moroz and Schaftingen [37] obtained sharp conditions for the nonexistence
of nonnegative supersolutions to (1.2) in an exterior domain of RV, N > 3. They accomplished this by using
nonlocal version of the Agmon-Allegretto-Piepenbrink positivity principle and an integral version of the
comparison principle for the Laplacian in exterior domains. Very recently, Ghergu et al. [23] studied the
existence and nonexistence of positive supersolutions for the quasilinear elliptic problem:

-divA(x, u, Vu) = ([,;*uP)(x)u(x)? in Q,

for a large class of operators, which includes the m-Laplace and the m-mean curvature operators, and
obtained optimal ranges of exponents p, ¢, and a for which positive solutions exist.

This work provides pointwise estimates on positive weak supersolutions to (11). We emphasize that we
allow B = 0, and hence, our results apply to quasilinear equations

~Anu(x) = HOOg(u(x)) in Q.

Our approach is based on the maximum principle and thus applies to many nonlocal quasilinear elliptic
problems. For instance, as an application of our main results (Theorems 2.3 and 2.5), we obtain the Liouville-
type results for

B
u(x)? in Q,

Qu(y)?

—Anu(x) = H(x) X - yjN-a

dy

ol
in an unbounded domain Q such as RV, [RN\{{}}, exterior domains or more general unbounded domains with

the property

supdist(x, Q) = = andfor  limsup 4ol _

x€Q xeQ, o P

for some 0 < s < 1, with the weights H(x), Q(x) = |xJ¥, e¥™ or |x}", y > 0.
We also consider the eigenvalue problem:

|—amu(x) = AP (0 g k) in @ 13)
u>0 in Q,

where Q is a bounded domain in RY and f and g satisfy (C) and some further assumptions. The extremal
parameter of Problem (1.3) is defined as:
A* = sup{A > 0: (1.3) has a positive supersolution}. (1.9

With B = y = 0 and with the zero Dirichlet boundary condition, Problem (1.3) becomes

[—a,,,u(x) =Ag@(x)) ingQ, (L5)
u=0 on dQ,

where g:[0,a) » R, 0 < a £ =, is an increasing smooth function such that g(0) > 0 and ]jms,ﬂ% = oo, is

interesting already in the case m = 2. Typical examples of nonlinearities g are %, (1 + u)?, and (1 - u)® for
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p > m - 1. Under the assumptions on g, it is known that there exists an extremal parameter 0 < A* < « such
that if 0 < A < A*, then Problem (1.5) admits a minimal regular solution u;, while if A > A*, then it admits no
regular solution. Furthermore, the family {u;} is increasing in A, every u, is stable and we may consider
u* = lim,_u;, which is a weak solution of (1.5) with A = A*. The solution u* is also stable, and it is called
the extremal solution (see [7,11]). Regularity properties of the extremal solution u* and estimates for the
extremal parameter A* of Problem (1.5) have attracted a lot of attention.

We consider the following special case of (1.3) with a singular nonlinearity

- = ¥ *
O o s e AL @.5)
0<ulx)<1 in Q,
where p, g > 0, Q = Bp(0) = B and prove that the extremal parameter of Problem (16) satisfies
2 < |2 ﬂz; N,1 |Brmry m_lmammw) 17
+ + af)” .
NowyAq v+ N1+ af) Pp+q+m-1 ’

N
where wy = ;T 5 is the volume of the unit ball in R¥ and 8 stands for the beta function. Note that Problem

T+
(1.6) with B = 0 becomes
_ A
Apu(x) = A= ut0) in Q, 18)
O<u(x)<1 in Q.

This equation appears in the so-called MEMS (micro-electro-mechanical systems) technology. In the two-
dimensional case with g = 2, this equation models a steady state of a simple MEMS device, consisting of a
dielectric elastic membrane covered by a thin conducting film attached to 8Q. Here, A is proportional to the
applied voltage, and the permittivity profile [x|¥ allows for varying dielectric properties of the membrane (see
[18,20,21,27,29]). Since A* is the critical voltage beyond which a snap-through occurs and u* is the optimal
membrane deflection, it is important for the design of MEMS devices to know how the critical voltage A* (called
pull-in voltage) and the pull-in distance ||u*||;» depend on the membrane geometry and permittivity profile
[18,20]. Our main result gives an explicit upper bound (1.7) for A* and lower bound for ||u,||. for any positive
supersolution u;. As far as we are aware, this result is new for Problem (1.3) even for the classical case f = 1.

2 Main results
We begin with a definition of weak solution to (11).
Definition 2.1. Let1 < m < =, § 2 0,0 < a < N and assume that @ C RY is a domain. A function u € Wi,™(Q) is

a positive weak supersolution to (L1)
@) ifu>0and

ool [ S s < 1@
(i) if B > 0, then u satisfies
IQ(JJ)f (ﬂ()'))
|N a ’

(iii) for any ¢ € C7(Q) with ¢ = 0, we have
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[ WuCOm-29u00- Vo 00dx = [HEOa*(QF ())())PguC0)p(x)dx.
Q Q

For x € Q and 0 < r < dg(x) = dist(x, dQ), we denote

() = inf , H()= inf H(y), and Q(r)= inf )
my(r) ygﬂlr(x)u(y) ) EIS (), and Q(r) yg;r(x)O(y) @1

where inf, denotes the essential infimum on the set A and B,(x) = {y € RY : |y - x| < r}is the open ball with
the center x and radius r > 0.

Remark 2.2. We note that ifu € Wt™(Q) is a solution to (L.1), then it is a weak supersolution to the m-Laplace
equation. By [31, Theorem 3.63], we conclude that u is locally essentially bounded from below and that there
exists a lower semicontinuous representative of u that satisfies

u(x) = ess liminf u(y)
y-x

for every x € Q. Here,

ess liminf u(y) = limess inf u.
y=x r—0  Br(x)

In particular,
my(0) = }"jﬁ%mx(r) = u(x).
Weak supersolutions to (1.1) are, a priori, defined only up to a set of Lebesgue measure zero, but the afore-

mentioned lower semicontinuous representative allows us to discuss pointwise defined supersolutions. When
it is useful, we may replace u by its lower semicontinuous representative denoted again by u.

The following pointwise estimate is our main result.

Theorem 2.3. Let1< m < o, B 2 0,0 < a < N and assume that Q C R" is a domain. Assume that f, g, H, and Q
satisfy (C) and let u be a positive supersolution to (1.1) in Q. Then,

u(x) 1T
[ (FP@)ge)m1ds = (i (%P B (5)Q, (s)P)rds, (22)
my(r) 0
for every x € Q and 0 < r < dg(x), with
B 1
Capn = [N“’;"A"] j’rN-lu - t)%dt. 2.3)
0

N
Here, wy = F(:—Ti) is the volume of the unit ball in RN,
T+
Proof. Let x € Q with 0 < r < dg(x). From Definition 2.1, we obtain

[ M@ u@yVé@)dz > | HE@g@@)UAQf @))@)Pp@)dx
Br(x) Br(x)
for every ¢ € C(B,(x)) with ¢ = 0. For short, we write
~Anu(z) 2 H@gu@) A QF@N(@)F i B(x).

For z € B(x),wesetr,=r — |x - z|. Then, wehave |y - x| < [y - z| + [x - z| <1, + |[x — z| = r for y € B, (z),
which implies that y € B.(x). We observe that
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B

H(2)gu@)(I*Qf W)(@)P = H (z)g(u(z))l_[[c,(z = Y)ROf (u(y))dy
Q

B
[ LGz - yem)fae)dy

Br,(z)

2 H(r)g(my(r))

P

A
> RO NQMF )| [ iy

Br,(z)

for almost every z € B,(x). A simple calculation gives

Tz
J o] | oo

Br(z) 08B(z)
Tz
Aq
- N-1
= I Py Nwys"ds
i

Tz
= NowyA, Isﬂ‘lds
0

N&}NAG a
= _rz b
a
which implies that
I [Vu(2)|™ ?Vu(z)-Vo(z)dz
Br(x)
NoyAq |
> (M2 gD [ - - Ao

Br{(x)
for every ¢ € C(B,(x)) with ¢ 2 0, i.e,,

B
N“’;’A“] H(r)g(myr Q)P (me )P - |x - 2% in By(x). 2.4)

-Anu(z) 2 [

We consider an auxiliary function

1

®(z) = ®(jzI) = ,1[ [i [g]N_l(l - t)“ﬁdt]mds,

Iz 0

which is the unique radial solution of

-0n®(z) = (1 - |z) in By(0),
@'(0) = ®(1) = 0.

By a scaling and translation argument, we observe that the function
sap |z = X
W(z) = rm q)lu]
r
is a solution to

“Mb¥®(2)=(r-lz-xD)¥ in B(x),
v=0 on 8B,(x).
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From (2.4), we obtain

~Anu(z) 2[ ] Hy()g(me(r)Q(r)Pf (me(r))P(r = Ix - z])%

[N vl ] H (g (m(r)Q, () (m(r)Pan¥(z) in By(x).

Let v(z) = u(z) - my(r), z € B,(x), and
W(z) = AB (g (my(r)RTQ,(ryif (my(r)wa®(z),  z € B,(x),
with
_ [M]% 2.5)
a

By the facts that Ay, is positively homogeneous of order m - 1 and that constants can be added to a solution, we
obtain

-Apv(z) 2 -A,w(z) in Bi(x),
ie.,

I [Vv(z)|"2Vv(z) Vg (z)dz 2 I [Vw(2)["2Vw(z)-Vé(z)dz
Br(x) Br(x)

for every ¢ € C°(By(x)) with ¢ = 0. Since v = 0 on 8B,(x) and w = 0 on 8B,(x), by a comparison result, see
Tolksdorf [45] or [43, Corollary 3.4.2], we have v = w in B.(x). It follows that

u(z) = m(r) 2 AR RTE VR, oy o L1
in By(x). Since @ is decreasing, we have d)l@] 2 GJ[%] for z € Bp(x) with 0 < h < r. It follows that
u(z) = () 2 AR VR0, P e o 2|
By taking essential infimum on the left-hand side over z € B;(x), we obtain

me(h) - my(r) 2 APL(r)m_i-fg(mx(r))FlfQ,(r)m%ff(m,(r))%fr%'igcb[%],

]

2 AH(r) m_i—fg(mx (r))m—i_fo(r)Fﬂ{f (mx(r))%r%r -h

and then dividing both sides by r — h, we arrive at

my(h) = m(r)
r-nh

By letting h — r and using the fact that

[ ] _ _ﬂ - —[It” 11 - t)%dt

h—-rl"—h

1
m-1

il

we obtain the following ordinary differential inequality with an initial value condition:
~m(r) 2 AH (g (m,(r)yQ,(ryf (my(r))weir et

1
m-1

ae 1€ (0,dg(x)), (2.6)

1
-[_[t”‘l(l - )%de
0

my(0) = u(x).
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Dividing through by g(m,(r))Flff (m,(r))m—rir, we may rewrite (2.6) as:

L +
) 2 CRArmH Q) ae. r € (0, do(x)), @7

where J : (0, do(x)) — R is defined by:
u(x)

IO = [ (FP(s)g(s) wds.

my(r)

Since m,(r) is nonincreasing and f and g are the positive functions, the function  is nondecreasing. By the
Lebesgue differentiation theorem,

[rs)s < 7@ - 70 = j@.
0

Thus, integrating (2.7) from 0 to r yields

u(x) 1

I (fB(s)8(s)) 7 ds > Cﬂ'?ﬁj,%j'(sﬂﬁ*lH,(s)Q,(s)ﬂ)m—irds,
0

my(r)

which proves (2.2). O
The following result is an immediate consequence of Theorem 2.3 with § = 0.

Corollary 2.4. Let1 < m < w and 0 < a < N and assume that Q C RY is a domain. Assume that g and H satisfy
(C) and let u be a positive supersolution to

-Apu(x) = Hx)g(u(x)) in Q.
Then,

u(x) r
[ g(sy s = N7 (sti(s))mds,
my(r) 0

for every x € Q and 0 < r < dg(x). In particular, if H = 1, then

u(x) 1
1 m-=1 m_
| g(syatnds = T—ra,

‘m-1

my(r)

for every x € Q and 0 < r < dg(x).

Observe that in those points x € Q, where H,(x) = 0 or Q,(x) = 0, the right-hand side of (2.2) becomes zero;
hence, we gain nothing. In this case, we have the following result, which can be proved by making a slight
modification to the proof of Theorem 2.3. We only consider the case when H(x) = |x — x| for some y = 0
and xg € Q.

Theorem 2.5. Let1 < m < «,y, B 2 0,0 < a < N, Q a domain inR", and xo € Q. Assume that f and g satisfy (C)
and let u be a positive supersolution to

“Aqu(x) = |x = xol' ((I*f (W) (x))Pg(u(x)) in Q. 238)
Then,

u(xp) 1

[ By s = ¢

=i m-1 yrapsm
BYN Y L aB + m

r m-1
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for every 0 < r < dgo(xp), with

N &JNA

1
Chapn = ] j'rN-1+r(1 - O)%dt. (2.9)
0

Proof. As in the proof of Theorem 2.3, by (2.8), we obtain
[ Wu@Im2u(zyvp(@)dz

Br(xp)
Now N a

) @ a [ e = xo = b= 2DPhote)es

Br(xo)

for every ¢ € C(B,(x0p)), 0 < r < do(xp), with ¢ 2 0, ie.,

[NwNAa g
a

~Au(z) 2 ] g (e P)Plz - Xl = 12 - xo)%  in B (). (210)

We consider an auxiliary function

&(z) = ®(|z]) = Ilﬂ ]N 1t1’(1 - t)aﬁdt‘_lds,

IzIlo
which is the unique radial solution of

~An®(z) = |zP(1 - |z1)* in By(0),
@'(0) = (1) = 0.

We observe that the function
o - rEof 0]

is a solution to

-0, P(2) = |z - P (r - |z - xoD¥  in B.(xo),
W= on 3B, (xp).

Let v(z) = u(z) - my(r), z € B.(xg), and

W(z) = AE(Me (PRI (M ()FT9(z), 2 € B(xo),
with A as in (2.5). From (2.10), we obtain
—ﬁm‘l.-'(Z) - —ﬂmW(Z) in Br(xl]),
ie.,
[ m@rwevs@dz: [ [Wwerwe) e
Br(xg) Br(xg)

for every ¢ € C°(B,(xg)), with ¢ = 0. The rest of the proof is quite similar to the proof of Theorem 2.3; using the
comparison principle and the fact that this time we have

1
m-1

il

[ ] _ Lﬂ) - _[Itw Hy(1 - t)bdt

h*rf'_h

we arrive at
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~mi(r) 2 Ag ()71 (my(r) )

T
-|J'rN-1+r(1 - r)ﬂﬁdr‘ ae 1€ (0,do(xo), 211)
My, (0) = ulxp).
3 Estimates for supersolutions and extremal parameters
Theorem 2.3 leads to explicit estimates on supersolutions to (1.1). Assume that f and g satisfy (C). Let
t
J© = [(fE)g(s)ymrds, (31)
0

and let /™ be the inverse function of J. In the next result, we are interested in the case where J(t) < « for
some 0 < t < «, and the other case will be considered later in Section 4. As an immediate consequence of
Theorem 2.3, we have the following.

Proposition 3.1. Let1 < m < o, B 2 0,0 < a < N and assume that Q@ C RY is a domain. Assume that f, g, H,and
Q satisfy (C) and let u be a positive superso!un'on to (11) in Q. Then,

1 datx 1
Capn I SPH(5)Q(s)Pymrds < J(u(x) o
0

for every x € Q. Here, C, gy is the constant in (2.3).

We point out that Theorem 3.1 gives pointwise estimates for positive supersolutions. It follows from
(3:2) that

u(x) 21

, dax)
p—n 1
it [ PH()Q ()T
0

for every x € Q. In particular, if H = Q = 1, then (3.2) implies that

u(x)

Je) = [ (fA(s)g(s)ymrds 2
0

m —
af +m

for every x € Q, from which we obtain

u(x) = J! [ - Ca"‘gwdg(x)ﬂ] (33)

af +m

for every x € Q.
Next, we discuss estimates for the extremal parameter defined in (1.4).

Corollary 3.2. The extremal parameter A* of Problem (1.3) with y = 0 satisfies

{afi+m)
} (34)

A* < C;‘Ml ap+ — ](a)’“ 1[sup do(x)

xe0

Moreover, if u; is a positive supersolution to (13) for some 0 < A < A*, then
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up(x) a]—ll:g :_ :n(ACg}ﬁ,N)m—’-rdg(x)%?]

for every x € Q. Here, Cy g is the constant in (2.3).

Proof. Proposition 3.1 with H = Q = 1 and replacing g(s) with Ag(s) imply that

mL m-1 afm 1 a2 ap+1
Bl gy B B [ o
0
u(x)

<xm [ (fA(s)g(s))mds
0

1
= 1771] (u)(x))
for every x € Q. By taking supremum over x € Q on both sides and rearranging the terms, we obtain

ap + ~(afi+m)
As C_,e N[ 1 [sup uj(x)} lsup dg(x)]

m-= XEQ XEQ

The lower bound for u; follows from (3.3). O

Example 3.3. Let Q = Bp(0) in Corollary 3.2, and note that in this case, sup,cqdo(x) = R
@) If f(s) = g(s) = e, then

1= [P - [ebres - oo -

By (3.4), we have

GB m m-1
M* < CE,&N TS ] R-(ap+m)_
() If f(s) = +s)Pand g(s) = (1 +s)withp,q>0and p + ¢> m - 1, then
I frra_ m-1
J() = {(1 #oyds = o —
By (3.4), we have
m-1
A* < CE aﬁi R(ap+m)
MBp+q-m+1

(iii) If f(s) = max{sP, s”} and g(s) = max{s%, s%} with

Py <1<pyq and pB+q<m-1<ppf+gq,
then

oo

f(m>=j s + [s R eds
0 1
m-1 . m-1
m-1-Bfpi-aq Pp+tq-m+1
_ B(pz Pt q
B+ @-m+D(m-1-Pp; - q)

By (3.4), we have
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* <ol (ap + m)(ﬁ(pz - pl) 4y, ql)
“pN Bpy + @~ m+)(m-1- Bp; - qy)

m-1
} R (ap+m)

-1

Next, we consider the eigenvalue Problem (1.6) with singular nonlinearities. For the sake of simplicity, we
only consider the case when Q = Bg(0) = Bp. We obtain the following bounds for solutions to (1.6) and the

related extremal parameter.

Corollary 3.4. The extremal parameter of Problem (1.6) with Q = By satisfies
ap +m+y
Pp+q+m-1

Moreover, for any solution u; to (1.6), we have

alle 2 uz(0) 21— (1 - A)fFant, 0 <A< A,

m-1
A* < C}:,}I,,B,N ] R—(aﬁ+m+ y).

where
A=QcC )_1[ﬁp+q+m—1Rv+aﬂ+m
va.pN y+aB+m )

Here, C, 4 g v is the constant in (2.9).

(3.5)

Proof. Let f(s) = (1 - s)Pand g(s) = A(1 - s)™%, p, ¢ > 0, and u; be a solution to (1.6) in Q = B. By Theorem 2.5,

we obtain
u(0) u(0)
1 -1 Botq
[ P@gyrds=amr [ - sywteds
0 0
(m - DAt [ spegemt
=——— 1 - (1 - wp(0)) w1
Bp+q+m-1 (1 - wy(0) !
1
1 _(m-1) oy
ZCF,Q}'B,N}} v aB+ mR T,
This implies that
ke 2 up(0) 2 1~ (1 - AyFammeT,
where

ﬁp + q +m - 1Ry+£+m

1
A= OCap =

Moreover, since

1 1
1 Bp+q m-1
J@ = |(ff(s)g(s))mids = |(1 - s)m1sds = ————,
{ { Bp+q+m-1
we obtain from Theorem 2.5 that
-1
y+tap+m |
¥ < (C Yyl | R (+aprm),
( y,a,ﬁ,N)— ﬁp +q+m- 1

Remark 3.5. Corollary 3.4 extends several known bounds for the extremal parameter.
(1) By applying Corollary 3.4 with g = 0, we obtain the bound
m™ N

T

for the extremal parameter A* of the eigenvalue Problem (1.5) in B with g(s) = e® and the bound
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m-1
. m N
2 s[q_m+1] v
with g(s) = (1 + s)%. For these bounds, see [2,3,10,22].
(2) Corollary 3.4 with B = 0 implies the bounds
m-1

m+y
* < -7 —(m+y)
A (N+y)|q+m_1] R

and

m-1
g+m-1

*wz - - —
R e T

1
q+m- 1| X }m y+m
for the pull-in voltage A* and pull-in distance ||u*||c= of the eigenvalue Problem (1.8). In particular, when
m = 2= q, we have

< NEPEHY) 5 64

A*
3

and

e 21— 31 - ——2 o2,
. N+ )N +2)

For these bounds, see [18,20,27,29].

Next, we discuss a Liouville-type result for the autonomous Choquard equation in a general unbounded
domain.
Proposition 3.6. Let p, ¢ 2 0 with fp + q < m - 1 and assume that u is a positive supersolution to
—Amu = (IFuP)Pu?  in Q. (3.6)
Then,
u(x) 2 Cdist(x, 0Q)wims in Q, 3.7)
with
o Lm-1-pp-q|Fme
BN m o+ af

Here, C, gy is the constant in (2.3).

Proof. Let f(u) = u?, g(w) = uf, and H = Q = 1 in Theorem 2.3. Since fp + q¢ < m - 1, we have

u(x) u(x) 1
B+ m - m-1-fp-
| FPgeymns = [ swids s — o —uey =
my(r) me(r) m ﬁp q
From (2.2), we obtain
m-1 m-1-fip—q + p ap+1 + -1 meap
M1 pp g0 T 2 i) smds = G Srogr

for every 0 < r < dist(x, Q). This implies that u satisfies (3.7) for every x € Q. O

Remark 3.7. The next two results follow immediately from Proposition 3.6.
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@ If
sup diSt(X, BQ.) = oo, (3.8)
p{= .
then (3.6) does not have any bounded positive solution in Q. From (3.7), we see that if Q satisfies (3.8), then
u has to be unbounded.
(i) Ifp>0and
dg(x) ) N-a
—— =0, withs-= ;F:_Tﬁﬁraﬁ_’ (3.9)
m-1-fp-q

limsu

XEQ,|X|—P00 |X|
then (3.6) does not admit any positive solution in Q. In particular, this is the case if Q is RY, RY, an exterior
domain or an unbounded conelike domain {(r, 6) € RV : 6 € S, r > 0}, where (r, 6) are the polar coordinates
inRY and 8 c SV is a subdomain of the unit sphere S¥~! in RY. For the proof, we show that the condition

fu®))

ol ? l)’l”““dy< ”

does not hold if Q satisfies (3.9). If (3.9) holds, there exists a sequence of points x, € Q with R, £ |x,] so that
Bp(x,) C Q and

Rn = 00
n—oo [ Xpl*
Then, by (3.7), for n large, we have
pm+af)
u p - 1-fp—q
ffﬁg}ad = [ (lil)” o 2¢ | G
Q Baa(xn) Bl
N+ pim+af) pim+ag)
Rn m-1-Pp-q [ N+7 g
2 ([ ——— — 00
|Xn|N_a [xnl®

as n — o, Hence, if Q satisfies (3.9), there is no positive solution to (3.6).

Remark 3.8. We remark that the existence and nonexistence of positive supersolutions for Problem (3.6) in the
case when B =1 and Q is an exterior domain in RY have been investigated very recently in [23], where the
authors obtained the optimal ranges of exponents p, g, and a for which positive supersolutions exist. In
particular, they showed that if p + ¢ # m - 1, then Problem (3.6) has a bounded radial supersolution in any
bounded open set @ ¢ RV(N 2 1).

The following result is an immediate consequence of Theorem 2.5.

Corollary 3.9. Assume that there exists 0 < t < o such that J(t) < o, where J(t) is as in (3.1). The problem
—Amu = [XP I (W)Pgw) in RY,

where y, B = 0, does not have any positive supersolution.

Proof. By applying Theorem 2.5 with Q = R¥, we have
u(0)
[ (FF)(s)ymds = o5, 0<r <,
mo(r)
then by letting r — « in the aforementioned inequality, we obtain
u(0) u(0)
w > j (FEgE)™ds > [ (FA(s)g(s)ymrds o

mq(r)

as r — o, which is a contradiction. O
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4 Applications to problems in exterior domains
In this section, we discuss some applications of our results to obtain nonexistence results for certain problems
in unbounded domains and, in particular, we obtain several Liouville-type results. The following well-known

auxiliary results will be useful for us (see, e.g., [44, Lemma 2.3] and [6, Lemma 3.7]).

Lemma 4.1. Assume that Q is an exterior domain in RY and let u be a positive supersolution to

-Au=0 in Q.

() If N > m, then there exists a constant C, depending only on Q, N, and U, such that

u(x) 2 Cx[ " in Q @1
and
Wu(x) <C. 4.2)
() IfN < m, then
]J;rrlljnf u(x) > 0.

We also apply the following result (see [9, Proposition 2.7 (ii)] for the first part and [9, Theorem 3.3] for the
second part).

Lemma 4.2. Suppose that N > m > 1.
() If uis a positive supersolution to

~Anu(x) = CX[N  in RN\B;,
for some constant C > 0, then there exists a constant ¢ > 0 such that
u(x) 2 clx[ = (Inx|)#  in RM\B,.
(ii) The problem
—Anu(x) = ClxPu(x)? in RMB;

does not have any positive supersolution, provided

_ N +y)m - 1)
m-1<gq=s N-m .
Consider the problem
B
~Apu(x) = H(x) %dyl u(x)? in RM\B, 4.3)
0

where p, g 2 0, and H, Q satisfy the following condition:
(C) There exist x;, € Q and n € N, with |x,;| = © as n — o, and there exist R, € R, 0 < R, < dgo(x;) = |x] - 1,
and n € N, such that

R
limsup—- > 0, 4.4
n—+oo |XR|
for some 0 < s £ 1. Moreover,
Hx)z ClxP and Q(x)2Clx|]° forevery x € By (xp), (4.5)

where y, 0 ER.
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Proposition 4.3. Consider (4.3) in the exterior domain [RN\BI, withp,q 20, Bp + ¢ 2 m - 1, and H and Q satisfy
(C) for some 0 < s <1 and y,o € R. Problem (4.3) does not have any positive solution if one of the following
conditions is satisfied:

() N<mand, eithero+az(1-s)N ory+ aff>-s(m+ ap).

(i) N>m and

(m-DWN +y+po+s(m+ap)-m)
N-m '
Furthermore, Problem (4.3) does not have any bounded positive solution if

m-1<pBp+q<

m-1=fp+q and y+aff>-s(m+ af).
As a consequence, if H and Q satisfy (4.5) for any x € Q, then (4.3) does not have any positive solution if either

(m-DW +y+ po + ap)
N-m ’

m-1<pp+q<
orm-1=PBp+qandy+ af>-(m+ ap).

Proof. First, assume that Condition (i) holds. We apply Theorem 2.3 with f(u) = u? and g(u) = u? If
Bp + ¢ > m - 1, we have

u(x)
B _ml_ m-1 _ﬁp+r::m+1
j( K s T @6)
mylr

Let x, € Q, n €N, be as in (C"). By (2.1) and (4.5), we have

Hy(r)= inf H(y) 2 C(|xa| - (sgny)r)¥
YEBr(xn)

and

Q) = inf Q) 2 C(Ixal = (sgno)r)®
YEB(xn)

for 0 < r < Ry, n € N. These imply that
Hxn(r) 2 Clxa)’ and Qxﬂ(r) 2 Clxql|”

forO<r< %, n € N, It follows that

r m+af
[ (%1, ()0, (5)Pyrds 2 ClxafT R %)
0

for % <r < Ry, n €N. From (4.6), (4.7), and (2.2), we conclude that

A . of m+aﬁ
p+g—m+ P+ _—
My (r) T 2 Clxy[mTR,™ 1,
which implies that

m+af

My, (1) < Clxa TEERTR, PP 4.8)

for % <1 < Ry, n €N. By (44) and (4.8), we obtain that

y+af+s(m+af)
m,, (1) < Clx, | Fore-met

for n large, which implies that m,,(r) - 0 as n —» « if y + gf + s(m + af) > 0. Thus, we have
liminf u(x) = 0,

|x|_un
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which contradicts Lemma 4.1 (ii) if N < m. Note that by Lemma 4.1 (ii), we have u(x) = € in Bg,(x) for n large,
we then obtain

Q()')U(Y)" .[ _ayr
1

1+ N— + N—
o L+ DI B L T D!

[Xa]”

2C ————d
) I( Gl + R

> Clxnlcri-a—NR'JlV

N
= Clxnla+a—(1—s)N[ R" ]
[Xnl*

for n large. By (4.4) and the aforementioned inequality, we conclude that, for o + a > (1 - s)N, we have

QO
21+ Ve v

Therefore, there does not exist any positive solution (4.3) if (i) holds true.
Next, we consider Condition (ii). If N > m, by Lemma 4.1, there exists a constant C > 0 such that

u(x)zC |x|’ﬂr';!__—IF for every x € Q, which implies that
My (r) 2 Ci(1X] + Re) W 2 Clx[ et 4.9

for % <r < Ry, n € N. Comparing (4.9) with (4.8), we have

m+af

) i
N_
Dot

<C

for n large. This can be rewritten as:

(m+af)
Ry ]ﬁ"‘?'"‘+I (N-m) _ y+a+s(m+ag)

oF < Oy ™ T~ Boramt
T

for n large. Taking into account (4.4), it follows from the aforementioned inequality that

y+cﬁ+s(m+aB)SN—m
Br+q-m+1 m-1"

(4.10)

Therefore, if (4.10) does not hold, then there does not exist any positive solution to (4.3), i.e., when

(m-DWN +y+po+s(m+af)-m)
N-m ’

Br+q<

To prove the remaining claims, let fp + ¢ = m - 1. An easy computation gives

u(x)

[ Fprg(s)ymnds = j ~ds

my(r) mx(r)

1n )

mx(r) @i

and as mentioned earlier, using (4.6), (4.7), and (2.2), we obtain

m+aﬁ

o)y o (B2 Rt

ln mxn(r)

for % <r < Ry, n €N, or equivalently

yrop Map
U(Xy) 2 My, (r)ebal ™R

for % <r < Ry, n €N. By (4.9) and (4.4), we obtain
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~(N-m) yraf+s(m+af)
u(x,) 2 Cijxp[mt eChal ™ m1
for nlarge. If y + off > —s(m + af), from the aforementioned inequality and the fact that for any &, M > 0, we
have

we conclude that u(x,) — o as |xy| = «. This implies that u is unbounded.
Assume that H and Q satisfy (4.5) for any x € Q. Then, we have Condition (i) with s = 1, and hence, (4.3)
does not have any positive solution if

L (m-DW +y+po+ap)

m-1<pp+q N

Next, we discuss the case

(m—l)(N+ﬁ'a+ﬁ'0'+}J).

(4.12)
N-m

Pp+aq=
By (4.8) and (4.9), we obtain
_N-m |X| _N-m
Gi|x["™T < my 5 < Clx|"mT (413)

for every x € RV \Fl with |x| sufficiently large. From (4.3), we obtain

yI7u(y)?
—amu(xmxlrl e | we
0 y
B
pN-m)
W S q(N-m)
= C|x| —dy| |x[ =T
. I e
7 <ly-xl<|x|
= C|x| q(:::;“) +p(o+a- p(::;“))
=CIx[™V,

where we also applied (4.12). By Lemma 4.2, we have
u(x) 2 clx|"wt (Injx| =1
for |x| large, which contradicts (4.13).
Also, if Bp + ¢ = m - 1, as in the proof in the case of Condition (ii) with s = 1, we obtain
y+afi+m+af

u(x) = Gyfx[ kel T

Now, if y + gf > —(m + af), we then deduce from the aforementioned inequality that u(x) — « as |x| - o,
which contradicts (4.2) in Lemma 4.1. O

Remark 4.4. The functions H and Q in Proposition 4.3 are allowed to be zero on a subset Q" C Q with [Q"] = .
For example, let
. 0, 32 < |x| < 320,

(X) B |X|V, 9+l < |X| < 3?n+2,
with n € N and a similar formula for Q with o instead of y. By taking x,, = 2 - 3***1 and R, = 3%* then H and Q
satisfy (4.5); also, (4.4) holds with s = 1. However, we have H=Q =0 on ' = {x € Q: 3% < |x| < 3?v]}
with |Q7] = e
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Remark 4.5. By Proposition 4.3, with y = o = 0, we see that the problem

—[I IN‘

does not have any positive supersolution if N < m or

p
~Anu(x) = y| u(x)? in RMB; 4.14)

(m -~ DV + af)

1<m<N ith m-1< +q=
m with m Bp +q N—m

For B =1, this recovers a similar result in [23], which gave a complete classification of existence and non-
existence of positive solutions.

We mention that by Proposition 4.3, we may consider Problem (1.1) with functions H and Q such as
e™, x|, or generally p(x, ...,xx), 1 £ k £ N, with the property that for some m € R, p(t, ...,t) = C |t|™ for |{|
large. For example, consider the problem

D) > l},[I Ly, [7u U’)P

e —d u(x)q for x = (xq, ...xy) EQ = [RN\E, (4.15

where B,p, q,y, and o 2 0. For any
z € {(q,%, ...,) €Q, x>0}

and R, = %, by noting that for every x € Bg(z), we have |x; — z| < |x - z| < R, and |z| = VN z, and we easily
have H(x) = C |x]? and Q(x) = C |x|° for x € Bp,(z). Hence, Condition (4.4) holds with s = 1. By Proposition 4.3,
we obtain the following result.

Corollary 4.6. Let fp + ¢ 2 m — 1. Then, (4.15) does not have any positive solution if N< m, or1 < m < N and

(m-1)(N+y+ Bo+ap)
N-m ’

m-1<pp+q<

Moreover, there exists no bounded positive solution whenm - 1= fBp + q.

As an another example, consider the problem

by luG)?

P ]H(X)“ for x = (x, ..., y) € RM\By, (4.16)
Q

-Aju(x) 2 e‘“’[

where ,p,q,02 0 anda € R. Let a > 0 (the case a < 0is similar), then note that for any y > 0, there exists a
constant C, > 0 so that e > nyi for x; > 0 sufficiently large. As mentioned earlier, for z = ze, e = (1,1, ...,1),
with z > 0 and R, = 5, we have e™ = C |x]¥ for x € Bp,(z). Hence, Condition (4.4) holds with s = 1 and any
y > 0. Proposition 4.3 then implies the following result.

Corollary 4.7. Let fp+ qz2m - 1. For any 0 # a € R and o = 0, Problem (4.16) does not have any positive
solution if N<m, or 1<m <N and m - 1< Bp + q. Moreover, there does not exist any bounded positive
solution ifm-1=fp + q.

In the next result, we apply our main estimates on Problem (1.1) in the punctured space RY \{0} and give a
nonexistence result for the positive supersolution.

Proposition 4.8. Consider Problem (1.1) in Q = [RN\{O} with Nz m and f, g : [0, <) — [0, =) satisfying the
condition (C). If N 2 m and
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x|

lim (s%*1H, (5)Q, (s)P)m1ds = oo, @17

c_\ml

then for any positive supersolution u to (11) in Q, we have

limsupu(x) = c.
[x]-0
Moreover, if (4.17) holds true and
[rBs)gs)mrds < (4.18)
5

for some 6 > 0, then the problem does not admit any positive supersolution.

Proof. For a contradiction, assume that u is a positive supersolution to (1.1) in Q, with

limsupu(x) < .
[x]~0

Since U is a weak supersolution to the m-Laplace equation in [RN\{O} and N > m, then by Lemma 3.9 in [6], we
have

liminf u(x) > 0.
[x|~0
Hence, we can find a sequence of points x; € Q with |x;| — 0 so that

[xi]
< inf = my|— d )< C
c JJEBW)M())) mx;[ 5| and ug) <C, (4.19)
=

as in (2.1). Theorem 2.3 implies

byl

ulxj) Z
[ (P)()7rds = € [ (s%41H, (5)Q, (s)Pymrds
Il 0
m‘}{T

for every j € N, and from (4.19) together with the assumption (4.17), we obtain

C u(x;)

w> [(fA()ge)Trds 2 [ (fA(s)g(s)ywTds > 0 as - .

bl

2

C

my;

This is a contradiction. Assume that (4.17) and (4.18) hold and u is a positive supersolution in . Since u(x) = €
in Q for some positive constant C (by the fact that liminf,,qu(x) > 0), then from Theorem 2.3, we reach a
contradiction similarly as mentioned earlier. O
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