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Abstract: 3D path estimation, i.e., determining the height profiles of the path, is crucial in motion
control for autonomous driving in terrains. It is essential to prevent rollover from abrupt peaks, dips,
and briefly wet ground. In this study, wheel displacement measurements and height estimation of an
off-road vehicle are presented. A calibration process is suggested to measure the instantaneous vertical
displacement of each wheel. GNSS-pose-based methods are used to estimate the vehicle’s geometry
parameters yielding the centimeter-level accuracy of the 3D-path estimation method. The accuracy of
the vehicle’s instrumentation is examined on a test track to create a 3D terrain model of the path. The
outcome of the proposed scheme is compared to a reference elevation profile created with structure from
motion on the basis of machine vision and GNSS using data collected by an unmanned aerial vehicle.
The comparison of the results demonstrates that the 3D path can be estimated with sufficient accuracy
in open terrain using ground vehicles.

Keywords: 3D terrain model, vehicle instrumentation, ground elevation profile, autonomous ground
vehicles, forest machines, structure from motion, UAV mapping.

1. INTRODUCTION

Forests are the most important natural resource in Finland.
They cover over 70% of the land with annual growth of around
107 million cubic meters, where only the volume of annually
consumed roundwood is 69 million cubic meters (see, for
example, Harrinkari et al. (2016) for relevant statistics).

Fig. 1. Polaris e-ATV is shown with LiDAR, SPAN unit, GNSS
Antenna, and Omni-directional Camera mounted on top.

A classic machine chain in forest harvesting constitutes a har-
vester and a forwarder. The harvester is used for felling, de-
⋆ The research is funded by the Technology Industries of Finland Centennial
Foundation and Jane and Aatos Erkko Foundation.

branching, and cutting the stem to length, whereas the for-
warder carries the logs to the roadside. Then, the trucks trans-
port the logs to sawmills and factories. However, such a ma-
chine chain may seriously damage the forest ground especially
when the soil is wet or not completely frozen. Such damage
may exacerbate over time due to short winters because of cli-
mate change. Thus, lighter forwarders are needed, for example,
two autonomous forwarders serving one harvester. In this study,
we use Polaris e-ATV, shown in Figure 1, to demonstrate the
estimation of the solid form of the ground, which serves as an
important precursor for achieving a (semi-)autonomous opera-
tion of the classic machine chain.

The literature on ground vehicles is limited to methods that
either estimate the road roughness profile (see, for example,
González et al. (2008) and the references within) or sudden
potholes, such as Xue et al. (2017). In other studies, see, for
example, Broggi et al. (2013); Jaspers et al. (2017); Forkel et al.
(2021), the basic data used for the estimation of the 3D form
of the terrain is a 3D point cloud derived either from LiDAR,
a camera, or a combination of these two sensors mounted on
the vehicles. However, in winter conditions where the ground
is covered with snow, the methods relying on point clouds can
only determine the 3D form of the surface of the snow and not
the underlying solid ground.

Thus, the idea is that the instrumented harvester, going always
first, defines the path and creates the 3D profile for the au-
tonomous forwarder. To attain this goal, rotary position sensors
are installed in Polaris e-ATV to measure the vertical displace-
ment of each wheel over the ground. This wheel displacement
information is then integrated with the position information
from the global navigation satellite system (GNSS) unit and
attitude information from the inertial measurement unit (IMU)
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González et al. (2008) and the references within) or sudden
potholes, such as Xue et al. (2017). In other studies, see, for
example, Broggi et al. (2013); Jaspers et al. (2017); Forkel et al.
(2021), the basic data used for the estimation of the 3D form
of the terrain is a 3D point cloud derived either from LiDAR,
a camera, or a combination of these two sensors mounted on
the vehicles. However, in winter conditions where the ground
is covered with snow, the methods relying on point clouds can
only determine the 3D form of the surface of the snow and not
the underlying solid ground.

Thus, the idea is that the instrumented harvester, going always
first, defines the path and creates the 3D profile for the au-
tonomous forwarder. To attain this goal, rotary position sensors
are installed in Polaris e-ATV to measure the vertical displace-
ment of each wheel over the ground. This wheel displacement
information is then integrated with the position information
from the global navigation satellite system (GNSS) unit and
attitude information from the inertial measurement unit (IMU)

Estimation of 3D form of the Path for Autonomous
Driving in Terrain. ⋆

Tabish Badar ∗ Issouf Ouattara ∗ Juha Backman ∗,∗∗ Arto Visala ∗

∗ Department of Electrical Engineering and Automation, Aalto University,
02150 Espoo, Finland (e-mails: firstname.surname@aalto.fi)

∗∗ Farming technologies, Natural Resources Institute Finland (Luke),
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to estimate the 3D form of the path. Later in real forests,
GNSS is not accurate. The accurate positioning is implemented
relative to trees with forest SLAM. To validate the results of
our study, an unmanned aerial vehicle (UAV) is used to build
a reference 3D model of the terrain. The usage of UAVs for
creating a 3D terrain model is a mature technology, where the
resulting model can achieve centimeter-level accuracy using
ground control points, as described in Sanz-Ablanedo et al.
(2018); Jiménez-Jiménez et al. (2021). Earlier, the estimated
terrain form was only validated using visual results as discussed
in Broggi et al. (2013); Jaspers et al. (2017).

The organization of the rest of the document is as follows.
Brief details about the problem under study with essential
information about Polaris e-ATV are presented in Section 2.
The details about the installation of the hardware in the vehicle
to obtain wheel height information are provided in Section 3. In
the same section, the spring coefficient calibration procedure is
highlighted. Section 4 briefly explains the methods to compute
the parameters that are crucial to achieving the centimeter-level
accuracy of the 3D path estimation. In Section 5, we use the
equations to compute the 3D form of the ground as seen by each
tire. the results obtained from the novel method are compared
to one obtained from camera data using the UAV. Finally, the
conclusive remarks are mentioned in Section 6.

2. PROBLEM FORMULATION

Polaris Ranger, as shown in Figure 1, is an e-ATV for research
and teaching at Aalto University. It is 143.5 cm wide, 274.3 cm
long, and 185.4 cm high above the ground. The front suspen-
sions are MacPherson struts, while the dual A-arm suspension
system is installed at the rear axle. Each Carlisle tire has a
rating of 25×9–12 with a rated tire pressure of 137.9 kPa.
At Aalto University, Polaris e-ATV has been equipped with a
state-of-the-art set of sensors, actuators, and electronic control
units (ECUs). These ECUs are used for power steering and
automatic speed control along with handling data from wheel
encoders. In addition, it constitutes a synchronous position,
attitude, and navigation (SPAN) unit that combines real-time
kinematic (RTK) corrections with GNSS and IMU data. More-
over, Light Detection and Ranging (LiDAR) equipment along
with an omnidirectional camera are also installed.

To get the 3D form of the ground, we need to know the position
of each wheel in the inertial frame. The equation that describes
the position of the wheel-ground contact patch in the inertial
frame of reference is given as

Pk = CG
b (−Pb,OFF +Pb,k) +PGNSS +

[
0
0

∆k − hT

]
, (1)

where the subscript (k) represents front left (FL), front right
(FR), rear left (RL), and rear right (RR) tires or strut-mount
points, respectively. In the above equation, CG

b is the body
frame to a global frame rotation matrix, which is defined as

CG
b = Rz(ψ)Ry(θ + θoff)Rx(ϕ+ ϕoff), (2)

where Rx(·), Ry(·), and Rz(·) are the rotation matrices (see,
for example, Etkin and Reid (1995) for their definition). The
Euler angles are roll angle (ϕ – positive right-side down),
pitch angle (θ – positive front-side down), and yaw angle (ψ
– positive counterclockwise). A pitch angle offset θoff and roll
angle offset ϕoff is expected due to probable SPAN installation
issues on Polaris. Moreover, we define the important position
vectors as:

Pb,off =

[
xoff
yoff
hoff

]
; Pb,k =

[
lk/2
tk/2
hk/2

]
; PGNSS =

[
XG
YG
ZG

]
,

where Pb,off contains the offset values between the position of
the GNSS antenna and the center of the vehicle (CV) in the
body frame. Pb,k is the distance of kth tire from CV in body
frame. Thus, lk/2 is horizontal, tk/2 is lateral, and hk/2 = hoff
is the vertical distance between the kth center of each wheel
and CV. Notice that the position vector Pb,k is defined in
terms of wheelbase, track width, and box height after sign
adjustments when the origin (0, 0, 0) of the vehicle is assumed
to be at the CV. In equation (1), ∆k represents the instantaneous
displacement of the kth spring, and hT is the tire’s diameter.

In this study, we are using positions reported by the SPAN
unit, that is, PGNSS contains the position information of the
GNSS antenna in the global frame. The SPAN unit is capable
of incorporating Real-time Kinematic (RTK) corrections from
a base station. The RTK corrections are needed to get the
positioning data at an accuracy of 1 cm. It is important as the
ground truth for the 3D form of the path is provided by an un-
manned aerial vehicle (UAV). Other crucial factors influencing
the accuracy of the ground form estimation are the parameters
xoff, yoff, hoff, l, t, hT , along with θoff and ϕoff. However, the first
and foremost step is to compute the displacement ∆k of the kth
spring at each corner of the vehicle.

The instrumentation needed to measure the instantaneous verti-
cal deflection, either compression or relaxation, of each spring
is detailed in the next section.

3. POLARIS INSTRUMENTATION

A Hall-effect rotary position sensor was installed on every shaft
joining the Polaris’ main body to the center of kth wheel such
that each sensor translates the vertical displacement of each
wheel to voltage in a linearly distributed measurement range.
Figure 2a shows the 3D model of the sensor mount created
in computer-aided design (CAD) software. Four sensor mount
assemblies were printed using a 3D printer and installed on the
shaft as shown in Figure 2b. The mounting of the sensors was
such that their installation did not require intrusion or welding.
Such a design allowed the sensor mounts to be disassembled
without leaving permanent changes to the Polaris structures,
where the mount assemblies are mirrored from left to right.

(a) CAD Model. (b) 3D printed sensor mounts.

Fig. 2. Left: 3D design of the sensor mount using CAD soft-
ware is shown. Right: The 3D printed assembly is shown
mounted on the wheel shaft of Polaris e-ATV.

From Hooke’s law, the force exerted on the spring Fs due to its
compression or relaxation is given as
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to estimate the 3D form of the path. Later in real forests,
GNSS is not accurate. The accurate positioning is implemented
relative to trees with forest SLAM. To validate the results of
our study, an unmanned aerial vehicle (UAV) is used to build
a reference 3D model of the terrain. The usage of UAVs for
creating a 3D terrain model is a mature technology, where the
resulting model can achieve centimeter-level accuracy using
ground control points, as described in Sanz-Ablanedo et al.
(2018); Jiménez-Jiménez et al. (2021). Earlier, the estimated
terrain form was only validated using visual results as discussed
in Broggi et al. (2013); Jaspers et al. (2017).

The organization of the rest of the document is as follows.
Brief details about the problem under study with essential
information about Polaris e-ATV are presented in Section 2.
The details about the installation of the hardware in the vehicle
to obtain wheel height information are provided in Section 3. In
the same section, the spring coefficient calibration procedure is
highlighted. Section 4 briefly explains the methods to compute
the parameters that are crucial to achieving the centimeter-level
accuracy of the 3D path estimation. In Section 5, we use the
equations to compute the 3D form of the ground as seen by each
tire. the results obtained from the novel method are compared
to one obtained from camera data using the UAV. Finally, the
conclusive remarks are mentioned in Section 6.

2. PROBLEM FORMULATION

Polaris Ranger, as shown in Figure 1, is an e-ATV for research
and teaching at Aalto University. It is 143.5 cm wide, 274.3 cm
long, and 185.4 cm high above the ground. The front suspen-
sions are MacPherson struts, while the dual A-arm suspension
system is installed at the rear axle. Each Carlisle tire has a
rating of 25×9–12 with a rated tire pressure of 137.9 kPa.
At Aalto University, Polaris e-ATV has been equipped with a
state-of-the-art set of sensors, actuators, and electronic control
units (ECUs). These ECUs are used for power steering and
automatic speed control along with handling data from wheel
encoders. In addition, it constitutes a synchronous position,
attitude, and navigation (SPAN) unit that combines real-time
kinematic (RTK) corrections with GNSS and IMU data. More-
over, Light Detection and Ranging (LiDAR) equipment along
with an omnidirectional camera are also installed.

To get the 3D form of the ground, we need to know the position
of each wheel in the inertial frame. The equation that describes
the position of the wheel-ground contact patch in the inertial
frame of reference is given as

Pk = CG
b (−Pb,OFF +Pb,k) +PGNSS +

[
0
0

∆k − hT

]
, (1)

where the subscript (k) represents front left (FL), front right
(FR), rear left (RL), and rear right (RR) tires or strut-mount
points, respectively. In the above equation, CG

b is the body
frame to a global frame rotation matrix, which is defined as

CG
b = Rz(ψ)Ry(θ + θoff)Rx(ϕ+ ϕoff), (2)

where Rx(·), Ry(·), and Rz(·) are the rotation matrices (see,
for example, Etkin and Reid (1995) for their definition). The
Euler angles are roll angle (ϕ – positive right-side down),
pitch angle (θ – positive front-side down), and yaw angle (ψ
– positive counterclockwise). A pitch angle offset θoff and roll
angle offset ϕoff is expected due to probable SPAN installation
issues on Polaris. Moreover, we define the important position
vectors as:

Pb,off =

[
xoff
yoff
hoff

]
; Pb,k =

[
lk/2
tk/2
hk/2

]
; PGNSS =

[
XG
YG
ZG

]
,

where Pb,off contains the offset values between the position of
the GNSS antenna and the center of the vehicle (CV) in the
body frame. Pb,k is the distance of kth tire from CV in body
frame. Thus, lk/2 is horizontal, tk/2 is lateral, and hk/2 = hoff
is the vertical distance between the kth center of each wheel
and CV. Notice that the position vector Pb,k is defined in
terms of wheelbase, track width, and box height after sign
adjustments when the origin (0, 0, 0) of the vehicle is assumed
to be at the CV. In equation (1), ∆k represents the instantaneous
displacement of the kth spring, and hT is the tire’s diameter.

In this study, we are using positions reported by the SPAN
unit, that is, PGNSS contains the position information of the
GNSS antenna in the global frame. The SPAN unit is capable
of incorporating Real-time Kinematic (RTK) corrections from
a base station. The RTK corrections are needed to get the
positioning data at an accuracy of 1 cm. It is important as the
ground truth for the 3D form of the path is provided by an un-
manned aerial vehicle (UAV). Other crucial factors influencing
the accuracy of the ground form estimation are the parameters
xoff, yoff, hoff, l, t, hT , along with θoff and ϕoff. However, the first
and foremost step is to compute the displacement ∆k of the kth
spring at each corner of the vehicle.

The instrumentation needed to measure the instantaneous verti-
cal deflection, either compression or relaxation, of each spring
is detailed in the next section.

3. POLARIS INSTRUMENTATION

A Hall-effect rotary position sensor was installed on every shaft
joining the Polaris’ main body to the center of kth wheel such
that each sensor translates the vertical displacement of each
wheel to voltage in a linearly distributed measurement range.
Figure 2a shows the 3D model of the sensor mount created
in computer-aided design (CAD) software. Four sensor mount
assemblies were printed using a 3D printer and installed on the
shaft as shown in Figure 2b. The mounting of the sensors was
such that their installation did not require intrusion or welding.
Such a design allowed the sensor mounts to be disassembled
without leaving permanent changes to the Polaris structures,
where the mount assemblies are mirrored from left to right.

(a) CAD Model. (b) 3D printed sensor mounts.

Fig. 2. Left: 3D design of the sensor mount using CAD soft-
ware is shown. Right: The 3D printed assembly is shown
mounted on the wheel shaft of Polaris e-ATV.

From Hooke’s law, the force exerted on the spring Fs due to its
compression or relaxation is given as
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Fs,k = −Ks,k∆k, (3)
where Ks,k is the coefficient that describes the stiffness of the
kth spring. The strut-mount types in a vehicle are different,
especially for front and rear axles, and hence the geometry
of the installed springs. As described above, the front suspen-
sion system in Polaris is a MacPherson type, whereas the rear
suspension system is a dual A-arm type. This directly affects
the spring coefficient Ks,k, which may be adjusted for each
strut based on the vehicle’s factory calibration. Therefore, it
necessitates designing a test procedure to determine the rela-
tionship between spring deflection ∆k and the sensor voltages
in a generalized way without requiring equation (3).

To achieve this, a weighing scale was used to measure the
mass of each side of the vehicle while we load or unload that
particular side. Through this, the idea is to first acquire a linear
relationship between the sensor voltages and the measured
height of each wheel side such that

Hk = KH,kVk + CH,k, (4)
where Hk and Vk are the height above ground and the voltage of
the sensor installed at the kth wheel-mount shaft, respectively.
For this, a random point near each wheel was selected and the
height above ground of the randomly selected reference point
was measured using measurement tape. Thus, the coefficients
KH,k and CH,k describe the linear relationship between Hk and
Vk. Furthermore, there is a need to find a relationship between
the vertical displacement of each side and the weight of the kth
side, such that

mk = Km,kHk + Cm,k, (5)
where Km,k and Cm,k are coefficients describing a linear rela-
tion between load mk and height Hk of the randomly selected
point near kth wheel.

Fig. 3. Top: Height on the y-axis versus sensor voltage on the
x-axis. Bottom: Height on the x-axis versus mass on the
y-axis.

Thus, the main objective in this section is to present the calibra-
tion routine to determine the coefficients KH , CH , Km and Cm
for each side of the vehicle. To achieve this, one of the four sides
of the vehicle was driven on the weighing scale. Afterward, the
kth side was loaded in 10 to 20 kg load increments. Meanwhile,

Fig. 4. Top: Height on the y-axis versus sensor voltage on the
x-axis. Bottom: Height on the x-axis versus mass on the
y-axis.

the height above ground for the kth side was noted along with
the sensor voltage. Figure 3 shows the calibration results for
the rear left (RL) side of Polaris. The blue crosses represent
the observed data, whereas the red circles indicate the linear
fit when the desired coefficients were found by using the least-
squares (LS) method (see Bar-Shalom et al. (2001), where the
LS-estimate is found by solving the normal equation). Like-
wise, the calibration results for the front right (FR) side are
depicted in Figure 4.

Computing the height of each spring when zero mass was
applied to each corner gives the initial height Hk,0 of the kth
spring. Since, mk = 0 in equation (5) directly translates to
spring force Fk = 0 in equation (3), we get

Hk,0 = − Cm,k

Km,k
. (6)

In practice, there is no need for height Hk as the measurement
point for each Hk is some arbitrary point near kth wheel
to calibrate the spring deflections. Thus, we have a linear
relationship between the spring deflection and sensor voltages,
which is given as

∆k = Hk −Hk,0

= KH,kVk + CH,k +
Cm,k

Km,k
. (7)

Next, we present the methods to find the critical parameters
illustrated in equation (1).

4. DETERMINATION OF PARAMETERS

In this section, we present the methods used to determine
the vehicle’s geometry parameters using RTK-corrected GNSS
antenna positions. Firstly, we assume that each tire is inflated
at the rated pressure with negligible vertical deflection during
the nominal vehicle operations. In other words, we assume a
constant hT = 0.3175 m, where its value is obtained from the
tire’s rating.

Using a measurement tape, the wheelbase (l = 1.834 m) and
track width (t = 1.176 m) values were acquired. However, the
tape measurement method might not be accurate as we desire
a centimeter-level accuracy for our 3D path estimation method
that heavily relies on the vehicle’s geometry. It is the case that
the datasheet of Polaris only provides the wheelbase value, i.e.
l =1.83 m, and not the track width. Thus, we ascertain the track
width tape measurement by using a GNSS-pose-based method
as shown in Figure 5. Initially, Polaris was parked at position
P1 and later moved to position P2. With this experiment,
the idea is to move the right side wheels in P2 to the same
position as the left wheels were in position P1. Hence, moving
the GNSS antenna in the lateral direction by a distance equal
to track width. The value of track width obtained from this

(a) P1 (b) P2

(c) P3 (d) P4

Fig. 5. Initially, Polaris is at position P1. After a few minutes
of data recording, Polaris was driven to position P2.
Then, the vehicle was driven to position P3. Wheel lifting
strategy such as depicted in P4 was to measure antenna
height above CV.

method is t = 1.160 m. Thus, we choose l = 1.83 m (from
the datasheet) and t = 1.160 m (from the GNSS-pose-based
method).

Furthermore, another GNSS-pose-based method was employed
where a 180◦ turn was used to detect the xoff and yoff from the
vehicle’s CV. To achieve this, Polaris was parked in P3 position
as highlighted in Figure 5c, i.e., facing opposite to when it was
at P1. This 180◦ turn provides a mid-point of the vehicle in
body coordinates, such that

Pb,i = (CG
b )

−1(Pi −PMID) (8)
for i = {1, 3}, such that

PMID = (P1 +P3)/2, (9)

and CG
b is the body-global frame rotation matrix as defined

in equation (2). Thus, the lateral and longitudinal distances
between PMID and either of Pb,1 or Pb,3 will provide xoff and
yoff estimates, respectively. By averaging (x, y)-coordinates of
Pb,1 and Pb,3, we get xoff = −0.4583 m and yoff = 0.2587 m
with respect to mid-point.

Next, to get hoff estimate, another GNSS-pose-based method
involves lifting up each wheel above the ground in a consec-

utive fashion. Figure 5d depicts the front right (FR) side of
the vehicle being lifted above the ground. Thus, the idea is
to estimate hoff such that the difference between the global
position of each wheel at P4 (when, for example, the FR side
is lifted) and at P1 (initial position) is minimum. Then, a mean
square error (MSE) criteria can be defined as

MSE = (∥P1,RL −P4,RL∥+ ∥P1,FR −P5,FR∥+
∥P1,FL −P6,FL∥+ ∥P1,RR −P7,RR∥)/4, (10)

where P4 represents the GNSS antenna position when the FR
side was lifted up, P5 when the RL side is lifted up, P6 for RR
side, and P7 for FL side, respectively. Note that, the minimum
of MSE will occur at hoff, i.e., when the change in the absolute
height of GNSS antenna when the kth wheel was lifted versus
when it was at an original position, that is at P1, is minimum.
The important graphs corresponding to the test when the front-

Fig. 6. Results from lifting-up FR wheel shows that the min-
imum change in height from its initial position at P1 is
found for the (diagonally opposite) RL wheel.

right (FR) wheel was lifted is depicted in Figure 6. In this figure,
the dotted red curve shows hoff,RR = ∥P1,RR − P4,RR∥, blue
curve represents hoff,RL = ∥P1,RL−P4,RL∥, and the green curve
shows hoff,FL = ∥P1,FL −P4,FL∥ over the range of hoff values.
Thus, for the FR-wheel being lifted, the minimum height error
value is given as

hmin,1 = min{hoff,RR, hoff,RL, hoff,FL} = hoff,RL.

Thus, we have the minima hmin,1 = hoff,RL = 0.7456 m for this
case. In a similar manner, all other entries in equation (10) were
obtained to get an initial estimate of hoff = 0.8861 m.

Hitherto, we considered θoff = 0.0◦, ϕoff = 0.0◦, which
might not be the case due to possible SPAN installation is-
sues on Polaris. Thus, we define a parameter vector η =
{xoff, yoff, hoff, θoff, ϕoff}, and an objective function

J = (4× MSE + E1,3 +
∑
k

Kk)/9, (11)

where MSE is given by equation (10), E1,3 = ∥Pb,1−Pb,3∥ de-
scribes the difference between mid-points after 180◦ turn, and
KFR = ∥P1,FR−P3,RL∥, for example, depicts the position error
when the front right (FR) side at position P1 was taken by the
rear left (RL) side when Polaris was in P3, i.e., after 180◦ turn.
Hence, with η0 = {xoff,0 = −0.4583, yoff,0 = 0.2587, hoff,0 =
0.8861, θoff,0 = 0.0, ϕoff,0 = 0.0} being an initial feed to the
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Using a measurement tape, the wheelbase (l = 1.834 m) and
track width (t = 1.176 m) values were acquired. However, the
tape measurement method might not be accurate as we desire
a centimeter-level accuracy for our 3D path estimation method
that heavily relies on the vehicle’s geometry. It is the case that
the datasheet of Polaris only provides the wheelbase value, i.e.
l =1.83 m, and not the track width. Thus, we ascertain the track
width tape measurement by using a GNSS-pose-based method
as shown in Figure 5. Initially, Polaris was parked at position
P1 and later moved to position P2. With this experiment,
the idea is to move the right side wheels in P2 to the same
position as the left wheels were in position P1. Hence, moving
the GNSS antenna in the lateral direction by a distance equal
to track width. The value of track width obtained from this

(a) P1 (b) P2

(c) P3 (d) P4

Fig. 5. Initially, Polaris is at position P1. After a few minutes
of data recording, Polaris was driven to position P2.
Then, the vehicle was driven to position P3. Wheel lifting
strategy such as depicted in P4 was to measure antenna
height above CV.

method is t = 1.160 m. Thus, we choose l = 1.83 m (from
the datasheet) and t = 1.160 m (from the GNSS-pose-based
method).

Furthermore, another GNSS-pose-based method was employed
where a 180◦ turn was used to detect the xoff and yoff from the
vehicle’s CV. To achieve this, Polaris was parked in P3 position
as highlighted in Figure 5c, i.e., facing opposite to when it was
at P1. This 180◦ turn provides a mid-point of the vehicle in
body coordinates, such that

Pb,i = (CG
b )

−1(Pi −PMID) (8)
for i = {1, 3}, such that

PMID = (P1 +P3)/2, (9)

and CG
b is the body-global frame rotation matrix as defined

in equation (2). Thus, the lateral and longitudinal distances
between PMID and either of Pb,1 or Pb,3 will provide xoff and
yoff estimates, respectively. By averaging (x, y)-coordinates of
Pb,1 and Pb,3, we get xoff = −0.4583 m and yoff = 0.2587 m
with respect to mid-point.

Next, to get hoff estimate, another GNSS-pose-based method
involves lifting up each wheel above the ground in a consec-

utive fashion. Figure 5d depicts the front right (FR) side of
the vehicle being lifted above the ground. Thus, the idea is
to estimate hoff such that the difference between the global
position of each wheel at P4 (when, for example, the FR side
is lifted) and at P1 (initial position) is minimum. Then, a mean
square error (MSE) criteria can be defined as

MSE = (∥P1,RL −P4,RL∥+ ∥P1,FR −P5,FR∥+
∥P1,FL −P6,FL∥+ ∥P1,RR −P7,RR∥)/4, (10)

where P4 represents the GNSS antenna position when the FR
side was lifted up, P5 when the RL side is lifted up, P6 for RR
side, and P7 for FL side, respectively. Note that, the minimum
of MSE will occur at hoff, i.e., when the change in the absolute
height of GNSS antenna when the kth wheel was lifted versus
when it was at an original position, that is at P1, is minimum.
The important graphs corresponding to the test when the front-

Fig. 6. Results from lifting-up FR wheel shows that the min-
imum change in height from its initial position at P1 is
found for the (diagonally opposite) RL wheel.

right (FR) wheel was lifted is depicted in Figure 6. In this figure,
the dotted red curve shows hoff,RR = ∥P1,RR − P4,RR∥, blue
curve represents hoff,RL = ∥P1,RL−P4,RL∥, and the green curve
shows hoff,FL = ∥P1,FL −P4,FL∥ over the range of hoff values.
Thus, for the FR-wheel being lifted, the minimum height error
value is given as

hmin,1 = min{hoff,RR, hoff,RL, hoff,FL} = hoff,RL.

Thus, we have the minima hmin,1 = hoff,RL = 0.7456 m for this
case. In a similar manner, all other entries in equation (10) were
obtained to get an initial estimate of hoff = 0.8861 m.

Hitherto, we considered θoff = 0.0◦, ϕoff = 0.0◦, which
might not be the case due to possible SPAN installation is-
sues on Polaris. Thus, we define a parameter vector η =
{xoff, yoff, hoff, θoff, ϕoff}, and an objective function

J = (4× MSE + E1,3 +
∑
k

Kk)/9, (11)

where MSE is given by equation (10), E1,3 = ∥Pb,1−Pb,3∥ de-
scribes the difference between mid-points after 180◦ turn, and
KFR = ∥P1,FR−P3,RL∥, for example, depicts the position error
when the front right (FR) side at position P1 was taken by the
rear left (RL) side when Polaris was in P3, i.e., after 180◦ turn.
Hence, with η0 = {xoff,0 = −0.4583, yoff,0 = 0.2587, hoff,0 =
0.8861, θoff,0 = 0.0, ϕoff,0 = 0.0} being an initial feed to the
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MATLAB’s fminsearch function that minimizes the objective
function J , we get an optimal estimate of the parameter vector,
i.e., ηopt = {xoff,opt = −0.4724, yoff,opt = 0.2546, hoff,opt =
0.8767, θoff,opt = 0.0002, ϕoff,opt = −0.0001}. Note that, by
introducing an optimization step, we have validated the values
of estimated parameters as well as the methods used to acquire
these.

5. 3D-PATH ESTIMATION RESULTS

To detect the elevation profile of the spatial path, Polaris was
driven on the test track at Vihti, Finland in clockwise or counter-
clockwise directions. A birds-eye view of the test tracks can be

Fig. 7. 3D model of the test track formed in Metashape using
RTK-GNSS tagged camera images captured by drone. The
GNSS antenna position (shown in black), the FR wheel (in
red), and the RL wheel (in blue) paths recorded by Polaris
instruments are imported into MetaShape software.

observed in Figure 7, which shows two circular test tracks with
different elevation profiles made of concrete. In this article, a
selected set of data is discussed when the Polaris was driven on
the outer track in the counterclockwise direction.

The pose data from SPAN and rotary position sensors were
collected for a specific run of Polaris. In Figure 8, PGNSS
is provided by the SPAN unit, whereas PFR and PRL are
computed by using equation (1). Only position data for FR
and RL wheels are shown for the clarity of presentation. It
is interesting to note that from the starting points (shown by
crosses in Figure 8) onward, the RL wheel position (blue
curves) remains closer and to the left of the GNSS position
(shown in black). It is due to the reason that the GNSS antenna
is installed closer to the left side of the vehicle, which can
be observed in Figure 1. Further, notice that the peaks in the
elevation profile for the FR side (red graphs in Figure 8) lead in
distance traveled as compared to those observed by GNSS and
RL wheel.

To produce the reference 3D model, a UAV equipped with a
camera is used to capture images. These images are tagged with
GNSS position from the onboard positioning unit. The GNSS
positions are used as the initial pose of the camera by a structure
from motion (SfM) and multi-view stereo matching (MVS) pro-
cess which further refines the camera poses using the common
features detected in different images (see Iglhaut et al. (2019)
for a general presentation of the SfM-MVS photogrammetry
process). First, a sparse point cloud is built during the camera
pose estimation, then a much dense point cloud is built. From
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Fig. 8. Top: Spatial paths of GNSS antenna (black), FR wheel
(red), and RL wheel (blue). The crosses and circles are the
starting and finish positions, respectively. Bottom: ZGNSS
is the altitude output from SPAN, ZFR and ZRL are the
elevations computed by equation (1).

the dense point cloud, a depth map is built which can be used
to generate a digital elevation model of the terrain.

The MetaShape software, by Agisoft LLC (2019), is used in
this study to produce the reference 3D model. To improve the
quality of the produced 3D model, 4 ground control points
(GCPs) were used. According to Sanz-Ablanedo et al. (2018),
using more than 3 GCPs for around 100 images will not
improve the accuracy of the obtained 3D model. In this study,
the area under consideration is small, thus around 140 images
were sufficient to build a 3D model of the test track. The
GCPs positions were measured using an RTK GNSS sensor
with centimeter accuracy. The position of each ground control
point is recorded for at least 30 seconds. The standard deviation
of the altitude of the GCPs have values ranging from 2mm to
4mm which indicates a very stable altitude measurement. The
produced 3D model from the drone data has color information
making it easier to pinpoint some locations on the model and
verify their altitude measurement using manual methods. The
accuracy of the RTK sensor used and the ability to manually
check the altitude results make the 3D model produced from
the UAV data a good choice as a reference 3D terrain model.
Figure 7 illustrates the resulting 3D model with the overlaid
driving trajectories PGNSS, PFR, and PRL obtained from Polaris
e-ATV. The recorded latitude and longitude data of the Polaris
e-ATV is projected on the reference 3D model to extract height
along the vehicle path. The extracted height data is used as the
reference height in this study.

The results obtained from the two methods are highlighted in
Figure 9, which illustrates the transients in ZFR and ZRL due to
abrupt changes in local altitudes closely following the reference
altitudes. The mean and maximum values of the absolute error
|ZFR − ZFR,UAV| are 2.938 cm and 12.345 cm, respectively.
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Fig. 9. Results comparing the elevation profiles computed by
using Polaris instrumentation (red graphs) with ground
truth – UAV data (blue graphs).

While the mean and maximum values for |ZRL − ZRL,UAV| are
1.865 cm and 15.776 cm, respectively. The reasoning for high
errors was the high standard deviation of the height measure-
ments reported by SPAN as it lost its centimeter-level position-
ing accuracy mainly due to problems in the reception of RTK
signals.

6. CONCLUSIONS AND FUTURE WORK

The accurate estimation of the 3D form of the solid ground is
crucial for the stable operations of off-road vehicles. In this
paper, we have presented a tangible method to estimate the
3D form of the ground by using wheel displacement, attitude,
and global positioning data. The wheel displacement measure-
ments require an extensive calibration procedure. Likewise, to
compute the 3D form of the path as accurately as possible a
few vehicle-related parameters are identified. The GNSS-pose-
based methods are effective in finding these parameters as a
similar method may be applied to bigger forest machines. The
data collected from a drive on a test track is analyzed. The
ground vehicle’s path elevation data is then compared to UAV
data. The results are promising and show the effectiveness of
the instrumentation in the computation of the 3D form of the
path.

In forests, the quality of the positioning data from satellite-
based navigation systems is often poor. Moreover, as the GNSS
height measurement is generally of low quality, an alternative
approach is needed for 3D-path modeling. Thus, when driving
forward in a forest, the spatial positioning can be based on
trees. In such a scenario, the estimated absolute orientation of
the vehicle and the height measurements of the front wheels
can be utilized to model the height profile of the path since
the rear wheels are simply following the already modeled 3D
profile. Therefore, in this paper, the primary approach with
wheel height measurements and exact RTK-corrected GNSS
pose measurements was implemented and tested. For future
work, however, the research question is, do ground vehicles

have any means of computing, namely, the elevation profile of
the terrain, in GNSS-free environments?
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ground vehicle’s path elevation data is then compared to UAV
data. The results are promising and show the effectiveness of
the instrumentation in the computation of the 3D form of the
path.

In forests, the quality of the positioning data from satellite-
based navigation systems is often poor. Moreover, as the GNSS
height measurement is generally of low quality, an alternative
approach is needed for 3D-path modeling. Thus, when driving
forward in a forest, the spatial positioning can be based on
trees. In such a scenario, the estimated absolute orientation of
the vehicle and the height measurements of the front wheels
can be utilized to model the height profile of the path since
the rear wheels are simply following the already modeled 3D
profile. Therefore, in this paper, the primary approach with
wheel height measurements and exact RTK-corrected GNSS
pose measurements was implemented and tested. For future
work, however, the research question is, do ground vehicles

have any means of computing, namely, the elevation profile of
the terrain, in GNSS-free environments?
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Jiménez-Jiménez, S.I., Ojeda-Bustamante, W., Marcial-Pablo,
M.d.J., and Enciso, J. (2021). Digital terrain models gener-
ated with low-cost uav photogrammetry: Methodology and
accuracy. ISPRS International Journal of Geo-Information,
10(5).

Sanz-Ablanedo, E., Chandler, J.H., Rodrı́guez-Pérez, J.R., and
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