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Abstract—Speech is streamed at 16 kHz or lower sample rates
in many applications (e.g. VoIP, Bluetooth headsets). Extending
its bandwidth can produce significant quality improvements.
We introduce BBWEXNet, a lightweight neural network that
performs blind bandwidth extension of speech from 16 kHz (wide-
band) to 48 kHz (fullband) in real-time in CPU. Our low latency
approach allows running the model with a maximum algorithmic
delay of 16 ms, enabling end-to-end communication in streaming
services and scenarios where the GPU is busy or unavailable.
We propose a series of optimizations that take advantage of the
U-Net architecture and vector quantization methods commonly
used in speech coding, to produce a model whose performance
is comparable to previous real-time solutions, but approximately
halving the memory footprint and computational cost. Moreover,
we show that the model complexity can be further reduced with
a marginal impact on the perceived output quality.

Index Terms—Bandwidth extension, speech processing, real-
time, deep learning

I. INTRODUCTION

A sample rate of 16 kHz (also known as wideband) con-
tinues to be a common choice in many speech applications
such as VoIP or videoconferencing systems. Moreover, the
bandwidth of certain Bluetooth profiles found in commercial
hardware such as Hands-Free Profile (HFP) or Headset Profile
(HSP) may be limited to this sample rate or even lower (e.g.
8 kHz, also known as narrowband).

Wideband audio is considered sufficient to capture the most
important features of speech, allowing end-to-end communi-
cation without significant intelligibility loss [1], [2]. However,
contradicting evidence has been found, showing that consonant
identification is harder when speech information above 8 kHz
(i.e. wideband’s Nyquist frequency) is removed [3]. Addition-
ally, spectral peaks of fricatives may be found between 8 kHz
and 9 kHz [4]. In terms of quality, perceptual scores associated
with speech naturalness substantially drop when the cutoff of
speech utterances is reduced from 10.9 kHz to 7 kHz [5]. For
these reasons, wideband speech quality is often described as
“muffled”, “muddy” or “mushy” [6].

These degradations can be mitigated by increasing the
sample rate to a higher one such as 32 kHz (superwideband)
or 48 kHz (fullband). However, it is not always possible due
to system constraints (e.g. limited maximum bandwidth). In
these cases, it is possible to artificially reconstruct the missing
bandwidth to maximize the output quality. Such a task is

Fig. 1. BBWEXNet overview. First, the wideband input swb is upsampled
to match the expected output dimensions. Then, it is fed to the network. The
resulting output corresponds to sfb, the fullband estimate of swb.

known as bandwidth extension and sometimes referred to as
audio super resolution, due to its image counterpart [7]. If no
side information is used other than the input speech itself, it
is known as blind bandwidth extension.

Formulating a rule-based solution to extend the bandwidth
of an arbitrary audio containing speech is a challenging task
because multiple candidates can be proposed. Neural networks
have demonstrated to have the capacity to estimate sensible
alternatives of the missing high frequency content in a data-
driven manner [8]–[12]. In our work, we aimed to extend the
bandwidth of an arbitrary speech stream from wideband to
fullband in real-time. We restrict ourselves to low latency
on-device processing using only CPU, because we target
consumer devices. These may present a high variability in
GPU specifications or it may not be available at all. In cases
such as videoconferencing, online gaming or live streaming,
a significant amount of GPU resources may already be busy,
thus making any assumption about free resources difficult to
anticipate. Our proposed blind bandwidth extension network
(BBWEXNet) outlined in Fig. 1 and detailed in II-A, leverages
the U-Net architecture [13] together with vector quantization
techniques commonly used in speech coding [14] and learn-
able upsampling methods [15] to produce a low-complexity
model that meets these requirements. Our main contributions
can be summarized as follows:

• First, we propose a causal model capable of extending
speech from wideband to fullband in real-time that ap-
proximately halves the amount of parameters and esti-



mated operations per inference compared to our chosen
baseline while preserving its output quality.

• Secondly, we show that vector quantization can be suc-
cessfully used to model the network’s bottleneck distri-
bution with a small codebook.

• Finally, we propose alternatives to reduce the model
complexity even further with a marginal trade off in the
perceived output quality.

An accompanying demo page is provided1.

II. METHOD

The goal of blind bandwidth extension is to simultaneously
map a source audio sampled at sample rate fl to a target sam-
ple rate fh (fh > fl) and to reconstruct the missing spectral
content between fl/2 and fh/2 (i.e. their respective Nyquist
frequencies) as if the source audio was originally recorded at
fh. In our case we want to map the source wideband audio
swb (sampled at fl = 16 kHz), to a target fullband audio sfb
(sampled at fh = 48 kHz). The upsampling ratio between sfb
and swb is fh:fl = 3:1, meaning that for a given time interval
in seconds, sfb will have three times the amount of samples
of swb, thus, the network must estimate 66, 6% of the total
data. As a first step, it is necessary to match the dimensions
of swb and sfb. To achieve this, we upsample swb as a pre-
processing step. Since we need to upsample by an integer ratio,
we implemented a causal version of sinc interpolation [16] to
to use it in real-time. The upsampled input waveform is then
fed to the model. The whole process can be expressed as

sfb = T (U (swb) , λ) , (1)

where U is an upsampling function, λ is an arbitrary number of
parameters, and T is the bandwidth extension function learned
by the neural network. It is important to notice that for a given
input, an infinite number of candidates can be proposed. By
restricting the input to speech signals, we can narrow down
our search and train the network to exploit the commonalities
of signals in this domain.

A. Model architecture

Our model is based on the Streaming SEANet architecture
which we will refer to as our baseline model [9]. It is a
symmetrical encoder-decoder U-Net with skip connections.
An additional plain convolutional layer is added before the
encoder and after the decoder. The encoder has four convolu-
tional blocks that follow a downsampling scheme of 2:2:8:8
controlled by the stride size. This pattern is replicated by the
decoder in the reverse order using transposed convolutions. In
each encoder downsampling step, the number of convolutional
channels is increased by a factor of 2. Conversely, in each
decoder upsampling step, this number is halved.

In our model, we replaced the transposed convolutions of
the decoder blocks by SampleShuffle blocks that follow the
same upsampling pattern. We did this to prevent checkerboard

1https://eagomez2.github.io/bbwexnet/

Fig. 2. SampleShuffle block. Input channels C0 to C3 are interleaved to
generate output channels C′0 and C′1 for time steps t0 and t1. Each feature
is represented as xj

i where i is the channel index and j is the feature index.
In this example uf = 2.

artifacts that are commonly associated with transposed convo-
lutions [17], [18] and to reduce the model complexity by using
a smaller kernel size in the corresponding convolutional layers.
The structure of this block is explained in II-B.

The baseline bottleneck contains two convolutional layers
with a kernel size of 7 to process the features learned by the
encoder. We replaced it by a single noise substitution in vector
quantization (NSVQ) block [14] to model the bottleneck
output distribution. We hypothesize that this module can have
a similar capacity using fewer computations. Additionally,
NSVQ provides faster convergence than plain vector quanti-
zation (VQ) used with a straight-through estimator [19]. This
block is explained in II-C.

B. Sample shuffling

Similarly to [15], we replaced all transposed convolutional
layers in the decoder by a 1D version of the PixelShuffle
upsampling layer. We called it SampleShuffle to differentiate
it from its 2D image counterpart. Each SampleShuffle block is
composed of a shuffle function expressed as a combination of
reshaping, transposing and concatenation operations, followed
by a 1D convolution of kernel size 1. The role of the shuffle
function is to interleave the features of different convolutional
channels in such a way that after applying it, the number of
convolutional channels is decreased by an upsampling factor
uf , and the number of features per channel is multiplied by
the same factor. Subsequently, the 1D convolution adapts the
number of channels to the required dimensions of the follow-
ing decoder block and its corresponding skip connection. In
order to maintain causality, we group convolutional channels
in uf groups.

As an example, if we have 4 input convolutional channels
{C0, C1, C2, C3} and we need to upsample the output by a
factor of uf = 2, then, the SampleShuffle block will create
2 groups of 2 input channels each {(C0, C1) , (C2, C3)} to
produce 2 output channels {C′0, C′1}. C′0 will be formed by
interleaving C0 and C1, and C′1 will be formed by interleaving
C2 and C3 as shown in Fig. 2. This guarantees that producing
a frame by frame inference in real-time yields the same results
as computing the inference over a whole audio file at once.

https://eagomez2.github.io/bbwexnet/


C. Vector quantization

Vector quantization is a data compression technique similar
to k-means that is frequently used in, for example, speech
coding. It models the probability density function of a dis-
tribution by a set of template vectors called codebook [20].
As one prevalent application of VQ, it is used in vector
quantized variational autoencoders (VQ-VAE) to capture an
abstract high-level representation of the latent space (bottle-
neck distribution) [21].

In our model, we use the NSVQ to optimize the VQ
module. Getting intuition from reparameterization trick [22],
NSVQ simulates the VQ error by adding noise to the input
vector, such that the simulated noise gains the shape of the
original VQ error distribution. In addition, since NSVQ does
not add any additional loss term to the global optimization loss
function, it does not incur any hyperparameter tuning (weight
coefficient for VQ module) in the training phase.

One of the main challenges of using vector quantization
in machine learning optimization is the so-called codebook
collapse [23]. When this happens, a subset of the codebook is
no longer used, yet the computational burden remains intact.
To solve this problem, we adopted the codebook replacement
technique proposed in [14], in which we replace inactive
codebook elements by a perturbation of active elements.

III. EXPERIMENTS SETUP

A. Dataset

We performed all our experiments using the VCTK
dataset [24]. It contains data corresponding to 110 English
speakers of various accents reading about 400 sentences each.
All audios are provided as mono files recorded at 48 kHz
with a resolution of 16-bits. To accommodate it to our needs,
all the active speech regions in the dataset were extracted
and concatenated to form samples of 5 seconds of speech,
thus, a single sample could contain utterances of one or more
speakers. This way, we could ensure that the model is focused
on speech content rather than silent sections. By using a fixed
file duration, we avoid the need of padding batches of data.
We split our data into 80% for training, 10% for validation
and 10% for testing, totalling 28 hours of fullband speech.

B. Training

We trained 6 different models including the baseline. Each
model was trained for 500 epochs using the same genera-
tive adversarial network (GAN) configuration, optimizer and
training objectives as in [9] to be able to compare our models
against the baseline. The model to be trained acts as the gen-
erator G and it is jointly optimized with a convolutional multi-
scale waveform discriminator composed of three discriminator
instances D0, D1 and D2 that share the same architecture
but do not share parameters. The learning objective for the
generator G is the weighted combination αLadv

G +βLdfm
G , where

α = 1 and β = 100. Ladv
G is the adversarial loss and Ldfm

G is

the deep feature matching loss. These terms are defined by (2)
and (3), respectively as
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G = Ex

 1

K

∑
k,t

1

Tk
max (0, 1−Dk,t (G (x)))

 , (2)

Ldfm
G = Ex

 1

KL

∑
k,l

1

Tk,l

∑
t

∣∣∣D(l)
k,t (y)−D

(l)
k,t (G (x))

∣∣∣
 ,

(3)
where E is the expected value, k is the discriminator index
that goes from 0 to K − 1 = 2, t is the time step index from
0 to T − 1, and l is the discriminator layer index that goes
from 0 to L− 2. The discriminator loss LD is defined as

LD = Ey
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where E is the expected value, k is the discriminator index
that goes from 0 to K − 1 = 2, and t is the time index that
goes from 0 to T − 1.

In each case, the model is fed with a batch of 8 samples from
the dataset that are downsampled to 16 kHz and upsampled
back to 48 kHz in place. This way, we match the expected out-
put dimensions with an input that has no content above 8 kHz
other than potential upsampling artifacts. We also trained 2
additional models where the input is upsampled to 32 kHz
instead. This way, we can assess the perceptual importance
of the spectral content above 16 kHz as we hypothesize that
targeting 32 kHz instead of 48 kHz could offer a convenient
trade off in terms of reducing the model complexity without a
significant degradation in quality. This could be advantageous
to alleviate the real-time throughput requirements.

IV. RESULTS AND DISCUSSION

First, we performed an objective evaluation of the trained
models to measure the complexity reduction due to proposed
baseline modifications, and to quantify the impact of these
in the output quality. Subsequently, we carried out a subjec-
tive evaluation to investigate how these quality changes are
perceived by human subjects, and to compare the perceptual
importance of targeting 32 kHz compared to 48 kHz.

A. Objective evaluation

We performed an objective evaluation of all 6 trained
models. The results are shown in Table I. Model variants
ending in Shuffle use a decoder made of SampleShuffle blocks.
The number appended to NSVQ (e.g. NSVQ6) indicates the
codebook size in bits. For example, a NSVQ6 model will
have a codebook made up of 26 = 64 template vectors. We
used the log spectral distance (LSD) [25] as our objective
quality metric. We also tried scale invariant signal-to-distortion
ratio (SI-SDR) [26], but similarly to [9], we found that this
metric is not adequate for bandwidth extension and results in



TABLE I
OBJECTIVE METRICS OF ALL TRAINED MODELS.

Model LSD Parameters Operations per inferencea Inference speedb

Unprocessed audio 16k 5.05± 0.19 - - -
Baseline 16k48k 1.18± 0.09 692 k 10.6 M 1.21± 0.13ms

Baseline Shuffle 16k48k 1.14± 0.08 528 k 4.5 M 1.27± 0.13ms
BBWEXNet NSVQ6 16k48k 1.19± 0.09 471 k 10.4 M 1.15± 0.12ms
BBWEXNet NSVQ8 16k48k 1.35± 0.14 496 k 10.5 M 1.17± 0.12ms

BBWEXNet NSVQ6 Shuffle 16k48k 1.04± 0.08 306 k 4.3 M 1.19± 0.08ms
BBWEXNet NSVQ8 Shuffle 16k48k 1.12± 0.09 331 k 4.4 M 1.20± 0.09ms
a Calculated over a tensor of dimensions (1, 1, 256) that is the minimum that the network can process due to the encoder downsampling sequence.
b Mean ± standard deviation of 1000 inferences where the first 15 are discarded in a MacBook Pro with 2 GHz Quad-Core Intel i5.

values that neither correlate with other objective or subjective
quality evaluations nor show any significant differences be-
tween unprocessed audios and different models’ predictions.
We hypothesize that this occurs because the upsampled input
is highly correlated with the ground truth, shadowing percep-
tually relevant changes in the resulting values.

Additionally, we computed the number of parameters for
each model, the estimated number of operations per inference
and the inference speed. This way, we can characterize the
relationship between quality and complexity, that can be used
to determine the most suitable model for a given real-time
scenario with specific computational constraints.

It can be observed that all models successfully perform
bandwidth extension, showing a significant difference when
compared to the unprocessed audio. BBWEXNet NSVQ6 Shuf-
fle 16k48k is the best performing model, although there are no
substantially large differences in LSD scores among models,
suggesting that they have comparable quality. However, the
larger differences are in terms of memory footprint (repre-
sented by the number of parameters) and operations per infer-
ence. In this regard, BBWEXNet NSVQ6 Shuffle 16k48k has a
55.78% smaller memory footprint compared to the baseline.
Furthermore, the same model can perform an inference using
59.45% less operations than the baseline. The most significant
reduction in the number of operations can be attributed to
the SampleShuffle decoder, removing 6.1 M operations per
inference between BBWEXNet NSVQ6 16k48k and BBWEXNet
NSVQ6 Shuffle 16k48k variants.

By replacing the baseline bottleneck by a single NSVQ
layer, we reduced the number of parameters by a larger amount
than the reduction obtained in the number of operations. This
is because each input is compared with the whole codebook,
thus, such reduction will scale depending on the codebook
size. We found that larger codebook sizes do not always benefit
performance even if there are no idle template vectors. Even
though they may be deemed as more expressive layers, our
results show that such additional capability is not needed.

B. Subjective evaluation

We did a subjective evaluation of a subset of our models
to investigate the correlation between human raters (n = 13)
and objective metrics. We used the webMUSHRA framework
that follows the ITU-R recommendation BS.1534 [27]. We
included model variants targeting both fullband and super-
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Fig. 3. Complexity versus perceptual quality improvement comparison of
a selected number of models. The x-axis corresponds to the floating-point
operations per second in GFLOPS and the y-axis is the continuous quality
score difference (∆CQS) between each model and the unprocessed audio.

wideband. These are suffixed with 16k48k and 16k32k, re-
spectively. We did this to assess the quality degradation in
a scenario where decreasing the sample rate can be used to
reduce complexity in real-time operation. We restricted our
evaluation to 6 models in total to avoid having an overly
large stimuli set. The results are shown in Fig. 3. The x-axis
represents the number of floating-point operations per second
in GFLOPS and the y-axis represents the delta continuous
quality score (∆CQS), calculated as the difference between
the CQS of the unprocessed audio and the CQS of each
corresponding model as evaluated in a scale from 0 to 100.

Our results show that all selected fullband models consis-
tently outperform the baseline. While the improvements in
quality are not large (<5 ∆CQS), the computations needed per
time unit are approximately halved. Additionally, superwide-
band models are capable of producing comparable bandwidth
extension quality with the baseline, but requiring only around
a quarter of its GFLOPS, considerably reducing its complexity.

Human subjects are capable of distinguishing between su-
perwideband and fullband outputs, yet the difference in ∆CQS
is marginal. This suggests that the contribution of artificially
reconstructed frequencies between 8 kHz and 16 kHz is per-
ceptually more relevant for speech than the reconstruction of
frequencies above superwideband’s Nyquist frequency.



V. CONCLUSION

We presented BBWEXNet, a neural network for blind
bandwidth extension of speech from wideband to fullband in
real-time on CPU. We showed that both noise substitution
in vector quantization and sample shuffle techniques can be
used to significantly reduce the overall complexity of the
baseline model, while producing an output with comparable
quality measured by objective and subjective metrics. Our
best performing model has 55.78% less parameters than the
baseline and needs 59.45% less operations to perform an
inference, allowing it to run in a wider variety of consumer
devices with possibly more strict computational constraints.

Additionally, we showed that decreasing the output sample
rate from fullband to superwideband can be used to further
reduce the computational complexity of the model in real-
time scenarios with a marginal impact on the output quality
as rated by human subjects, elucidating the relative perceptual
importance of different frequency bands in the task of speech
bandwidth extension.
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