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ABSTRACT
Large-scale, pre-trained models revolutionized the field of senti-
ment analysis and enabled multimodal systems to be quickly de-
veloped. In this paper, we address two challenges posed by the
Multimodal Sentiment Analysis ( MuSe) 2023 competition by focus-
ing on automatically detecting cross-cultural humor and predicting
three continuous emotion targets from user-generated videos. Mul-
tiple methods in the literature already demonstrate the importance
of embedded features generated by popular pre-trained neural so-
lutions. Based on their success, we can assume that the embedded
space consists of several sub-spaces relevant to different tasks. Our
aim is to automatically identify the task-specific sub-spaces of vari-
ous embeddings by interpreting the baseline neural models. Once
the relevant dimensions are located, we train a new model using
only those features, which leads to similar or slightly better re-
sults with a considerably smaller and faster model. The best Humor
Detection model using only the relevant sub-space of audio em-
beddings contained approximately 54% fewer parameters than the
one processing the whole encoded vector, required 48% less time to
be trained and even outperformed the larger model. Our empirical
results validate that, indeed, only a portion of the embedding space
is needed to achieve good performance. Our solution could be con-
sidered a novel form of knowledge distillation, which enables new
ways of transferring knowledge from one model into another.
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• Computing methodologies→ Neural networks; Knowledge
representation and reasoning;Natural language processing; Com-
puter vision.
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1 INTRODUCTION
In recent years, large self-supervisedmodels have become extremely
popular as they demonstrated outstanding accuracies on numer-
ous tasks [18, 21, 33]. Their strength lies in the unsupervised pre-
training step, during which they process large quantities of un-
labelled data and learn to extract meaningful latent features. These
so-called neural embeddings are then used as features for another
model or are directly connected to a new output layer, enabling the
supervised fine-tuning of the whole model. Models belonging to the
BERT family are considered state-of-the-art in text processing [11],
wav2vec 2.0 [3] is one of the most popular multilingual solutions in
case of audio input, while Vision Transformers (ViT) [12] and facial
action units FAUs [13, 34] are regularly used to process videos.

Like in many other fields, the pre-trained solutions were quickly
adapted for sentiment analysis and showed promising results [1,
6, 15, 25]. This is reinforced by the fact that all baseline solutions
in the Multimodal Sentiment Analysis Challenge ( MuSe) 2023 are
built upon a uni-modal pre-trained network [2, 8]. The competition
introduces multiple interesting tasks, and here we focus on the
MuSe-Mimic and the MuSe-Humor sub-challenges.

The MuSe-Mimic utilizes a large-scale multimodal database con-
sisting of over 18,000 video recordings (approximately 20 hours in
total) made by users mimicking three emotions: Approval, Disap-
pointment and Uncertainty. The task is to predict the annotated
continuous emotional values using the video, audio and transcript.
Further details about the dataset can be found in [8].

In the MuSe-Humor sub-challenge, competitors are asked to
build a cross-cultural humor detector by developing models using
10 hours of recordings from 10 different German football coaches.
The training and development data consists of recordings from
the Passau Spontaneous Football Coach Humor (Passau-SFCH)
corpus [9]. The detectors are tested with 6.5 hours of recordings
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of English Premier League press conferences held by 6 different
coaches. The main challenge of this task is the cross-cultural and
cross-lingual nature of the sets, as models are trained with German
videos are tested with English recordings.

Despite the immense popularity of pre-trained models, we know
very little about the embedding vector spaces produced by them.
Most current research focuses on either identifying the best pre-
trainedmodel for a given task [15] or the optimal way of fine-tuning
them [26]. In [5], authors investigate self-supervised ViT features,
reporting the emergence of explicit information about the semantic
segmentation of an image, which is not observable as clearly with
supervised ViTs. In the text domain, some effort has already been
dedicated to investigating BERT-based word embeddings. In [31],
authors focus on the locations of various words and their relative
positions. Unfortunately, the latent embedding vector is considered
an atomic unit by all studies, and its subatomic components are
ignored.

Based on the observation that the same pre-trained embedding
spaces can be used for numerous tasks, in this study, we hypothe-
size that the latent vectors consist of several sub-spaces relevant to
different tasks. In order to identify such sub-spaces, we investigate
the baseline models by utilizing a local interpretability method
called Integrated Gradients (IG) [27] to calculate the attributions
of each individual dimension. Once the input attributions are es-
timated, we can select a subvector of the original embeddings by
filtering the dimensions that had the highest contribution towards
the output of the baseline model. Lastly, we validate that the rele-
vant part of the latent space is filtered by training another model
(having the same architecture as the baseline one), but using only
the selected features. Our empirical results demonstrate that using
this technique, we get comparable results on the Mimic task, and
even observe minor improvements on the Humor sub-challenge,
by removing irrelevant input features.

Besides the model interpretation, we also address the cross-
cultural nature of the Humor task by employing a translation-based
monolingual solution. The superiority of monolingual solutions
compared to multilingual ones has been reported in several papers
already [28, 30]. Motivated by this, we propose a pipeline solu-
tion by first translating the German text into English and then
using a monolingual BERT. Our empirical results showcase that
the translation-base monolingual model outperforms the baseline
model using a multilingual BERT.

Lastly, we also demonstrate the great benefits of fine-tuning a
wav2vec 2.0 on the Mimic task with an appropriate loss function
compared to only using it as a static pre-trained feature encoder.

2 BASELINE MODELS
Our solution heavily relies on the baseline models introduced in [8],
so we explain them briefly in this section. All approaches can be
categorized as Encoder-Decoder models [7], where the encoder ex-
tracts meaningful latent features from audio, video or text while the
Decoder component learns to predict the annotated labels (emotion
values or the humor tags).

The competition organizers extensively studied 8 different en-
coders [8]; here, we only focus on the best ones per modality. From
the baseline results, presented in [8], wav2vec 2.0 [3] is clearly the

best solution in the case of audio input for both tasks. This model
has already demonstrated excellent results on various paralinguistic
tasks [15], which motivated us to investigate it further.

In the text domain, two encoders performed exceptionally well,
a multilingual BERT [11] in the case of Humor and ELECTRA [10]
for the Mimic sub-challenge. Both models employ Transformers
as their main component and are pre-trained on large quantities
of text data. In our experiments, we interpreted both models to
determine the task-relevant sub-spaces of their embeddings.

Looking at the video modality, we can see that two encoders
perform equally. On the humor detection task, ViT [12] is the clear
winner, but on mimicked emotion prediction, facial action units
(FAU) [13] proved to be slightly better. While ViT is quite similar
to other models, consisting of a large pre-trained Transformer,
FAU is an outlier in this sense. The FAU Encoder is pre-trained to
automatically estimate the activation of 20 different facial muscles
via SVC models provided by the Py-Feat1 library. This also means
that FAU dimensions are easily interpretable, whichwewill leverage
in our experiments.

On the Decoder side, a simple architecture is used, which consists
of a GRU-RNN followed by two feed-forward layers. The GRU-
RNN is meant to deal with the sequential nature of the encoder
outputs, and only the final hidden representation is passed to the
feed-forward layers. For the Humor task a binary cross-entropy loss
function is used to optimize the Decoder, while for the Mimic task,
Mean Squared Error (MSE) loss is utilized. Further technical details
about the Encoders and Decoders can be found in the baseline
paper [8] or in the released codes2.

3 FIND THE TASK-RELEVANT SUB-SPACE OF
THE EMBEDDINGS

Feature selection is a well-established and researched area con-
sisting of many solutions with different advantages and disadvan-
tages [17]. The main goal of all solutions is to separate the signifi-
cant features from the irrelevant ones. Reducing the input to only
the relevant dimensions also decreases the computational overload
and sometimes improves the predictive performance of the models.

Our primary motivation is the so-called forward sequential selec-
tion (FSS) algorithm, which iteratively selects the most informative
feature and adds it to the set of optimal features. FSS relies on the
fact that a new model can be trained in each iteration using the
already selected features and the potential candidates. Typically,
simple models like Support Vector Machine (SVM) are used during
the selection process to avoid the excessive computational costs of
training a vast amount of models to find the optimal sub-space of
the input. Naturally, the features discovered by FSS are most rele-
vant to SVM models, highlighting the importance of model-specific
feature selection compared to model-agonistic solutions, which aim
to determine generally relevant inputs.

Motivated by FSS, our goal was to develop a model-specific fea-
ture selection for Deep Neural Networks. Unfortunately, a direct
adaptation of FSS to DNNs is not feasible due to the considerable
training time of our Decoders compared to simple SVMs. Luckily,

1https://py-feat.org/
2https://github.com/EIHW/MuSe-2023
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modern tools of Explainable Artificial intelligence (XAI) [29] of-
fered us a way to peak into the baseline Decoders. Specifically, we
employed a post-hoc model interpretation technique to separate
the feature space into necessary and irrelevant sub-spaces.

3.1 Interpreting Neural Models via Integrated
Gradients

Integrated Gradients (IG) [27] offers a simple and reliable way of
interpreting already trained DNNs without altering the model, thus
ensuring that the interpretation does not hinder its performance.
IG, like many other alternatives, is a gradient-based solution, and
it generates the so-called input attributions, which estimate the
contributions of each individual input towards the final output of
the model. This also indicates that IG is an instance-based interpre-
tation technique, meaning that it requires a dataset to produce the
interpretations for human observers.

To calculate the input attributions with IG, we need to have
some input data 𝑥 , and the corresponding baselines of inputs 𝑥 ′,
which in our experiments are set to be vectors containing zeros.
Next, we define 𝛾 : [0, 1] → 𝑅𝑁 as a smooth path between the
baseline and the actual input (𝛾 (0) = 𝑥 ′ and 𝛾 (1) = 𝑥). Then the
input attributions of model Θ are defined as

𝐼𝐺 (𝑥,Θ, 𝛾)𝑖 =
∫ 1

𝛼=0

𝜕Θ(𝛾 (𝛼))
𝜕𝛾 (𝛼)𝑖

𝜕𝛾 (𝛼)𝑖
𝜕𝛼

𝑑𝛼, (1)

where 𝜕Θ(𝑥)
𝜕𝑥𝑖

is the gradient of the models output along the 𝑖𝑡ℎ
dimension of the input 𝑥 . In practice, calculating the exact value of
the integral is intractable, but estimating it via a summation can
be done efficiently based on the Riemman approximation of the
integral;

𝐼𝐺 (𝑥,Θ)𝑖 =
(𝑥𝑖 − 𝑥 ′

𝑖
)

𝑚
∗

𝑚∑︁
𝑘=1

𝜕Θ(𝑥 ′ + 𝑘
𝑚 ∗ (𝑥 − 𝑥 ′))
𝜕𝑥𝑖

, (2)

where we approximate the path between 𝑥 ′ and 𝑥 at𝑚 discrete po-
sitions. For more technical details about IG, we refer the interested
reader to [27] and [19].

We should note that current interpretationmethods are generally
considered fragile [14], i.e. easily influenced by adversarial samples
and perturbations. In [20], the authors argue the importance of
having a concrete definition of interpretation before evaluating
the faithfulness of an interpretation. In this work, we chose to test
the reliability of interpretations via probing [4], i.e., training a new
Decoder using only the most influential features according to the
interpretation.

3.2 Filtering relevant features using input
attributions

Selecting relevant features based on an already trained model is
relatively underrepresented in the literature. The previous existing
works mostly focus on selecting inputs based on the input weights
of models [22]. In contrast, we argue that input attributions cal-
culated by IG are applicable to locating optimal input sub-spaces.
We are only aware of one work where something similar was at-
tempted; in [16], the authors use the gradients of an ensemble’s
output to select a subset of relevant spectral features. Unlike [16],

we use a more sophisticated solution to estimate the importance
of features and investigate the distribution of attributions in more
detail.

Once the input attributions are estimated, we need to aggregate
the individual attribution vectors and decide which features are
relevant. The aggregation can be easily done by calculating the
mean and standard deviations for each input dimension. Normally,
only the mean values are used, but to ensure that features that
are only influential in a few cases do not get ignored, we also
investigated the deviations of the attributions. Lastly, the irrelevant
features can be filtered out by a simple threshold applied to the
aggregated statistics.

4 TASK SPECIFIC SOLUTIONS
In this section, we explain some additional task-specific techniques
that we employed during the competition in order to achieve the
best results.

4.1 Translation-based BERT solution for the
Humor challenge

In the Humor task, the main challenge was posed by the cross-
lingual nature of the data (German training and development sets,
English test data). While the baseline solution addresses it by using
amultilingual BERT (mBERT) as an encoder, we wanted to explore a
translation-based alternative. In the literature, there are conflicting
experimental results concerning the superiority of multilingual and
monoligual BERTs. In [32], authors report that even low-resource
languages are well covered by mBERT and monolingual results are
inferior to the multilingual ones. An opposing view can be found
in [28, 30], where monolingual models are shown to be superior to
mBERT.

Motivated by these observations and the fact that transcripts of
press conferences held by football coaches are probably not well
represented in any BERT model, we propose a translation-based
pipeline. In the first step, we selected a well-performing German-
to-English neural translation model3 [23]. Next, we extracted the
sentence embeddings of a monolingual BERT trained only on Eng-
lish data in the same way as explained in [8]. Lastly, we trained the
Decoders using the same hyperparameters and architectures as in
the case of mBERT, only changing the features to the monolingual
BERT embedding. These experiments demonstrated that despite
the occasional mistakes of the translation system, humor can be
translated, and monolingual embeddings are better for this task.

4.2 Fine-tuning wav2vec 2.0 using correlation
loss

Observing the superior results provided by the wav2vec 2.0 models
prompted us to investigate them further. In other articles, it is re-
ported that fine-tuning the whole model, or at least the Transformer
part leads to better performance than simply using the wav2vec 2.0
as a feature encoder [15]. The disadvantage of fine-tuning is the
increased computational cost, even if we have access to modern
GPUs. Due to this fact, we only experimented with fine-tuning on

3https://huggingface.co/facebook/wmt19-de-en
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the Mimic task, where wav2vec 2.0 baseline solution proved to be
by far the best.

As an additional adjustment, we changed the loss function and
maximized the batch-level Pearson correlation;

𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐿𝑜𝑠𝑠 (𝑦,𝑦) = 1 −
∑
𝑖 (𝑦𝑖 − 𝑦𝑖 ) ∗ (𝑦𝑖 − 𝑦𝑖 )√︃∑
𝑖 (𝑦𝑖 − 𝑦𝑖 )2 ∗ (𝑦𝑖 − 𝑦𝑖 )2

(3)

where𝑦 contains the ground truth values for the batch and𝑦 are the
predictions made by the model. To ensure the stability of the loss,
we had to use a relatively large batch size of 32 which turned out to
be big enough to ensure that the model converges without running
out of memory. Due to computational restrictions, we onlymanaged
to fine-tune one model, which we could not evaluate during the
competition phase, but only in the post-evaluation phase.

5 EXPERIMENTAL SETUP
To reproduce the official baselines, we used the source codes re-
leased by the organizers4. The post-hoc interpretation of the base-
line Decoders was performed with the use of the Captum [19]
toolkit. As baseline inputs for the IG method to be used in Equa-
tion 2, we employed vectors filled with zeros. To estimate the input
attributions, 50 steps (𝑚 = 50 in Equation 2) were taken by the
approximation method. Lastly, we always multiplied the gradients
with the inputs to ensure that the sign and strength of the input
are taken into account.

For the Humor task, only a single output neuron is used, thus
IG is estimated via its gradient w.r.t. the inputs. In the Mimic task,
three outputs are available (one for each emotion) so first, the
IG attributions are calculated for each output separately. In the
aggregation step, we average the attributions of each input towards
all three outputs before thresholding. After the relevant features are
selected, new Decoders are trained using the same architecture and
hyperparameters as the baseline models, only adjusting the first
layer of the GRU-RNN to accommodate the new, reduced input.

In the Humor Detection challenge, the official evaluation metric
is the Area Under the ROC Curve (AUC), which evaluates the
goodness of the predicted probabilities of different time segments
containing humorous remarks. In theMimic task, continuous values
for three emotions (approval, disappointment and uncertainty) need
to be estimated. To account for this, the organizers choose to use the
average Pearson’s correlation coefficient across the three targets.

6 RESULTS
6.1 Humor
While reproducing the official baseline Decoders we observed in-
significant changes compared to the results reported in [8] mainly
due to the change of computational resources (different GPU). Once
all the Decoders were ready, we selected the best ones per modality.
In the case of the Humor task, the chosen models were trained on
wav2vec 2.0, BERT and ViT embeddings.

Using IG, as explained in section 3, we estimated the importance
of each dimension of the embedding spaces. Figure 1 depicts the
mean attributions calculated by using the training data. For better
visualization, we re-ordered the dimension based on their average

4https://github.com/EIHW/MuSe-2023

Table 1: Feature selection results on the development set of
the Humor task using different thresholds. In each row, the
first number is the best AUC-Score, together with the mean
and standard deviations across the 5 seeds in parenthesis.

Features Threshold Num. Feats Dev. AUC

Wav2Vec2.0 mean 216/1024 .8321 (.8281 ± .0027)
75% 257/1024 .8343 (.8297 ± .0031)

ViT mean 162/384 .7697 (.7577 ± .0088)
75% 97/384 .7457 (.7261 ± .0135)

BERT mean 288/768 .8065 (.7836 ± .0216)
75% 193/768 .7951 (.7772 ± .0158)

Table 2: Experimental results on the Humor task. Similar
to [8] each line refers to experiments conducted with 5 fixed
seeds and the first number is the best AUC-Score among them,
together with the mean and standard deviations across the
5 seeds in parenthesis. Note, we only had a limited amount
of submissions so the non-baseline systems have only one
value in the test column indicating the test performance of
the best system selected based on the development results.

[AUC]
Features Development Test

Audio
1 Wav2Vec2.0 [8] .8435 (.8332 ± .0082) .7940 (.7929 ± .0113)
2+ rel. subsp. .8321 (.8281 ± .0027) .8074

Video
1ViT [8] .8277 (.7890 ± .0257) .7457 (.7478 ± .0093)
2+ rel. subsp. .7697 (.7577 ± .0088) –

Text
1mBERT [8] .8105 (.7635 ± .0717) .7572 (.7108 ± .0830)
2+ rel. subsp. .8065 (.7836 ± .0216) –
3BERT-en .8274 (.8218 ± .0032) .7803
4+ rel. subsp. .8260 (.7837 ± .0216) –

Late Fusion
A1+T1 [8] .8791 (.8600 ± .0218) .8218 (.8067 ± .0149)
A2+T3 .8853 .8381
A1+V1+T1 [8] .8759 (.8504 ± .0209) .8310 (.8244 ± .0168)
A2+V1+T3 .8853 .8420

attribution value. The first interesting observation was the sparsity
of the wav2vec 2.0 embeddings; apparently, more than half of the
input vectors do not contribute towards the Decoder’s output. In
the case of ViT and BERT, almost all input dimensions had some
contribution, but an exponential distribution of importance can still
be observed.

Next, to ensure we retain vital, rare features, which have high
attribution only in a few cases, we investigated the distributions
of the attribution values. Figure 2 confirms a strong correlation
between the average and the deviation of attributions, implying
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(a) BERT (b) W2V2 (c) ViT

Figure 1: Sorted average attributions of each dimensions in the embeddings spaces of the Humor task.

(a) BERT (b) W2V2 (c) ViT

Figure 2: The standard deviations of the sorted attributions of each dimensions in the embeddings spaces of the Humor task.

that thresholding based on the average is a safe option. Perhaps
one exception is in the case of ViT, where one feature with low
average attribution had a high deviation, but preliminary experi-
ments revealed that adding that extra feature to the selected ones
did not offer improvements.

Next, we investigated two possible thresholds for the selection
of relevant dimensions. First, we calculated the average attribution
of all dimensions and used it to filter out irrelevant parts of the
input. As an alternative, we investigated the 75% percentile of the
attributions as a decision criterion. For wav2vec 2.0 the latter choice
led to a larger feature set, but the results were similar to those we
got by using the mean, while for the other embeddings, the mean
value proved to be a better threshold, see the results in Table 1.

Based on the results of Table 1, we opted to use the mean attri-
bution as the final threshold. In Table 2, we compare the Decoders
trained using only the relevant sub-space (rel. subsp.) of the embed-
dings to the ones utilizing the whole space. In most cases, reducing
the input vectors leads to a minor drop in performance on the
development set, except for ViT, where we observed considerable
degradation. Looking back at Figure 1, we hypothesize that the
relatively even attribution distribution of ViT compared to the oth-
ers signals that the discarded dimensions still contained valuable
information.

Based on the development results, we choose to evaluate the
Decoder trained on the selected wav2vec 2.0 features on the test
set. This model yielded .8074 AUC, which is considerably better
than the .7940 AUC-score achieved by the Decoder trained on
the whole embedding space. This result indicates that removing
the irrelevant components of the embedded vectors improves the
robustness of the model and enables better generalization. Another
interesting observation is that using only the relevant sub-space also
increases training stability in most cases, as the standard deviations
of models trained on the reduced input are considerably lower than
the baseline ones.

Next, we built the translation pipeline and evaluated the mono-
lingual BERT-en embeddings. Interestingly, this solution outper-
formed the multilingual model on the development and test sets.
This indicates that despite the occasional translation errors, the
monolingual embeddings are still better suited for this task.

In the final experiments, we investigated how combined systems
would perform. Similar to the baseline article [8], we employed a
late fusion technique to merge the outputs of various models. The
best results were achieved by fusing the reduced wav2vec 2.0 model
with the monolingual BERT and ViT, reaching a .8420 AUC-score, a
significantly better performance compared to the A+V+T solutions
developed by the organizers.
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Table 3: Experimental results on theMimic task. Similar to[8]
each line refers to experiments conducted with 5 fixed seeds
and the first number is the highest correlation among them,
together with the mean and standard deviations across the
5 seeds in parenthesis. Note, we only had a limited amount
of submissions so the non-baseline systems have only one
value in the test column indicating test performance of the
best system selected based on the development results.

[Mean 𝜌]
Features Development Test

Audio
1Wav2Vec2.0 [8] .4317 (.4290 ± .0020) .4296 (.4330 ± .0029)
2 + rel. subsp. .4311 (.4283 ± .0027) .4256
3 Fine-tuned1 .4824 .4644
4 + rel. subsp. .4793 .4573

Video
1 FAU [8] .1280 (.1241 ± .0032) .1337 (.1319 ± .0019)
2 + rel. subsp. .1168 (.1123 ± .0042) .1140

Text
1 ELECTRA [8] .4079 (.4027 ± .0028) .3855 (.3902 ± .0037)
2 + rel. subsp. .3972 (.3945 ± .0024) .3746

Late Fusion
A1+T1 [8] .4718 (.4695 ± .0022) .4679 (.4657 ± .0025)
A2+T2 .4706 .4578
A1+V1+T1 [8] .4789 (.4761 ± .0024) .4727 (.4711 ± .0023)
A2+V2+T2 .4770 .4623

6.2 Mimic
For the Mimic task, we conducted the same steps as for the Humor
challenge. The aggregated input attribution statistics are depicted
in Figures 3 and 4. Similar to the other task, we can see that a consid-
erable portion of the wav2vec 2.0 embedding vector is not utilized,
and the distribution of feature importance is again exponential for
all systems.

While testing different thresholds for feature selection, we once
again concluded that the mean value of the feature attributions is
optimal. The experimental results are summarized in Table 3. Unlike
previously, here, the reduced input did not offer improvements in
terms of performance. Overall, on this task, we can observe the
trade-off effect of reducing the input to 25–42% of the original size,
thus reducing the Decoder’s size considerably, resulting in a relative
performance degradation of only 1–15%.

Next, we experimentedwith the fine-tuning of thewholewav2vec
2.0 model5 using the Pearson correlation loss, which required con-
siderable time and computational resources. We can see that on
the development set, it produced the best results, outperforming
even the best multimodal baseline ensembles. Additionally, we
also fine-tuned a variant in which we only connected the relevant
Transformer outputs to the classification output. This second model
achieved slightly worse correlation scores than the complete model
but still outperformed all the baseline solutions.

5https://huggingface.co/audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim

Unfortunately, we could only evaluate this model in the Post-
Challenge evaluation phase due to the long time required to find
the optimal hyperparameters (mainly the batch size) and the long
training process. Consequently, the test results reported are not
eligible in the context of the competition but still highlight the
superiority of a fine-tuned model compared to solutions only using
it as a feature encoder.

As a final step, we also took advantage of the fact that the FAU
features are by nature interpretable and visualized the aggregated
attribution values using the py-feat toolkit. As Figure 5 depicts, the
baseline Decoders trained to recognize approval, disappointment
and uncertainty, value the feature dimension associated with the
upper lid raiser muscle the most. Additionally, the features linked
to muscles controlling the lip are also highly relevant. The main
implication of these observations is that we can use Artificial Intel-
ligence to gain new insights about our sentiment analysis data and
task, similar to other fields of science [24].

7 CONCLUSIONS
State-of-the-art solutions in many areas, including Sentiment Anal-
ysis, are becoming extremely reliant on self-supervised pre-trained
models. The large neural models process large quantities of un-
labelled data in their initial training phase and are proven to be
extremely good feature encoders for numerous tasks. While most
effort is dedicated to finding the optimal pre-trained model for a
given task, very few works attempt to provide a deeper understand-
ing of what kind of information is encoded in their embeddings.
This work investigates multiple popular embedding systems and
employs Integrated Gradients, a model interpretation technique, to
identify task-specific sub-spaces of various encoders. We employ
this new approach to better understand and improve the solutions
developed for the MuSe 2023 competition, specifically for the MuSe-
Humor and MuSe-Mimic tasks.

Our empirical results indicate that only a small portion of the em-
bedding space is actually relevant for cross-cultural Humor Detec-
tion and estimating the intensity of three emotions.We demonstrate
that interpreting the initial DNNs trained on the whole embeddings
and then filtering their input based on input attribution values can
lead to comparable or even better results, while reducing the in-
put size of the Decoder considerably, leading to faster and smaller
models.

While our work focuses on interpreting only the Decoder compo-
nents of the various systems, in the future, we aspire to investigate
the feature encoders too. Now that we have established which parts
of their output are relevant to each task, we can estimate which
parts of the raw input (words, sounds and images) contribute most
to these dimensions. We hypothesize that with some human anno-
tation effort, it is possible to assign high-level, human-interpretable
concepts to sub-spaces of the latent vectors produced by commonly
used pre-trained models.

Lastly, we would like to point out that our proposed method can
be viewed as a new type of knowledge distillation. In contrast to
the traditional way of training the student to mimic the teacher,
we utilize the teacher to select the relevant inputs for the student.
Additionally, by investigating the input attributions, we could gain
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(a) ELECTRA (b) W2V2 (c) FAU

Figure 3: Sorted average attributions of each dimensions in the embeddings spaces of the Mimic data.

(a) ELECTRA (b) W2V2 (c) FAU

Figure 4: The standard deviations of the sorted attributions for each dimensions in the embeddings spaces of the Mimic data.

Figure 5: Visualization of the input attributions of FAU fea-
tures for mimicked emotion detection.

new insights into the data and how DNNs accomplish Humor and
Emotion Detection.
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