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Abstract—As an alternative to downloading content from acellular access network, mobile devices could be used to storedata files and distribute them through device-to-device (D2D)communication. We consider a D2D-based storage communitythat is comprised of mobile users. Assuming that transmittingdata from a base station to a mobile user consumes more energythan transmitting data between two mobile users, we show that itcan be beneficial to use redundant storage to ensure that data filesstay available to the community even if some of the storing usersleave the network. We derive a tractable closed-form equationstating when redundancy should be used in order to minimizethe expected energy consumption of data retrieval. We find thatreplication is the preferred method of adding redundancy asopposed to regenerating codes. Our findings are verified bycomputer simulations.
I. INTRODUCTION

The amount of mobile data traffic is growing tremendously.The total global mobile traffic was about 885 petabytes permonth at the end of 2012, and is expected to keep increasing[1]. As traditional techniques for increasing the capacity ofwireless systems have their limits, new ways of reducing theload of the access network are needed.Recently, device-to-device (D2D) communication has beensuggested as a means of increasing the capacity and thethroughput of cellular systems, as well as improving the energyconsumption of user devices, see [2]-[4]. As the storage capac-ity of mobile devices increases, data files could be stored andretrieved from the mobile users themselves in order to offloaddownload traffic from the infrastructure network. Distributedstorage in Delay Tolerant, Ad Hoc and D2D networks has beensuggested in [5], [6], [7]. In these, mobile terminals (withbackup connections to an infrastructure network) are usedto cache and distribute data files. To increase the reliabilityof transmissions within the storage community, packet levelerasure coding is investigated in [8].In this paper, we concentrate on a system consisting ofa base station and a set of mobile users within the rangeof the base station, forming a D2D storage community. Thecommunity consists of mobile users that will, sooner or later,leave the system. In order to avoid losing stored data files,redundancy can be added to the stored data. The simplest wayto do this is to store several copies of the files. However,erasure coding can increase the performance of distributed data

storage [9]. Further, codes that are tailor-made for distributedstorage can improve system performance [10].We apply regenerating codes [11] to a D2D storage com-munity and assess their performance. In [12], we investigateda similar system, under more complicated assumptions. Here,we assume a wide-sense stationary storage community, witha constant expected number of nodes. We assume that thecommunity is able to recover and regenerate the lost dataafter each single node departure before another departure takesplace . We concentrate on the communication cost incurred byfile requests and storage regeneration, assuming that the nodeshave infinite storage capacities.We find that, under the considered system assumptions,the simplest method of storing redundancy, i.e. storing oneredundant replica of a file, is also the optimal method in termsof energy consumption.It should be noted that, in this paper, we fully confineourselves to assessing the theoretical performance of thestorage and distribution methods at hand, and that we donot discuss the practical implementation of such methods.Likewise, we do not go into D2D device discovery, signaling,synchronization, power control, code construction etc.The remainder of this paper is organized as follows: Sec-tion II explains the system model that we use throughoutthis paper. Section III derives analytical expressions for theselect distribution methods. Section IV shows both theoreticaland simulated numerical results. Finally, section V providesconcluding remarks.
II. SYSTEM MODEL

We consider a wireless cellular system where mobile de-vices, referred to as nodes, roam freely in and out of a geo-graphically limited area. We assume that the nodes themselvescan be used to store (cache) data and they can, upon request,transmit data to one another.A set of nodes that are within a specified distance from eachother forms a storage community, or a local network. The localnodes can communicate with each other in D2D mode, withoutthe help of the base station. Also, the base station can be usedto transmit data to the nodes but there is no need to relay datafrom a node to another node via the base station.
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Fig. 1. An example realization of the number of nodes in the system. Herethe expected number of nodes is N = 100 and the expected node lifetime is
T = 10.

Nodes arrive in the system according to a Poisson processwith exponentially distributed inter-arrival times. The expectedtime for which a single node sojourns in the system is denotedby T , the expected node lifetime. The expected number ofnodes in the system is denoted by N . By Little’s law [13], thearrival rate of the nodes is N

T
. The expected inter-arrival timeof two consecutive nodes is T

N
, which is also the expectedtime between two consecutive node departures. These timesare exponentially distributed. The flow into system equals theflow out of the system, and the number of nodes fluctuatesaround N . Fig. 1 exemplifies this fluctuation.The time development of the number of local nodes can,thus, be described with the M/M/∞ Markov model, depictedin Fig. 2. The steady-state probabilities for the M/M/∞ modelare well-known [14]. The probability that there are i nodes inthe system is

π(i) =
N i

i!
e−N . (1)

We assume that local nodes themselves can be used to cachedata. For simplicity, we assume that the storage capacity ofeach node is infinite. We rationalize this by observing thatthe storage capacity of mobile devices has been dramaticallyincreasing. This is why we presume that each node has somefree capacity that could be used for the common good.

NN−1 N+1... ...
Nλ Nλ Nλ Nλ

(N+2)λ(N+1)λNλ(N−1)λ

Fig. 2. The M/M/∞ Markov chain state diagram for the number of localnodes. The name of the state corresponds to the number of nodes (blue). Theincoming rate (green) of the nodes is constant, whereas the outgoing rate (red)is proportional to the number of nodes in the system. The expected numberof nodes is N and λ = 1/T .

The main motivation for assuming an infinite storage ca-pacity is that the storage problem of multiple files decouples.Accordingly, it is sufficient to consider the storage and distri-bution problem of a single file, with a specified request rate.We denote the request rate of one file by one local nodeby ω. The inter-arrival time of two consecutive file requestsfollow the exponential distribution with mean 1

Nω
.We normalize the size of the file to 1 (bit). Similarly, we saythat the cost (in transmit energy) of transmitting one file froma local node to another local node is also 1 (joule). All thesimplifying assumptions mentioned here allow for tractable,tangible results.We assume that there is one data file. At random timeinstants, local nodes request the file and download it. Thefile can either be retrieved from the base station or from thelocal nodes through D2D communications. It is, on average,

R times as expensive to download a bit from the base stationas compared to downloading a bit from another local node,with R > 1. The caching model is depicted in Fig. 3.The downloading node can download the file from the localnodes only if the file is cached. In this paper, we compare twocaching methods:
• Simple caching: If the requested file is already cached onanother local node, the caching node transmits the file tothe requesting node in D2D mode. If the file is not cachedon any of the local nodes, the base station transmits thefile to the requesting node. Thence, the requesting nodecaches the file and, later on, transmits it to other usersupon request. Only one local node at a time is cachingthe data file and, thus, there is no redundancy.
• Redundant caching: A subset of the local nodes is usedto transmit parts of the file to the downloading node andthe original file is reconstructed at the downloading node.Two or more nodes are caching the file or a fraction ofthe file. One of the caching nodes is redundant.

The simplest way of redundant caching is allocating two exactreplicas of the whole file on two different nodes. We call thismethod 2-replication.Retrieving a file from the base station is never beneficial aslong as the file is available in the storage community, and itis more expensive to retrieve data from the base station thanto retrieve data from another node.We assume that the file is always available – only the cost(in transmit energy) and the data traffic load on the base stationchange depending on the distribution method. Whether it isbeneficial to use simple caching or redundant caching dependson the system parameters and the popularity (request rate) ofthe requested file.We define the cost as the expected total amount of transmitenergy per time unit that must be used by the local nodesand the base station. Our objective is to find expressions forthe expected total cost of different distribution methods giventhe system parameters R,N, ω and T . Eventually, we find thedistribution method that yields the smallest expected cost giventhe aforementioned system parameters.
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Fig. 3. A node (blue) requesting the file. Two local nodes (green) are cachinga copy of the file (2-replication). Other nodes (gray) stay idle. We say thatthe cost of transmitting the file from a caching node is 1, while the cost oftransmitting the file from the base station (BS) is R.

III. ANALYSIS
In this section, we derive closed-form expressions (approx-imations) for the expected total costs of simple caching andredundant caching. Later in this section, we compare thesemethods with each other.

A. Simple caching
Initially, suppose that the file is already cached on one of thelocal nodes. Thus, as long as the node that is caching the filestays in the system, all file requests result in retrievals fromthis node. There are on average N local nodes that generaterequests, each at rate ω, and the expected lifetime of any ofthe nodes is T . Therefore, the expected number of requestsduring the lifetime of the caching node is NωT .Now suppose that the cost of retrieving the file (of size

1) from another local node is simply 1. Hence, the expectedcost of downloading the file from the base station is R. If thecaching node has left the system, the next node that requeststhe file has to download it from the base station. The expectedtime in which this happens is 1

Nω
as the expected total requestrate is Nω. Thus, the time in which an expected number of

NωT+1 requests are generated is T+ 1

Nω
. The expected costof these requests is NωT+R and, thereby, the expected costof simple caching becomes:

Csc(R,N, ω, T ) =
NωT +R

T + 1

Nω

=
N2ω2T +RNω

1 +NωT
. (2)

B. Redundant caching
Here we use a (n, k, d) = (k+1, k, k) regenerating code[11] to cache the file on a set of local nodes in a distributedmanner. Thus, any k nodes that are caching an encodedfraction of the file can be used to reconstruct or repair thefile. The file is fractioned into k encoded blocks and oneblock is allocated to k+1 different caching nodes. One blockis redundancy, and k = 1, 2, 3, .... Hence, should any of thecaching nodes leave the system, the remaining (surviving) knodes can be used to regenerate the lost block.The repair bandwidth of a regenerating code is definedas the number of data communicated when a lost block isregenerated. As we consider infinite storage capacities, onlythe repair bandwidth of is relevant. For this reason, we choose
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Fig. 4. Regenerating codes can be used to repair a lost encoded blockby only transmitting a number of data equal to the block size. The code thatachieves this property is called the Minimum Bandwidth Regenerating (MBR)code (rightmost point). Traditional erasure coding (leftmost point) requires thewhole data object to be communicated. Here the file size (B) is 1.

to use the Minimum Bandwidth Regenerating (MBR) code(see Fig. 4).Whenever there is a failure, i.e. one of the caching nodesleaves the system, the lost block is repaired to another localnode. This requires γ(k) = 2

k+1
bits to be transmitted forthe MBR code with repair degree d = k [11]. The repairbandwidth of an MBR code is equal to the size of the encoded(cached) block α(k). Thus, in total, kα(k) = kγ(k) = 2k

k+1bits must be transmitted whenever a local node downloads thefile from a set of k caching nodes.Next, we derive an approximation for the expected cost ofredundant caching with the (k+1, k, k) regenerating code. Wenote that the expected state of the system is such that thereare N nodes in the system and k+1 out of these N nodes arecaching an encoded data block. The expected sojourn timeof all of these N nodes in the system equals the expectednode lifetime T . When one of these caching nodes leaves,
γ(k) = 2

k+1
bits need to be communicated in order to repairthe lost data block and store it on another node. Setting thecost of transmitting a bit from a local node to another localnode to 1, the expected repair cost becomes

Cx(k, T ) = k + 1

T
× γ(k) =

k + 1

T

2

k + 1
=

2

T
, (3)

which is, interestingly, independent of k, and equals the costof the repair process of 2-replication1 The process of 2-replication is depicted in Fig. 5. Even though increasing kdecreases the repair bandwidth γ, it also increases the expectednumber of failures, as a failure takes place whenever a cachingnode leaves the system. These effects cancel out each other.For simplicity, let us assume that the number of localnodes never drops below k and the repair process is so fast(immediate) that no nodes leave the system before the repairprocess is complete. Thence, we never need to reallocate datafrom the base station, and only repairs incur upkeep costs.Therefore, the expected cost per time unit of redundant caching
1The expected repair cost of 2-replication is 2

T
×1 as there are two blocks,each of size 1 (the file size).



becomes
Crc(k,N, ω, T ) = Nωkα(k) + Cx(k, T ) = Nω

2k

k + 1
+

2

T

as all requests result in local downloads and the expected costof retrieving (reconstructing) the file is 2k

k+1
. It is easy to seethat Crc is minimized at k = 1. This is not a regeneratingcode – the method that minimizes the expected total costof redundant caching is 2-replication. Note that k=1 alsominimizes the probability that a file request results in a localdownload. This is because in order for a local request to takeplace, there must to be at least k nodes in the system. Theexpected cost of 2-replication becomes

C2-rep(N,ω, T ) = Nω +
2

T
. (4)

It should be noted that more than two copies of the file couldbe replicated on the nodes. The derivation of the cost in thiscase would be similar. Having more than just two copies ofthe file would enable the system to withstand more than onecaching node leaving the system. However, as we assumethat the file can be repaired before another node leaves thesystem, we restrict ourselves to the case where there is onlyone redundant copy of the data file in the system.Besides having the smallest possible repair bandwidth,another benefit of 2-replication over regenerating codes is itssimplicity. There is no need to perform excessive computationswhen the file is reconstructed or requested—the file is simplycopied from a caching to the requesting node. Similarly, atrepair, the file is simply copied to the newcomer node. SeeFig. 5 for an illustration of the repair process.

departurerepair

Fig. 5. Repair of 2-replication. If a caching node (orange) leaves the system,the surviving caching node (green) can repair the file by sending a copy ofthe file to an idle node. This node stores the copy and, thereby, becomes thenew caching node (newcomer, yellow).
If 2-replication is used, the file, or a redundant copy of thefile, needs to be reallocated from the base station only if thenumber of nodes drops below two. According to (1), the prob-ability of this is N+1

eN
. For large N , we can approximate this tobe zero (for instance, already for N = 20, 21

e20
≈ 4.33×10−8).This is the reason why we ignore the cost of reallocatingthe file to the nodes from the base station. This is also thereason why we assume that, when 2-replication is used, thereis always a node to which we can copy the file whenever acaching node leaves the system. This allows us to approximatethe total repair cost in (3) as 2

T
, as discussed earlier.

C. Comparison
Here we derive a straightforward decision rule on whento use simple caching (without redundancy) and when to useredundant caching (2-replication with one redundant copy).Simply by setting Csc > C2-rep ((2), (4)), we find thatredundant caching outperforms simple caching if

NωT +R

T + 1

Nω

> Nω +
2

T
,

which yields
R > 3 +

2

NωT
. (5)

Fig. 6 shows the decision boundary of (5). It is interesting tonote that as long as R ≤ 3, the best method is, independentlyof the other parameters, simple caching. Also, note that NωTcan be interpreted as the expected number of file requestsmade in the system during the lifetime of a single node. Forexample, if the expected number of requests during the lifetimeof a node is greater than two, R ≥ 4 is enough to justifyredundant caching.
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Fig. 6. Cost ratio threshold. Whenever R > 3 +
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(white region),2-replication yields the lowest expected cost. Otherwise (red region), simplecaching should be used instead.

It might seem tempting to use redundant caching (2-replication) over simple caching whenever condition (5) ismet. However, simple caching only takes up half of the storagespace of 2-replication. Consequently, simple caching can storetwice as many files as 2-replication. In addition, 2-replicationrequires a D2D connection to be established for the repairprocess whenever a caching node leaves the system.Even though D2D data distribution may reduce the trafficload on the base station and decrease the overall power con-sumption, it should be noted that the power consumption of theusers that store and distribute data may increase considerably.This is why the caching users should be provided with perks,e.g. they could be granted more download bandwidth.Table I concludes this section by comparing the expectedcosts (or their approximations) of the considered cachingmethods.



TABLE ICOMPARISON OF CACHING METHODS
method caching nodes cost (per time)

base station only 0 RNω

simple caching 1
N

2
ω
2
T+RNω

1+NωT

2-replication 2 ≈ Nω +
2

T

regenerating code k + 1 ≥ 3 ≈ Nω 2k

k+1
+

2

T

IV. NUMERICAL RESULTS
This section provides simulation results of the expected costfor simple caching and 2-replication. All the simulations areconducted over 2000T time units, where T is the expectednode lifetime, and the average cost per time unit over the runsis presented. Simulation results are compared with the theo-retical results. Overall, it can be concluded that the expectedtheoretical values coincide with the average simulated values.However, there is some (yet negligible) discrepancy due to therandom nature of the simulations.Figures 7 and 8 illustrate the expected theoretical costs andthe average simulated costs as functions of the expected costratio R and the expected number of nodes N , respectively.The expected cost behaves similarly as a function N and ω(see Table I).
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Fig. 7. Expected cost vs. cost ratio R with parameter values N = 100, ω =

0.5 and T = 0.02. The cost of simple caching is linear w.r.t. R, while thecost of 2-replication is practically independent of R. The simulation resultsare well in line with Equation (5); 2-replication outperforms simple cachingas long as R > 3 +
2

NωT
= 5.

Finally, Fig. 9 shows the expected theoretical costs andthe average simulated costs as functions of the expectednode lifetime T . As T tends to infinity, the expected costof simple caching tends to that of 2-replication, namely, Nω(Table I). This means that if the nodes stay in the systemfor a long period of time, all the file requests result in localdownloads from the caching nodes and the distribution methodis irrelevant. Conversely, if T tends to 0, the expected cost of 2-replication tends to infinity, while the expected cost of simple
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Fig. 8. Expected cost vs. expected number of nodes N with parameter values
R = 5, ω = 0.5 and T = 0.02.

0 0.01 0.02 0.03 0.04 0.0550
100
150
200
250
300
350
400
450
500

expected node lifetime T

exp
ecte

d co
st

Expected cost vs. expected node lifetime

 

 

simple caching (theory)2−replication (theory)simple caching (simulation)2−replication (simulation)

Fig. 9. Expected cost vs. expected node lifetime T with parameter values
R = 5, N = 100 and ω = 0.5. As T tends to infinity, the expected cost ofsimple caching tends to Nω = 50 as does that of 2-replication (Table I). As
T tends to 0, the expected cost of 2-replication tends to infinity, while theexpected cost of simple caching tends to RNω = 250 (2).

caching tends to RNω (2). Thus, 2-replication should not beused for highly unstable systems with short node lifetimes –a short node lifetime implies a high departure rate of cachingnodes and, consequently, a high repair cost.
V. CONCLUSIONS

We have shown that, for the (k+1, k, k) regenerating code,the expected total repair bandwidth is practically independentof k and coincides with that of 2-replication. Also, we havedemonstrated that, under our assumptions, the expected totalcost of 2-replication is lower than that of the aforementionedregenerating code. Finally, we have found a simple decisionrule for choosing between simple caching and 2-replication inorder to minimize the expected total cost in terms of energyconsumption.
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