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Plasmonic nanoarrays which support collective surface lattice resonances (SLRs) have become an exciting
frontier in plasmonics. Compared with the localized surface-plasmon resonance in individual particles, these
collective modes have appealing advantages such as angle-dependent dispersions and much narrower linewidths.
Here, we investigate systematically how the geometry of the lattice affects the SLRs supported by metallic
nanoparticles. We present a general theoretical framework from which the various SLR modes of a given geometry
can be straightforwardly obtained by a simple comparison of the diffractive order vectors and orientation of the
nanoparticle dipole given by the polarization of the incident field. Our experimental measurements show that
while square, rectangular, hexagonal, honeycomb, and Lieb lattice arrays have similar spectra near the � point
(k = 0), they have remarkably different SLR dispersions. Furthermore, their dispersions are highly dependent on
the polarization. Numerical simulations are performed to elucidate the field profiles of the different modes. Our
findings extend the diversity of SLRs in plasmonic nanoparticle arrays, and the theoretical framework provides
a simple model for interpreting the SLRs features, and vice versa, for designing the geometrical patterns.

DOI: 10.1103/PhysRevB.95.155423

I. INTRODUCTION

The conduction-electron oscillations within a metallic
nanoparticle driven by an external electromagnetic field
gives rise to a localized surface-plasmon resonance (LSPR).
At the resonance, a metallic particle will confine light at
the nanoscale, with the electric field being enhanced in the
near-field region at the surface of the particle. The field
enhancement and subwavelength character of LSPRs can be
applied to modify the spontaneous emission decay rate of
nanoemitters [1] and to control various nonlinear effects, such
as second-harmonic generation and Raman scattering [2,3].
However, due to the strong radiative damping, LSPRs usually
exhibit broad spectral linewidths and low quality factors [4]
which hinder potential applications. If the nanoparticles are
placed in an array, the dipolar interactions between the particles
may induce extra resonances. In particular, when the array
periodicity is on the order of particle resonance wavelength, the
coupling between the diffractive orders (DOs) of the array and
the LSPRs on each individual particle will result in a collective
resonance called surface lattice resonance (SLR) [5–9].

SLRs on plasmonic nanoparticle arrays show
angle-dependent dispersions and have significantly narrower
linewidths compared with LSPRs on the individual particles.
These features make metallic nanoparticle arrays suited for
tailoring the light dispersion at the nanoscale. SLRs have been
utilized in light harvesting [10], emission control [11–13],
strong light-matter interaction [14–16], and plasmonic
lasing [17–21]. Recent works have also implemented SLRs
in magnetoplasmonic responses in magnetic nanoparticle
arrays [22,23], dark mode excitation in asymmetric dimer
arrays [24], and superlattice plasmons in hierarchical gold
particle arrays [25]. Even condensation phenomena have
been theoretically studied [26]. Yet another interesting aspect
of SLRs stems from the fact that as the dipolar radiation
pattern of the LSPR is nonisotropic, the effective radiative
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coupling in different lattice directions will depend strongly on
polarization, as shown in Fig. 1. Moreover, since the coupling
originates from the fairly slow-decaying radiation fields
between the particles, any model relying only on the nearest-
neighbor coupling, that is, the tight-binding model, is not
sufficient to describe the system response. This raises the ques-
tion whether such systems exhibit, for example, topologically
nontrivial modes often found in tight-binding models [27] and
if so, whether these modes could have novel features. Recent
progress in nanofabrication makes nanoparticle arrays with
different lattice symmetries possible. However, more complex
geometries have been experimentally investigated only under
normal incident angle [28], thus providing no information
on the system dispersion. Numerical models to calculate
SLR dispersions, such as the discrete dipole approximation,
have been provided [29,30], but an intuitive description from
which one can straightforwardly determine the expected
mode structure of also more complicated lattices has been
missing.

In this paper, we explore the various SLRs supported
by metallic nanoparticle arrays with different geometries.
We provide a simple description of how complex lattice
geometries affect the SLR dispersions with a given po-
larization. Our model uses simple diagrams to show how
the different dispersions result from the coupling between
the DO vectors of the lattice and the dipole orientations
on the individual nanoparticles. Angle-resolved extinction
spectra measured from silver nanoparticle arrays with square,
rectangular, hexagonal, honeycomb, and Lieb lattices are well
explained by the simple model we provide for both TE
and TM polarizations. Finite-difference time-domain (FDTD)
simulations are also performed to verify our interpretation.

The complex dependence of the mode structure on the
light polarization and the dipole orientations of individual
particles suggests interesting possibilities if the polarization
(the dipole orientation) is taken as a pseudospin degree of
freedom. Our results show that the plasmonic nanoparticle
arrays might be used for realizing novel types of spin-orbit
coupling and thereby topological states of light, and provide
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FIG. 1. Polarization dependence of the dipolar radiative couplings between the metallic nanoparticles. The radiative direction is orthogonal
to polarization. Therefore, if the metallic nanoparticles are placed parallel with the light polarization, there is no radiative coupling between
them (a). If the nanoparticles form an array orthogonal to the polarization direction, they will couple with each other through the dipolar
radiative interactions (b). Therefore, in rectangular arrays the SLRs depend only on one dimension (c). But in a more complex lattice—for
example, a honeycomb array (d)—the radiative dipolar interactions would depend on both directions due to the nonzero interaction between
the nearest particles along a combination of x and y directions, as the red arrow in (d) indicates. Thus the modes of the nanoparticle array
are determined not only by the geometry of the lattice but also by its interplay with the polarization direction. We demonstrate the resulting
rich mode structure in experiments on square, rectangular, hexagonal, honeycomb, and Lieb nanoparticle geometries, and provide a simple
approach to interpret and predict the observed dispersions, such as the one for a hexagonal lattice (e) (here E is the light energy and k‖ the
in-plane wave vector).

an efficient approach for designing such systems. This prospect
is discussed in the Conclusions.

II. MODEL

The SLRs involve a collectively scattered field that com-
prises components produced by scattering from all particles
of the array [9,31]. A plane wave impinging on an array with
a wave vector k0 will be scattered by all the particles. The
scattered wave can be also approximated by a plane wave k

at the far-field limit. We define the scattering vector s as the
difference between k0 and k of each particle, as shown in
Fig. 2(a). Then for a particle array, the amplitude of the total
scattered wave will be proportional to Asum = ∑

l exp(is · rl )
which is summed over the phase difference of all the particles.
In the case of the Bravais lattice, where rl = n1�a1 + n2�a2

and �a1 and �a2 are the primitive vectors of the lattice [here
we consider two-dimensional (2D) lattices], a nonzero total
amplitude results only when s equals a reciprocal lattice vector
G = m1 �b1 + m2 �b2 where �b1 and �b2 are the primitive vectors
of the reciprocal lattice.

A more complex lattice may have a basis which consists of
multiple particles in one unit cell, as the dotted circles show
in Fig. 2(a). In such a case, the amplitude of the scattered
light is the sum over all lattice sites and over each particle
in the basis Asum = ∑

l

∑
b exp[is · (rl + rb)] = [

∑
b exp(is ·

rb)] · [
∑

l exp(is · rl )]. The sum [
∑

b exp(is · rb)] affects the
magnitude and phase of the scattering peaks. Therefore, we
call it the envelope factor.

The diffraction condition for surface waves that propagate
along the lattice surface, namely, the DOs, in a 2D periodic
Bravais lattice is therefore ω/c = |k‖ + G|, where k‖ is the

wave vector component which is parallel to the lattice surface.
If the lattice has a basis which consists of multiple particles in
one unit cell, the dispersion maintains the same features, but
the amplitude of the scattered light is modified by an envelope
factor [

∑
b exp(iG · rb)], which is summed over the particles

in one unit cell.

(a)

(b)

(c)

FIG. 2. (a) Scattering of a plane wave by a 2D particle array.
Here k0 and k indicate the incoming and outgoing wave vectors,
respectively, and s = k − k0 denotes the scattering vector. (b) The
schematic of a square lattice in reciprocal space and the four lowest
DOs (black arrows). The DOs (0,1) and (0,−1) have been slightly
shifted horizontally to be better distinguished. The fuchsia arrows
indicate the electric polarizations for TE and TM modes (TE and TM
are defined with respect to ky). (c) The calculated DOs (0,1),(0,−1)
and the degenerate (1,0)/(−1,0).
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The expected SLR modes can be concluded from a simple
diagram presenting the DOs and the polarization direction of
the incident light. We take the square lattice as an example.
Figure 2(b) depicts the square lattice in reciprocal space,
illustrating the four lowest-order lattice vectors G. The four
lattice vectors have the same magnitude, meaning that the
DOs ω/c = |ky + G| are degenerate when ky = 0, therefore
the four branches have the same � point. Considering
the light incident with a small angle, there will be an in-plane
wave vector, which here we assume is ky , added to the
DOs. In such a case, the orders (1,0) and (−1,0) still have
the same magnitude so they maintain the degeneracy, as
shown by the black arrows kDO in Fig. 2(b). But the DO
vectors (0,1) and (0,−1) then have different magnitudes so
they become two different branches, linearly dependent on
ky . This means we can determine the DOs supported by a
square lattice, as shown in Fig. 2(c). There are two linearly
dispersed branches that correspond to the DOs (0,1) and
(0,−1), and one hyperbolically dispersed branch corresponds
to the degenerate DOs (1,0) and (−1,0).

Besides magnitude, the directions of the DO vectors kDO

also describe their propagation directions at a certain wave-
length and incident angle. For metallic nanoparticle arrays,
the supported plasmonic modes are not only dependent on the
geometrical properties but also on the excitation polarization.
Let us consider two orthogonal polarization directions, TE
and TM, as depicted by the fuchsia arrows in Fig. 2(b). A
nanoparticle driven by an incident field of a certain polarization
would behave as an electrical dipole which mainly radiates in
the orthogonal direction and couples well with modes whose
DO vectors kDO are in that direction. It does not excite a mode
whose kDO is parallel to the polarization (see the schematics
in Fig. 1). Therefore we expect to excite the DOs (0,1) and
(0,−1) only by TE-polarized light, and the degenerate DOs
(1,0) and (−1,0) preferably by TM-polarized light, in the case
of a small angle of incidence. Note that at higher energies,

metallic nanoparticle arrays may also support collective modes
originating from quadrupoles, hexapoles, etc. [32,33]. In such
cases the argument about the comparison between DO vectors
and polarization directions does not necessarily hold, since the
higher-order modes have different radiative patterns and thus
more coupling capability to different directions. Therefore, the
DOs that are suppressed by a certain polarized dipolar array
could still be supported by arrays of higher-order modes.

In the following, we show that this approach efficiently
describes the modes of also more complex lattices and
allows a straightforward interpretation of the experimentally
observed dispersions.

III. SAMPLE FABRICATION AND OPTICAL
CHARACTERIZATION

We fabricate silver nanoparticle arrays on borosilicate glass
with different patterns by electron-beam (e-beam) lithography.
The designed patterns include square, rectangular, 45◦ rotated
square, hexagonal, honeycomb, and Lieb lattices, as shown
in the top-view scanning electron micrographs (SEMs) of the
fabricated samples in Figs. 3(a)–3(f). Each array has a size of
100 μm × 100 μm, and the silver nanoparticles have a height
of 30 nm and a diameter of 60 nm, with 2 nm titanium below
as an adhesive layer. The distances between the particles are
chosen such that the diffractive edges, or the Wood anomalies
(� points) of all structures are at the same energy, which will
be explained in detail below.

Angle-resolved transmission spectra T = Istructure/Ireference

are measured by focusing the image of the back focal plane of
the objective to the entrance slit of a spectrometer, as shown in
the schematic Fig. 3(g). A white light-emitting diode (LED)
is used as the light source, and a polarizer is placed before the
spectrometer to control the polarization of the detected light.
There is no magneto-optical response in silver nanoparticles in
contrast to magnetic materials [22], and the nanoparticles are

)c()b()a(

)f()e()d(

(g)

x

y

FIG. 3. (a)–(f) SEMs of square, rectangular, 45◦ rotated square, hexagonal, honeycomb, and Lieb lattice arrays. The scale bar in (d) is
300 nm and the same for all. (g) The measurement setup. The angle-resolved transmission spectra are collected by focusing the image of the
back focal plane of the objective to the entrance slit of the spectrometer. The entrance slit is parallel to the y axis of the sample. For transmission
measurements, a white LED light source is used.
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sufficiently small that the excited single-particle resonance is a
dipolar resonance. In such case we can exclude the possibility
of polarization rotation by the structure [34]. The measurement
setup is therefore equivalent with the configuration that the
sample is excited by a polarized light. The sample slide
is embedded by an index-matching oil (refractive index
n = 1.52) and covered by a borosilicate superstrate to provide
a symmetric optical environment for the arrays. The extinction
spectra are then obtained by (1 − T ) and subsequently used
for calculating the dispersions on each array.

IV. MEASUREMENT RESULTS

A. Square lattice

Figures 4(b) and 4(c) show the extinction of a square
lattice with a periodicity of px = py = 375 nm for TE and
TM polarizations, respectively. Dispersions as a function
of the in-plane wave vectors in the y direction, ky , are
considered. TE polarization means the electrical field oscillates
perpendicular to the in-plane wave vector ky , and TM parallel
to it. The different dispersions among the TE and TM modes
originate from the different mode vectors of the lowest DOs on
the square lattice.

As explained in Sec. II, for TE-polarized incident light,
(0,1) and (0,−1) DOs are excited and linearly dispersed with
the in-plane wave vector. However, (1,0) and (−1,0) DOs are
extremely weakly coupled to TE-polarized light because they
propagate nearly orthogonally to the radiative direction of the
electric dipole. Therefore they are not visible in Fig. 4(b). By
increasing kDO, one could make these modes less orthogonal
to the radiative direction and thus visible with TE-polarized
light, but in our measurement setup, the maximum detectable
ky at visible range is four times smaller than the magnitude of
the lowest lattice vector |G|, thus in the schematic Fig. 4(a)
the maximum angle θ obtainable for us at present is 13◦.
On the other hand, a TM-polarized incident light can excite
only the degenerate (1,0) and (−1,0) modes since (0,1) and
(0,−1) DOs both propagate orthogonally to the radiative direc-
tion and are therefore suppressed: the degenerate (1,0)/(−1,0)
modes are shown in Fig. 4(c).

In Figs. 4(b) and 4(c) we also plot the corresponding (0,1),
(0,−1), and (1,0)/(−1,0) DOs from which we can see that the
SLRs follow the calculated DOs quite well. The redshifts of the
SLRs are due to the coupling to LSPRs. Figures 4(d) and 4(e)
show the FDTD simulated extinction spectra under normal
and 10◦ incident angles with TE- and TM-polarized light,
respectively. The simulation results present the same behavior

FIG. 4. (a) The schematic of a square lattice in reciprocal space and the four lowest DOs (black arrows). The DOs (0,1) and (0,−1) have
been slightly shifted horizontally to be better distinguished. The fuchsia arrows indicate the electric polarizations for TE and TM modes (TE
and TM are defined with respect to ky). The measured extinction spectra for (b) TE- and (c) TM-polarized lights. Dashed and dotted white lines
represent the calculated DOs (0,1) and (0, −1), respectively. The dashed red line represents the calculated degenerate DOs (1,0) and (−1,0).
The broad feature around 2.4 eV is the LSPR, here and in Figs. 5–9. FDTD simulated extinction spectra for square lattice under normal and
10◦ incidence with (d) TE- and (e) TM-polarized light.
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FIG. 5. (a) The schematic of a rectangular lattice in reciprocal space and the four lowest DOs. For clarity of the schematic, the distances
along the x and y axes in the reciprocal lattice are not in scale with those in the real sample. Measured extinction and calculated DOs for (b) TE-
and (c) TM-polarized light. Dashed and dotted white lines represent the DOs (0,1) and (0, −1), respectively. The dashed red line represents
the degenerate DOs (1,0)/(−1,0).

as experimental spectra. We will discuss these simulation
results in more detail in Sec. IV.

B. Rectangular lattice

The lower symmetry in a rectangular lattice (px �= py)
compared to the square one has a strong impact on the
supported SLRs. The two primitive vectors in reciprocal space
have different magnitudes so the � points of the DOs split in
energy, as shown in Fig. 5(a). As the square lattice, the (0,1)
and (0,−1) DOs are supported and linearly dispersed with
the in-plane wave vector for the TE-polarized excitation field,
and (1,0) and (−1,0) DOs are degenerate and hyperbolically
dispersed with the in-plane wave vector for the TM-polarized
excitation field. However, the TE and TM modes have different
� points due to the periodicity mismatch, as shown in the
measured extinctions in Figs. 5(b) and 5(c) of a rectangular
array where the periodicities along the x and y axes are 415
and 375 nm, respectively.

Such �-point inequality has been reported in [28], where
the authors have measured the zero-angle extinction spectra for
rectangular lattice arrays and found different peak positions for
different polarizations, noticing that the important distance is
the particle separation in the direction perpendicular to the
incident electric field. Here, we point out the origin of this
phenomenon: it naturally arises from the general framework
we propose for determining and quantifying the SLR modes
in different lattice geometries.

C. 45◦ rotated square lattice

We fabricate also arrays with a square lattice that is rotated
45◦ with respect to the x and y axes (a rhombus with right
angles), with the particle separation the same as the square
lattice (375 nm). Then neither of its two reciprocal primitive
vectors are parallel to the x/y axis, as shown in Fig. 6(a). In
such a case, the four lowest DOs all have the same �-point
position. With an in-plane wave vector ky , DOs (1,0) and (0,1)

are degenerate since they always have the same magnitude.
Similarly, the DOs (0,−1) and (−1,0) are degenerate. It is not
equivalent with the case where the polarization vector is rotated
by 45◦ for a square lattice, since the direction in which the wave
vector is measured remains fixed in our measurement setup.

Additionally, all the lowest DOs propagate nearly diag-
onally with increasing ky—(1,0)/(0,1) shifting toward the
y axis and (0,−1)/(−1,0) shifting toward the x axis, all
with small angles (in our measurements) deviating from the
diagonal direction. Therefore both TE- and TM-polarized
fields can excite these branches simultaneously. As Figs. 6(b)
and 6(c) show, the calculated lowest DOs match well with
the measured extinctions, meaning that the SLRs become
polarization independent for this lattice type. However, the
second-lowest DOs are then either parallel to the x or y

axis, so they become polarization dependent. Therefore in
the TE-polarization extinction, there are two branches in the
high-energy regime which correspond to the second-lowest
DOs (1,1) and (−1,−1) [see the faint features in the upper
part of Fig. 6(b)]. But in TM-polarization extinction, no
such features have been observed since the (1,−1)/(−1,1)
modes are hyperbolically dispersed and nondetectable in the
measured wavelength regime.

D. Hexagonal lattice

Extinctions of a hexagonal lattice with a nanoparticle
separation of 433 nm show more SLRs than the square lattice
case for both TE and TM modes, as Figs. 7(b) and 7(c) indicate.
These extra branches are due to the complex structure of the lat-
tice in reciprocal space: a hexagonal lattice has six lowest-order
lattice vectors of equal length, as shown in Fig. 7(a). The six
lowest DOs then have the same � point. With an in-plane
wave vector ky , the DOs (1,0) and (0,1) will stay degenerate
since they still have the same magnitude. The same holds for
the DOs (0,−1) and (−1,0) so they are also degenerate in
the dispersion diagram. The DOs (1,1) and (−1,−1) are not
degenerate. TE-polarized light can now excite all the modes;
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FIG. 6. (a) The schematic of a 45◦ rotated square lattice in reciprocal space and the four lowest DOs. Measured extinction and calculated
DOs for (b) TE- and (c) TM-polarized light. Dashed and dotted white lines represent the degenerate DOs (1,0)/(0,1) and (−1,0)/(0,−1),
respectively.

taking into consideration the degeneracies, this leads to four
modes visible in the experiment with TE-polarized incident
field, as shown in Fig. 7(b).

The DOs (1,1) and (−1,−1) both propagate parallel to
the y axis, so when the excitation field is TM polarized, the
propagating direction is orthogonal to the radiative direction of
the electric dipole on each nanoparticle. These two branches
are therefore no longer visible. This explains why there are
only two branches of SLRs in the extinction spectra for
TM-polarized light, as shown in Fig. 7(c). The numerical
aperture of the objective we use limits the angles where we
can collect light from: in the results presented the wave-vector
range corresponds to only about 60% of the first Brillouin
zone around the � point. Therefore our results do not give
information about the possible existence of Dirac points,
typical for hexagonal and honeycomb lattices, in our system
at the K and K ′ points.

E. Honeycomb lattice

We consider also more complex structures, namely, ge-
ometries composed by a Bravais lattice with a basis, that is,
a unit cell with several sites. As mentioned in Sec. II, then
there will be a contribution from the scattering of each particle
within one unit cell to the overall amplitude as an envelope
factor [

∑
b exp(iG · rb)] which depends on the corresponding

reciprocal lattice vector and the particle locations within the
unit cell. Since the envelope factor depends on G, it can be
different for different DOs.

As shown in Fig. 8(a), a honeycomb structure is constituted
of a hexagonal lattice with two particles within each unit
cell. The envelope factors from these two particles to the six
lowest DOs are 1/2 + √

3/2i for (1,0), (0,1), (−1,−1) and
1/2 − √

3/2i for (1,1), (−1,0), (0,−1), respectively. Both
factors have unity magnitude, but opposite argument angles,
meaning that the DOs from a honeycomb array have different

)c()b()a(

FIG. 7. (a) The schematic of a hexagonal lattice in reciprocal space and the six lowest DOs. Measured extinction and calculated DOs for
(b) TE- and (c) TM-polarized light. Dashed and dotted white lines represent the DOs (1,1) and (−1,−1), respectively. Dashed and dotted red
lines represent the degenerate DOs (1,0)/(0,1) and (0,−1)/(−1,0), respectively.
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(b)

FIG. 8. The schematics of (a) a honeycomb lattice, with its unit cells that constitute a hexagonal lattice, and (b) a hexagonal lattice in
reciprocal space and the six lowest DOs. Measured extinction and calculated DOs for (c) TE- and (d) TM-polarized light. Dashed and dotted
white lines represent the DOs (1,1) and (−1,−1), respectively. Dashed and dotted red lines represent the degenerate DOs (1,0)/(0,1) and
(0,−1)/(−1,0), respectively.

phase shifts compared with a hexagonal array. For a certain
branch, the phase shift depends only on the particle locations
within one unit cell and thus can be tuned easily by displacing
the particles within the unit cell.

Figures 8(c) and 8(d) show the measured extinctions for
a honeycomb array with a nearest particle separation of
250 nm, and the calculated DOs for its corresponding Bravais
hexagonal lattice. The measured SLRs follow well with the
calculated DOs. The only prominent difference between the
extinction of the honeycomb array and its corresponding

hexagonal array, as shown in Figs. 7(b) and 7(c), is that
the honeycomb array has a higher extinction. The increasing
extinction is due to a larger number of particles within one
unit cell, resulting in a higher filling fraction in a honeycomb
structure. Another difference is the complex envelope factors
of the DOs in honeycomb lattice, which in a hexagonal lattice is
a constant unity. The phase shift originating from the envelope
factors is not expected to be reflected in extinction, however,
it can be interesting when using such lattices for designing
beams, e.g., in nanoscale lasing.

)d()c()a(

(b)

FIG. 9. The schematics of (a) a Lieb lattice, with its unit cells that constitute a square lattice, and (b) a square lattice in reciprocal space and
the four lowest DOs. Measured extinction and calculated DOs for (c) TE- and (d) TM-polarized light. Dashed and dotted white lines represent
the DOs (0,1) and (0,−1), respectively. The dashed red line represents the degenerate DOs (1,0)/(−1,0).
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F. Lieb lattice

Similar to the honeycomb case, we can calculate the DOs
of a Lieb lattice, which is constituted by a square lattice with
three particles within each unit cell, as shown in Fig. 9(a).
The lowest DOs are then the same as for a square lattice
and their envelope factors from the three particles are all one.
The lowest orders of diffracted light from a Lieb array are
therefore the same as from a square array, without any phase
shifts.

Figures 9(c) and 9(d) show the measured extinctions of a
Lieb array with a nearest particle separation 188 nm and the
calculated lowest DOs for the corresponding Bravais square
lattice. The similarity between the SLRs of the Lieb lattice
and of the square array, as shown in Figs. 4(b) and 4(c), is
not as big as those between the honeycomb array and the
hexagonal array. A threefold increase in filling fraction in
the Lieb lattice enhances the coupling strength between the
LSPRs and DOs, resulting in a stronger modification of the
SLR energies even though the DOs are exactly the same. This
can be seen from the higher extinction of the Lieb array and
the more curved-dispersed TE-polarized SLRs near the �

point. Note that the dispersions are very different from the
photonic Lieb lattices with nearest-neighbor hopping [35–38]
where, for instance, flat bands predicted by the tight-binding
Lieb lattice model can be observed.

V. NUMERICAL SIMULATIONS

From our lattice geometry arguments and measurement
results, we see that the supported SLRs of arrays with

different geometries are mostly dependent on their DOs and
the orientations of in-plane electric dipoles of individual
nanoparticles. In other words, the far-field properties of a
specific lattice structure (the DOs) determine the coupling
directions in which a specific near-field profile (dipole
orientation) oscillates in phase. Conversely, the radiative
direction of the in-plane electric dipoles determines whether
or not a specific DO can be excited.

To further confirm, at the microscopic scale, the general
framework given by geometry arguments and the mea-
surements, we perform FDTD simulations with commercial
software (FDTD solutions, Lumerical Inc.) for square arrays
with the same periodicity in Sec. IV as an example. The mesh
accuracy is set to be 8 and overridden as 1 nm in the region
where the cylinders are placed. The optical constants of silver
are taken from Palik [39] in the spectrum range from 500 to
700 nm. To calculate the extinction spectra, we set perfectly
matched layer boundary conditions for the z direction, and
Bloch boundary conditions to the x and y directions of the
simulation region. The incident angle is defined with respect
to the y axis. A homogenous dielectric environment (n = 1.52)
is used. Figure 10(a) shows the simulated extinction spectra
with TE-polarized light under normal and 10◦ incident angles.
The distribution map of the in-plane electric-field component
phase, which for TE polarization is �(Ex), shows that the
electric dipoles on individual nanoparticles oscillate in phase
with each other, forming a standing wave, as indicated in
Fig. 10(b). For a 10◦ incident angle, as shown in Figs. 10(c)
and 10(d), the dipole moments of individual nanoparticles no
longer oscillate in phase with each other, but form a phase
front along the y axis.

FIG. 10. FDTD simulated extinction spectra for a square lattice under normal and 10◦ incidence with (a) TE- and (e) TM-polarized light.
The field distributions �(Ex) for TE-polarized light at 583 nm wavelength under normal incidence (b), under 10◦ incidence at 553 nm (c) and
643 nm (d) wavelengths. For TM-polarized light, the field distributions �(Ey) at 583 nm wavelength under normal incidence (f) and under
10◦ incidence at 581 nm wavelength (g). Here (b) and (f) relate to the SLRs corresponding to the degenerate DOs at the � point in Figs. 4(b)
and 4(c), respectively. (c) corresponds to the (0,1) DO and (d) to the (0,−1) DO modes in Fig. 4(b). (g) relates to the degenerate modes of DOs
(1,0)/(−1,0) of Fig. 4(c) slightly away from the � point.
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The simulated extinction spectra of TM-polarized light in
Fig. 10(e) show exactly the same resonance wavelength with
TE polarization under normal incidence (at � point) but a
slightly different resonance wavelength under 10◦ incident
angle, due to the low-dispersed property of the TM mode.
The distribution map of the in-plane electric-field component
phase �(Ey) in Fig. 10(f) shows that under normal incident
angle, the electric dipoles on individual nanoparticles oscillate
in phase with each other, forming a standing wave along the
x axis. However, under a 10◦ incident angle, as shown in
Fig. 10(g), the dipole moments of individual nanoparticles no
longer oscillate in phase with each other and form a phase front
nearly along the x axis. The different wave fronts of the TE- and
TM-polarization cases correspond to the DO vector directions
of the SLR modes that are excited. The DO vectors determine
the directions in which the specific modes are propagating.

VI. CONCLUSIONS

We demonstrate experimentally a rich variety of disper-
sions of distinctive SLRs supported by silver nanoparticle
arrays of different geometries. Square, rectangular, hexagonal,
honeycomb, and Lieb arrays show remarkably different and
polarization-dependent extinction dispersions, while a 45◦ ro-
tated square array shows less sensitivity to the choice of the TE-
or TM-polarized incident light. Comparing to the pioneering
work [28], we systematically study the SLR dispersions for
arbitrary incidence angles for various lattice geometries while
Ref. [28] has only studied the case of normal incidence. And we
also propose an efficient generic model to explain and predict
the dispersions of different plasmonic lattice geometries.
While Ref. [28] emphasized the similarities of spectra between
different arrays with different geometries at normal incidence,
we would like to lay stress more on the differences of SLR
dispersions supported by plasmonic arrays with different
geometries and their dependence on dipole orientations.

We propose an efficient generic model to explain and
predict the features of different plasmonic lattice geometries
in the presence of dipolar radiative couplings. Using simple
diagrams, we show how the DO vectors of the corresponding
Bravais lattice and the in-plane electric dipole orientation de-
termine the SLRs supported by certain geometrical structures.
In a more complex structure, the particles within one unit
cell contribute to an envelope factor for each DO. The modes
determined in this way have excellent agreement with the
measured spectra. Furthermore, this model also reveals the
principal propagation direction of each mode, along which
the mode maintains its coherence properties. This has been
verified by numerical simulations of the near-field distributions
in a square lattice.

The delocalized nature of the SLR is due to the ra-
diative fields of individual particles, extending over several
unit cells of the structure, making it an excellent platform
for studying physics beyond the nearest-neighbor hopping
regime. Next-nearest-neighbor hopping and the phase factors
related to it play a central role in the famous Haldane [40]
and Kane-Mele [41] models for opening gaps at Dirac
points and creating topologically protected edge currents.
Long-range hopping, especially if the accumulated phase is
designed by the unit-cell structure and particle shapes, provides

similar interesting possibilities for controlling symmetries
and topological properties in our system. Furthermore, the
role of disorder can be quite different in radiatively coupled
plasmonic lattices compared to photonic or plasmonic lattices
with evanescent nearest-neighbor coupling. Totally new areas
of research may open by interpreting the individual particle
dipole orientation as a pseudospin degree of freedom, or
more generally, as a two-level or two-band system. The
Hamiltonian describing any two-level system has the generic
form H = ε(k)I2×2 + d(k) · σ , where σ is a vector of the Pauli
matrices, and d(k) determines the types of couplings and k is a
parameter. This Hamiltonian describes, for instance, graphene
and spin-orbit coupled systems, and with suitable couplings
and symmetries, Dirac points, gap openings, and topological
phases can be found [42–47]. As we have shown, in plasmonic
lattices, the dispersion depends on the polarization, i.e., on the
particle dipole orientation. This can be viewed analogously
to having a nontrivial σz term (here z now refers to the
dipole orientation pseudospin, not to the spatial coordinates
of the lattice). The spin-orbit coupling terms proportional
to σx and σy are not present here. However, we propose
that they can be introduced by utilizing nontrivial particle
shapes, or magnetic nanoparticles [22,23] where the two
polarization (dipole orientation) directions are coupled due
to intrinsic spin-orbit coupling in the magnetic material, and
such couplings could be made momentum (k) dependent by
designing the lattice geometry. It is especially interesting to
envision that such nontrivial lattice systems may lead to new
types of nanoscale lasing phenomena, so far observed only in
simple square or rectangular lattices.
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APPENDIX: EXTRACTED DISPERSIONS FROM THE
EXPERIMENTAL RESULTS AND THE CALCULATED DOs

To compare the experimental results with the model, we
extract the maxima positions from the measured spectra. The
maxima are extracted from the experimental data by fitting
Gaussian curves as a function of the energy to the local
environment of each maximum separately.

As shown in Figs. 11–16, where the extracted maxima are
plotted as colored circles and the corresponding calculated
DOs are the dashed curves with the same color, we see the
experimental extinction maxima follow well the calculated
DOs when they are far below the LSPRs, which is around
2.4 eV. When they are closer to the LSPRs, the coupling
between the LSPRs and the DOs would induce significant
redshifts to the SLRs. These results confirm the applicability
of the model in the given energy range.
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FIG. 11. The extracted dispersion curves from the experimental
results and the calculated DOs of square lattice for (a) TE and
(b) TM polarizations. The blue and red circles correspond to the
peak positions obtained from fitting Gaussian curves to the line cuts
of measured extinction spectra while keeping ky constant, and the
dashed curves are the calculated DOs.

FIG. 12. The extracted dispersion curves from the experimental
results and the calculated DOs of rectangular lattice for (a) TE and
(b) TM polarizations. The blue and red circles correspond to the
peak positions obtained from fitting Gaussian curves to the line cuts
of measured extinction spectra while keeping ky constant, and the
dashed curves are the calculated DOs.

FIG. 13. The extracted dispersion curves from the experimental
results and the calculated DOs of a 45◦ square lattice for (a) TE
and (b) TM polarizations. The blue and red circles correspond to the
peak positions obtained from fitting Gaussian curves to the line cuts
of measured extinction spectra while keeping ky constant, and the
dashed curves are the calculated DOs.

FIG. 14. The extracted dispersion curves from the experimental
results and the calculated DOs of a hexagonal lattice for (a) TE and
(b) TM polarizations. The blue, black, green, and red circles
correspond to the peak positions obtained from fitting Gaussian curves
to the line cuts of measured extinction spectra while keeping ky

constant, and the dashed curves are the calculated DOs.

FIG. 15. The extracted dispersion curves from the experimental
results and the calculated DOs of a honeycomb lattice for (a) TE
and (b) TM polarizations. The blue, black, green, and red circles
correspond to the peak positions obtained from fitting Gaussian curves
to the line cuts of measured extinction spectra while keeping ky

constant, and the dashed curves are the calculated DOs.

FIG. 16. The extracted dispersion curves from the experimental
results and the calculated DOs of Lieb lattice for (a) TE and
(b) TM polarizations. The blue and red circles correspond to the
peak positions obtained from fitting Gaussian curves to the line cuts
of measured extinction spectra while keeping ky constant, and the
dashed curves are the calculated DOs.
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