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ABSTRACT 

The application potential of cellulose nanofibril (CNF) aerogels has been hindered by the slow 

and costly freeze- or supercritical drying methods. Here, CNF aerogel membranes with 

attractive mechanical, optical and gas transport properties are prepared in ambient conditions 

with a facile and scalable process. Aqueous CNF dispersions are vacuum-filtered and solvent 

exchanged to 2-propanol and further to octane, followed by ambient drying. The resulting CNF 

aerogel membranes are characterized by high transparency (> 90 % transmittance), stiffness (6 

GPa Young’s modulus, 10 GPa.cm3/g specific modulus), strength (97 MPa tensile strength, 161 

MPa.m3/kg specific strength), mesoporosity (pore diameter 10–30 nm, 208 m2/g specific 

surface area) and low density (~0.6 g/cm3). They are gas-permeable thus enabling collection of 

nanoparticles (for example, single-walled carbon nanotubes, SWCNT) from aerosols under 

pressure gradients. The membranes with deposited SWCNT can be further compacted to 

transparent, conductive and flexible conducting films (90% specular transmittance at 550 nm 
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and 300 Ω/□  sheet resistance with AuCl3-salt doping). Overall, the developed aerogel 

membranes pave way towards use in gas filtration and transparent, flexible devices. 

 

1. Introduction 

Aerogels are porous, low density (0.8 – 0.001 g/cm3) solid materials with a high specific surface 

area; they have been recognized as promising materials for a plethora of applications, such as 

transparent thermal or acoustic insulation, membrane separation, lightweight construction, 

supported catalysis, super-absorbency, and water purification.[1–10] Advanced materials such as 

optical elements for refractive index matching, low dielectric coefficient substrates for 

electronics, encapsulation media, sensors, actuators, conductors, mechanical energy absorbers, 

and energy storage have been developed from aerogels.[1–3,5,9–19] A desirable combination of 

properties for many of the applications cited include transparency, high porosity (> 50 vol. % 

air) and mechanical strength.  

Aerogels prepared from inorganic compounds, most often silica, display transparency 

and porosity, but classically suffer from brittleness.[3,20] This is a result of weak interlinks 

between the nanoparticles that compose the aerogel skeleton.[21] One promising approach is 

reinforcing the “necklace” of inorganic nanoparticles with organic components.[21–24] A 

possibly more facile option for constructing aerogels of high mechanical performance is using 

colloidal one- or two-dimensional building blocks, such as nanocelluloses,[13,25–28] clay,[29–32] 

carbon nanotubes,[5,15,33–35] and graphene.[35,36] These nanomaterials do not contain such weak 

interlinks within the “necklaces” as in inorganic aerogels, thus enabling preparation of 

mechanically strong aerogels with no need for chemical modification.[13] The feasible 

mechanical properties are typically complied under compression, but generally associated with 

low mechanical strength in tension. Also, transparency has remained elusive for most of the 

works related to nanofibrillar aerogels. Transparency is necessary for many applications but it 
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is only possible with materials that do not absorb visible light, such as cellulose, nor scatter 

significantly, which is achieved by limiting aggregation to nanoscale structures. 

A crucial step in the preparation of aerogels is the removal of the liquid phase, for 

example via supercritical drying or freeze-drying, without disrupting the original network 

structure.[3,20] These drying processes can limit the production scalability as they inherently 

involve slow batch processing, demand specialized equipment and operation at extreme 

pressures and temperatures.[20] More recently, ambient drying of aerogels has become relevant 

in silica aerogels after the technique was introduced in 1995 by Prakash et al. [37–39] This route 

relies on reinforcement of the silica gel skeleton prior to drying by suitable chemistry, 

suppression of crosslinking reactions and reduction of the capillary pressure during drying by 

surface modification and solvent exchange.[39] In order to make feasible a more broad utilization 

of aerogels their scalable production needs to be resolved and ambient drying is an attractive 

solution.  

Cellulose nanofibrils (CNF also denoted as cellulose nanofibers, nanofibrillated 

cellulose, NFC) have drawn significant attention in recent years due to the fact that they exhibit 

a desirable combination of properties such as high mechanical properties (i.e. elastic modulus 

of 29-36 GPa and tensile strength 1.6 – 3 GPa in the longitudinal direction for individual fibrils), 

high transparency in films, renewability, availability and potential biocompatibility.[40–44] 

Previously CNF have been used to prepare tough and flexible aerogels by freeze-drying and 

supercritical drying.[13,25–28] Transparent CNF aerogels have been recently shown to be possible 

by using TEMPO-oxidized CNF and supercritical CO2 drying.[26,28] Porosity of films of 

microfibrillated cellulose can be increased if dried from organic solvents, for example, an 21 % 

increase in porosity has been achieved upon drying from acetone at 55 °C under 

compression.[45] Surprisingly, to date, no ambient drying of CNF aerogels has been reported. 

Aerogel membranes, in contrast to bulk aerogels, could offer the possibility to allow 

substantial gas-flow through and enable filtration or collection of aerosol particles. A valuable 
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line of application for this property, as demonstrated in this work, is the preparation of flexible 

transparent and conductive aerogel membranes and further compacted films by collecting 

directly on the aerogel substrate high-quality single-walled carbon nanotubes (SWNTs) 

obtained from aerosol synthesis. SWNT networks are promising components for a variety of 

flexible electronics applications.[46,47] SWNT networks show potential to replace the current 

industry standard material indium-tin oxide (ITO) in applications of high value such as touch-

sensors with improved flexibility, while enabling maximum transparency and high raw material 

availability.[48–50] Furthermore, more complex devices can be fabricated by patterning and 

further processing of the conductive SWNT network.[51–53] As a fascinating direction of further 

research, biocompatibility of CNF may open possibilities in completely new biomedical 

devices for cell culturing, neurotransmitter monitoring and conformable, responsive 

biosensors.[54–57] 

Here we report on the preparation of gas-permeable, transparent and mesoporous CNF 

aerogel membranes that display high strength, remarkably in tension, and high stiffness, 

through ambient drying after solvent exchange, i.e., not needing freeze-drying or supercritical 

drying. We further demonstrate their use as a platform for transparent, flexible conductive films 

upon collection of SWNTs from an aerosol synthesis stream. We characterize the relevant 

properties of the aerogel membranes for filtration and, if needed, show their ability to turn into 

dense and transparent films upon rewetting and drying from water. The tensile and optical 

properties of the aerogel membranes and those of the compacted film with and without SWNTs 

are characterized. In addition, we determine the electrical properties of the CNF-SWNT hybrid 

films under mechanical deformation. 

 

2. Results and Discussion 

Gas-permeable, mesoporous and transparent CNF aerogel membranes were prepared by 

vacuum filtration of an aqueous CNF dispersion followed by solvent exchange of the formed 
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gel cake from water to 2-propanol and further to octane, followed by drying in ambient 

conditions, as summarized in Figure 1a. The solvent exchange process took approximately 20 

minutes for completion. Slow drying of the resulting stiff CNF-in-octane organogel on a smooth 

support resulted in a transparent CNF aerogel membrane, as shown on the left in the photograph 

in Figure 1b. By contrast, if the CNF aerogel membrane was re-wetted with water and allowed 

to dry from water, a transparent, compacted CNF film resulted, as shown on the right in Figure 

1b. Upon such spontaneous, capillary compaction the thickness of the membranes typically 

halved. No lateral shrinkage of the membranes was observed upon drying from either octane or 

water. The in-plane alignment of the CNF network along the lateral dimensions of the filtered 

gel-cake is likely to contribute to the resistance to shrinkage as this anisotropy makes the in-

plane direction stronger compared to the case of an isotropic, unfiltered gel. This is supported 

by easily observable shrinkage of a non-filtered CNF gel (2.1 wt. %) upon drying from octane 

after a comparable solvent-exchange process (see Figure S1), although a difference in 

concentration might be another relevant factor.  

5 
 



  

 

Figure 1. Preparation and properties of CNF aerogel membranes and compacted CNF films. (a) 
Schematic illustration of the preparation of CNF aerogel membranes. (b) Photograph of CNF 
aerogel membrane (left) and compacted film (right). (c) Tensile stress-strain curves of aerogel 
membrane, CNF film compacted with water from the aerogel and CNF film dried directly from 
water after filtration. Tensile characterization is carried out at 50 % relative air humidity. (d) 
UV-vis spectra of total and specular transmission through CNF aerogel membrane and 
compacted film. Film thicknesses for UV-vis were 27 and 14 μm for aerogel membrane and 
compacted film, respectively. 
 

The density of the CNF aerogel membrane was approximately 0.6 g/cm3 and the density of the 

compacted film was 1.5 g/cm3 as defined by mercury porosimetry. The BET specific surface 

area of the CNF aerogel membranes was approximately 208 m2/g and the majority of pores 

were of the order of 10 – 30 nm in diameter as determined by nitrogen physisorption. The 

adsorption isotherms and BJH pore size distributions are shown in Figure S2. The specific surface 

area is remarkably high as it is of the same order and in some cases higher than that of the CNF 
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aerogels prepared by freeze- or supercritical CO2 drying.[13,25–27] These results clearly show that 

even without any surface modification or crosslinking CNF aerogels can be prepared by a facile 

and rapid solvent exchange process followed by ambient drying. If needed, it seems likely that 

lower density and higher pore size are possible by strengthening and stiffening the CNF gel prior 

to drying, for example by chemical or supramolecular crosslinking.[39,58]  

The small size of the pores and the absence of large aggregates is evident also in the 

representative SEM images of top surfaces and fracture surfaces of both CNF aerogel membranes 

and compacted films (see Figure 2), where no large voids or aggregates are observed. The pore size 

is too small to be seen clearly from SEM images. The fracture surface of the aerogel had a lamellar 

morphology as is typically observed in CNF films but, somewhat surprisingly, the average thickness 

of CNF lamellae is clearly larger in the fracture surface of the CNF aerogel membrane in 

comparison to that of the compacted CNF-film. The reason for this is not clear, but it might be 

suggested that increased porosity correlates with increased lamellar thickness at the fracture surface.  

The tensile behavior of the compacted CNF films dried directly from water, the aerogel 

membrane and the compacted film are shown in Figure 1c and the mechanical properties are 

summarized in Table S1. The tensile stress-strain curve of the film after compacting is practically 

indistinguishable from that of the films dried directly from water, suggesting that the CNF fibrils 

are not altered by the solvent exchange process or drying from octane and the structure of the 

transparent film resulting from compacting with water is very similar to a transparent film dried 

directly from water without any solvent exchange. Not surprisingly, taken the external dimensions 

of the sample, the aerogel membrane shows reduced nominal Young’s modulus, ultimate tensile 

strength and maximum strain when compared to the compact films, which is explained by the lower 

density of the former. Nonetheless it is important to note that the strength of roughly 100 MPa and 

Young’s modulus of 6 GPa are very high for an aerogel, which cannot typically even be tested in 

tension. Dividing the stresses by corresponding material densities gives more proper account of the 

porosity effect, and the resulting specific strength of the aerogel membrane is 36 % larger than that 

of the compacted film, see Figure S3 and Table S1. A possible explanation for this could be a 
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higher density of the junction points of the fibrils compared to the mass density in the aerogel than 

the compact film. 

 
Figure 2. SEM plane view images (above) of (a) a CNF aerogel membrane, and (b) a compacted 
CNF film. Fracture surfaces (below) resulting from tensile rupture of (c) an aerogel membrane, 
and (d) a compacted CNF film are also shown as SEM cross sections. 
 

The gas permeability of the CNF membranes was evaluated by measuring the gas flow 

rate under applied pressure difference over the CNF aerogel membranes (circular with a 

diameter of 45 mm) with thicknesses of 9, 12 and 15 μm. The gas flow rate correlates linearly 

with the pressure drop over the aerogel membrane as shown in Figure 3a. As could be predicted 

by Darcy’s law (see Equation S1), the slope of such flow profiles correlate linearly with the 

thickness of the aerogel membrane. The mesoporous CNF aerogel membranes are likely to 

exhibit a high particulate retention efficiency which may make them attractive for gas filtration 
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applications. However, the pressure difference necessary for a given gas flow may be over ten-

fold higher than that of traditional gas filtration membranes, which reduces the suitability of the 

present relatively thick free-standing aerogel membranes tested here for large scale gas-

filtration. But the linear relationship between the pressure difference and membrane thickness 

allows the extrapolation of the proper thickness of the aerogel membranes according to 

applications aimed. If thin aerogel membranes are required, an option is to use a macroscopic 

support membrane on top of which the CNF aerogel membrane is deposited. Extrapolated 

design curves for selection of appropriate CNF aerogel membrane thickness at constant gas-

flow values are shown in Figure 3b. A proof of concept for these self-standing membranes can 

here be ascertained to collect SWNTs from an aerosol synthesis process, as discussed in the 

next section.  

 

 

Figure 3. Gas-permeability of CNF aerogel membranes. (a) Pressure difference over the CNF 
aerogel membranes (diameter 45 mm) as a function of gas flow (cubic centimeters per minute, ccm). 
Thicknesses of membranes were 9 (green triangles), 12 (black squares), and 15 (red circles) μm. 
The measurements were carried out at 20 °C and with pressurized, dry air. (b) Extrapolated design 
curves for selection of appropriate thickness of the CNF aerogel membrane for an appropriate 
combination of pressure difference over the membrane with three different values of gas flow. 
Green region is the area of pressure differences which can be considered relevant for large scale gas 
filtration applications.  
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SWNTs (see Figure S4) were synthesized in the gas-phase floating catalyst-chemical 

vapor deposition (FC-CVD) process and collected from the process stream directly on the CNF 

aerogel which was subsequently washed with acetonitrile and compacted by drying from a 1:1 

(w/w) water-acetonitrile mixture. The resulting CNF/SWNT hybrid films are highly conductive 

and transparent (see Figures 4 and S5). The FC-CVD synthesis and collection of the ready 

SWNT network enables straightforward fabrication of high performance, flexible transparent 

and conductive films (TCF) while avoiding the complex, costly and often detrimental liquid 

dispersion steps relying on high intensity sonication in surfactant solutions, which reduce 

integrity and performance of SWNT TCFs.[50,59] In previous works the delicate SWNT network 

has been collected on a filter and transfer of the delicate network to the final substrate has been 

necessary.[50] Using a compactable aerogel membrane eliminates the latter step, thus improving 

processing efficiency and reducing material consumption and the risk of breaking the SWNT 

network.  

The CNF/SWNT hybrid film’s sheet resistance was further reduced by a factor of 0.23 by 

gold salt doping, resulting in a coefficient of light transmittance at 550 nm versus sheet resistance 

that are in the same order of magnitude as the highest reported in the literature for SWNT networks 

(see Figure 4e, where relevant comparisons are drawn). The combination of high conductivity and 

transparency is a result of high connectivity of the SWNT network with minimal thickness. The 

structure of the CNF/SWNT hybrid film is shown in the SEM images in Figure 5. 
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Figure 4. Photographs of (a) reference CNF and (b-c) CNF/SWNT films with low sheet 
resistances in Ω/□ (Ohm/square) of SWNT networks after compacting, (d) UV-vis spectra of 
CNF reference film, a representative CNF/SWNT film and a PEN film for comparison, and (e) 
specular transmittances at 550 nm versus sheet resistances of SWNT-networks without doping 
(black squares) and after gold-salt doping (red circles). For comparison data from relevant 
works of Kaskela et al. (green triangles) and Koga et al. (blue diamonds) is shown.[50,60] 

Transmittance at 550 nm in (e) is measured by using a pure substrate as a reference.  
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Figure 5. SEM images of compacted CNF/SWNT hybrid film (a) plane view at the edge of the 
SWNT-network where SWNT network is shown on upper left and CNF network on the lower 
right, and (b) at the fracture surface with inset showing thin SWNT network on top of CNF film. 
 

The sheet resistance of narrow strips of CNF/SWNT hybrid films was monitored in-situ 

using the 2-point resistance method during stretching in uniaxial tension with maximum strain 

increasing in a step-wise manner (Figure 6a), cyclic stretching in the elastic area (Figure 6c) 

and bending (Figures 6b and d). Figure 6a shows clearly that the resistance increases slightly 

with strain and if the deformation is not reversible, neither is the change in resistance. When 

the tensile strain was cycled in the elastic regime from 0 to 0.5 %, the resistance correlated 

(0.5 % increase in resistance) with strain and seemed fully reversible on the scale of tens of 

cycles. After several thousand cycles a small irreversible change (3.5 % after 2900 cycles) in 

resistance was observed. 
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During bending the distance between the clamped ends of the sample (i.e. gauge length) 

was cycled from the original length of 10 mm to 2.5 mm and back. The radius of curvature in 

the middle of the film (indicated by white circles in insets of Figure 6d) cyclically reduced down 

to 0.6 mm. There was a small increase of resistance (<1% per cycle) with bending which was 

largely, but not completely reversible. The sheet resistance drifts to slightly higher values with 

repeated cycling. The behavior of the SWNT network conductivity on a CNF substrate during 

mechanical deformation has not been reported previously, but a similar drift behavior has been 

observed on a different substrate material. In stretchable polydimethylsiloxane/carbon nanotube 

(PDMS/CNT) conductors under tensile cycling a similar drift has been observed and shown to 

level off to a given value if maximum strain is not increased. [61] The mechanism suggested to 

explain this behavior is the reduction of interconnects between CNTs due to stress localization 

leading to debonding between CNTs. The same explanation seems applicable to the present 

system.  
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Figure 6. Development of sheet resistance and stress of conductive CNF/SWNT film with 
tensile strain (a) with increasing cyclic strain, (b) sheet resistances of CNF/SWNT film for 1st, 
30th and 60th bending cycle with inset after rescaling of the y-axis, (c) repeated cyclic tensile 
straining in the elastic area of the CNF film, and (d) during a single bending cycle (1st cycle in 
b) with photos of side view as insets and respective radii of curvature which is also illustrated 
by the white circles in the photos. 
 

3. Conclusion 

CNF aerogel membranes were prepared through a facile and scalable fabrication process 

consisting of filtration, solvent exchange and drying in ambient conditions, notably avoiding 

the costly freeze- and supercritical drying. The CNF aerogel membranes were transparent, gas-

permeable, mesoporous and possess high mechanical properties in tension, which is otherwise 

rarely achieved. The potential of the CNF aerogel membranes for application in preparation of 

transparent, conductive films is demonstrated by deposition of SWNTs via aerosol filtration 

from synthesis processes. The CNF/SWNT hybrid films after compacting with water show high 
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transparency and good mechanical properties combined with low sheet resistance. This allows 

design options towards flexible devices, combining the electrical and sensing properties of 

carbon nanotubes, the filtration and trapping properties of aerogels, and biocompatibility and 

sustainability of nanocelluloses. 

 

4. Experimental Section 

Materials: CNF was prepared from never dried birch pulp by disintegrating the pulp 12 times 

through a fluidizer (Microfluidics Corp., Newton, MA, USA) leaving a hydrogel with a 

consistency of approximately 1.54 wt.%. The CNF gel was diluted to 0.3 wt. % by adding 

deionized water followed by vigorous stirring for 24 h. The diluted CNF dispersion was then 

centrifuged at 5000g for 60 min to remove aggregates. The sediment was discarded and the 

supernatant was used for sample preparation. The resulting dispersion has fibrils of diameter 5 

– 20 nm and above due to higher aggregates and some imperfectly fibrillated material (see 

Figure S6). The mass concentration of CNF in the obtained supernatant was determined by 

weighing a given amount of the dispersion and drying it overnight in an oven at 50 °C under 

ambient pressure followed by weighing. The final dry mass divided by the initial mass of the 

dispersion to yield the reported mass percentage of the dispersion. The values obtained were 

in the range of 0.10 to 0.15 wt. %. The used supernatant is referred to as CNF in the text. The 

diameters of the CNFs pre 

100 um thick Teijin-DuPont 65FA (Teijin DuPont, Japan) was used as reference for 

comparison of transparent CNT-films with industrially produced high transparency 

optoelectronics substrate material. 

Ethanol (Etax Aa, > 99.7 vol. %) was purchased from Altia. AuCl3 used for chemical doping 

of the SWNT electrodes, acetonitrile, 2-propanol and octane were purchased from Sigma-

Aldrich. Gas precursors for SWNT synthesis, namely carbon monoxide (CO, 99.5% purity), 

hydrogen (H2, 99.999% purity) and ethylene (C2H4, 99.99% purity) were purchased from Aga 
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Oy. Ferrocene (99% purity) was used as catalyst precursor, mixed in 1:4 weight ratio with 

silica sand, purchased from Stream Chemicals and Sigma-Aldrich respectively. 

Preparation of mesoporous, gas-permeable CNF aerogel membranes: Typically, 80 mL of 0.1 

wt.% CNF dispersion was vacuum filtered on a hydrophilic polyvinylidene fluoride filter 

membrane (0.45 μm, GVWP, Millipore) until a wet gel-cake was formed and no flow of free 

water was observed, when the apparatus was tilted slightly. The filtration step was completed 

typically in 15 minutes. The filter and gel-cake were carefully transferred to a glass Petri dish 

and ethanol was pipetted to the edge of the filter paper before drying of the gel-cake occurred, 

while avoiding excessive mechanical disturbance to the gel-cake, until both were fully 

immersed in ethanol. After an approximate 5 min soak in ethanol, the filter and gel-cake were 

inverted onto a smooth polytetrafluoroethylene (PTFE) sheet leaving the gel-cake resting on 

the PTFE and the filter membrane on top. A small amount of ethanol was pipetted on the gel-

cake to avoid drying and the filter membrane was carefully peeled from the gel-cake and 

discarded. The gel-cake was covered with 2-propanol for typically 5 minutes to exchange the 

remaining water and ethanol in the gel-cake to 2-propanol after which the used 2-propanol was 

discarded and new was added. This was repeated three times. After solvent exchange to 2-

propanol, the same procedure was repeated using octane. After the gel-cake was soaked three 

times in octane, the excess octane was discarded and the gel-cake was left to dry slowly on the 

PTFE sheet in ambient conditions while partially covered with a glass Petri dish. During all 

soaking steps, the gel-cake and solvent were covered with an inverted Petri dish to avoid drying. 

Preparation of porous bulk sample: 2.11 wt. % CNF gel was placed in a Petri dish and solvent 

exchange was performed as described above for vacuum filtered gel cakes with the difference 

that each immersion step was 24 hours long instead of 5 min. Drying was performed in ambient 

conditions in the Petri dish where the gel was throughout the solvent exchange process without 

mechanically disturbing the gel. 
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Compacting gas-permeable CNF aerogel membranes with water: Dry CNF aerogel membranes 

were placed on smooth PTFE sheet and a small amount of water was pipetted on it to wet the 

membrane. When the whole membrane was wetted, the excess water was removed and the 

membrane was left to dry slowly in ambient conditions on the PTFE sheet. 

Ultraviolet-visible light (UV-vis) spectroscopy: Transmission spectra of CNF aerogel 

membranes, compacted CNF films, compacted CNF/SWNT hybrid films and commercial PEN 

films were recorded in UV-visible range with PerkinElmer Lambda 950 UV/Vis/NIR 

absorption spectrophotometer. Aerogel membranes were roughly 25 μm and compacted CNF 

films 12 μm thick. All spectra without SWNT network were recorded without a sample in the 

reference beam. Spectra of SWNT network alone was extracted by removing CNF-reference 

film background. Specular transmittance was recorded with a detector directly in the line of the 

specular beam. Total transmittance was recorded using a 150 mm integrating sphere. 

Scanning electron microscopy (SEM): Pieces of CNF aerogel membranes, compacted CNF 

films and compacted CNF/SWNT hybrid films were attached to aluminum SEM stubs with 

carbon tape and sputtered with an approximately 10 nm thick gold film (Emitech K100X). 

Imaging was carried out with a Zeiss Sigma VP scanning electron microscope at 1-2 kV 

acceleration voltage. Samples for imaging of fracture surfaces were first fractured in uniaxial 

tension during tensile characterization. 

Characterization of gas-permeability: Circular pieces of CNF-aerogel membranes with 

diameters of 47 mm and varying thicknesses were placed in a flow-through aerosol collection 

chamber supported by a stiff steel mesh from the behind. The chamber was sealed so that a 

rubber ring tightened the CNF aerogel membrane against the steel mesh leaving a circular area 

with a diameter of 45 mm exposed for the pressurized air. The pressure difference over the 

aerogel membrane was measured with a manometer (HD 2164.0 from Delta Ohm). The gas-

flow was measured with an air-flow calibrator (Gilibrator 2 from Sensidyne equipped with 
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Standard Flow Cell). Measurements were carried out at 20 °C and the used gas was dry 

pressurized air. 

Specific surface area and pore size distribution by nitrogen adsorption: The Brunauer-Emmett-

Teller specific surfaces area (BET) was determined by N2 physisorption using a Micromeritics 

TriStar II automated system. [62] 70 – 90 mg of the gas-permeable CNF aerogel membrane was 

dried for 2 h under dry nitrogen gas flow at 70 °C in the measurement vessel prior to the analysis. 

This analysis was repeated for three identically prepared membranes. 210 mg of compacted 

CNF film was prepared for analysis similarly. For analysis the dry sample and measurement 

vessel were transferred to the measurement apparatus and further stabilized for 2 h at 0.001 kPa 

vacuum. BET analysis was carried out for a relative N2 vapor pressure of 0.003 – 0.950 at -

196 °C. Pore size distribution was determined from the adsorption isotherm according to 

Barrett-Joyner-Halenda (BJH) analysis. [63] 

Density determination: Densities of the aerogel membranes were measured with mercury 

porosimetry using Pascal 140 and Pascal 440 porosimeters for the pressure ranges 0 to 300 kPa 

and 100 kPa to 400 MPa, respectively. 

Synthesis of SWNTs and collection on a porous CNF aerogel membrane: SWNTs were 

synthesized by using continuous FC-CVD process and subsequent filtration through a 

mesoporous CNF aerogel membrane. Synthesis process is based on catalytic decomposition of 

carbon precursor gases in elevated temperatures above 1000 K on surface of small diameter (2-

5nm) iron catalyst nanoparticles. Details on the synthesis process and reactor design are 

described elsewhere. [50,54] Shortly, the FC-CVD process is the following: a 100 cm3/min flow 

of carbon monoxide (CO, 99.5% purity, Aga Oy) is passed through a ferrocene saturator, filled 

with ferrocene (99% Stream Chemicals) and coarse grained silica sand (Sigma-Aldrich) mixed 

in 1:4 weight ratio to maintain high porosity and to enable gas flow. Ferrocene has partial vapor 

pressure of 0.7 Pa at room temperature (24 °C) and it sublimes to the passing gas flow. The 

ferrocene containing gas flow is mixed with 150 cm3/min of clean CO to control the 
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concentration of catalyst precursor and 1.5 cm3/min of ethylene (C2H4, 99.99% purity, Aga Oy) 

and 70 cm3/min flow of hydrogen (H2, 99.999% purity, Aga Oy) to enhance reactivity. The gas 

mixture is injected through a water-cooled stainless steel injector into quartz walled tube 

furnace (length 870 mm, reactor tube diameter 22 mm) operated at maximum temperature of 

1370 K. An additional CO flow of 100 cm3 / min was introduced to between injector and quartz 

tube to prevent recirculation in the heating zone after the injector. Ferrocene thermally 

decomposes in the rapidly increasing temperature gradient as the gas flow exits the injector, 

leading to formation of supersaturated iron vapor, which condenses and nucleates iron 

nanoparticles serving as catalyst for SWNT growth. Carbon precursors, CO and C2H4 start to 

catalytically decompose on the iron catalyst nanoparticles, leading to SWNT growth, while the 

catalyst particles and growing SWNTs are floating in the laminar gas flow. The SWNTs can be 

separated from carrier gas at the reactor outlet by simple membrane filtration to form a 

randomly oriented SWNT network on the filter surface. Presence and structure of single-walled 

nanotubes has been confirmed with optical spectroscopy, SEM, TEM and electrical transport 

measurements. 

Washing and compacting of CNF/SWNT hybrid films: After collection of SWNTs on the CNF 

aerogel membranes from the aerosol process, the membrane was washed with acetonitrile 

followed by a small amount of 1:1 (w/w) acetonitrile-water mixture After washing the 

CNF/SWNT hybrid membrane with acetonitrile, a small amount of 1:1 (w/w) acetonitrile-water 

mixture was pipetted on the membrane and left to dry by slow evaporation. 

Chemical doping of CNF/SWNT hybrid films: Chemical doping of CNF/SWNT hybrid films 

with gold-chloride solution was used in order to further reduce the electrical sheet resistance of 

conductive SWNT network. [64] For the doping treatment 100 mM solution of AuCl3 in 

acetonitrile was prepared and drop-cast on the SWNT network, until the SWNT network was 

completely immersed in the dopant solution. After a 5 min exposure the dopant solution was 

washed away with acetonitrile followed by drying under gentle nitrogen gas stream. 
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Transmission electron microscopy: High resolution transmission electron microscopy (TEM) 

was used for imaging and verification of presence of single-walled carbon nanotubes and for 

estimation of diameters of CNF used. Observation was carried out by using a field emission 

TEM with double-Cs aberration correctors (JEOL JEM-2200FS operated at 80 kV). The SWNT 

samples were collected on holey carbon coated copper grids (Agar Scientific), which were 

placed on a filter membrane at the reactor outlet for rapid (5 –10 sec) sample deposition in order 

to deposit thin, electron transparent layer to enable TEM-observation. The CNF samples were 

prepared by pipetting 3 µL of 0.01 wt. % CNF dispersion onto a copper TEM grid with a holey 

carbon film and allowed to stand for 60 sec before draining the excess by blotting. After blotting 

the sample was allowed to dry for 30 min in ambient conditions.  

Tensile characterization of CNF aerogel membranes and compact films: The CNF aerogel 

membranes, the compacted CNF films, and the CNF film dried directly from water after 

filtration were cut into strips 2.25 mm wide and more than 1.5 cm long by pressing with a 

custom made razor blade jig, where multiple flat blades are evenly spaced by flat metal spacers 

and tightened parallel to each other. For clamping, the strips were glued from both ends onto 

small pads of abrasive paper (ca. 3 mm x 4 mm) leaving a 10 mm long strip available for 

standard tensile tests. The widths of the strips were measured with an optical microscope (Leica 

MZ6 equipped with a Leica DFC420 camera). The thicknesses of the films were measured with 

a film thickness measurement set-up composed of a displacement sensor (LGF-0110L-B, 

Mitutoyo), digital reader (EH-10P, Mitutoyo) and a measuring table with support for sensor 

(215-514 comparator stand, Mitutoyo). Samples were equilibrated at 50 % relative humidity 

and 20 °C in a custom-made humidity chamber inside which also the tensile tester was located. 

Rate of elongation was 0.5 mm/min and gauge length was 10 mm. 

In-situ monitoring of resistance of CNF/SWNT hybrid films during mechanical deformation: 

Mechanical samples were prepared from the compacted CNF/SWNT hybrid films similar to 

those prepared of CNF films described above. All tests were carried out at 50 % relative 
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humidity and at 20 °C. The sheet resistance of the SWNT network was measured from several 

points with a 4-point measurement apparatus (Jandel RM3000) on the film prior to cutting of 

the strips. The apparatus used was the same as for tensile characterization, but the clamps used 

were exchanged ones where the top clamp was insulated from the sample by Kapton tape. A 

strip of copper tape 4 mm wide was attached on the Kapton tape to work as the electrode for 

connecting the SWNT network and connect it to the wiring to the resistance measurement 

apparatus. The contact resistance between the copper tape electrodes and the SWNT network 

was estimated to be negligible as the sheet resistances obtained after correcting the measured 

2-point resistance with the shape factor of the sample was approximately the same as that 

obtained by 4-point measurement of the film prior to cutting of samples. 2-point resistance was 

measured using a digital multimeter (Agilent 34410A 6½ Digit Multimeter). 

For bending the samples the distance between the clamped ends was cycled between the starting 

gauge length of 10 mm and 2.5 mm at a rate of 20 μm / s during which the load-displacement 

curves were recorded simultaneously with 2-point resistance data on a computer. The maximum 

radius of curvature of the film was estimated from photographs taken of the side view of the 

film in bending. Development of sheet resistance during tensile deformation was examined 

similarly. Testing was carried out by cyclically loading and unloading either only in the elastic 

region (from 0 to 0.5 % tensile strain and back at a deformation rate of 20 μm / s) or also in the 

plastic region (deformation rate 8.35 μm / s) by increasing the maximum strain 1 %-unit per 

cycle. 

 
Supporting Information 
Supplementary information contains material about ambient drying of isotropic CNF gel from 
octane, nitrogen physisorption in porous CNF aerogel membranes, tensile properties of CNF 
aerogel membranes and compact films, TEM micrograph of SWNTs and UV-vis spectra of 
compacted CNF and CNF/SWNT films. Supporting Information is available from the Wiley 
Online Library or from the author. 
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