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Feature enhancement of reverberant speech
by distribution matching and non-negative
matrix factorization
Sami Keronen1*, Heikki Kallasjoki1, Kalle J. Palomäki1, Guy J. Brown2 and Jort F. Gemmeke3

Abstract

This paper describes a novel two-stage dereverberation feature enhancement method for noise-robust automatic
speech recognition. In the first stage, an estimate of the dereverberated speech is generated by matching the
distribution of the observed reverberant speech to that of clean speech, in a decorrelated transformation domain that
has a long temporal context in order to address the effects of reverberation. The second stage uses this
dereverberated signal as an initial estimate within a non-negative matrix factorization framework, which jointly
estimates a sparse representation of the clean speech signal and an estimate of the convolutional distortion. The
proposed feature enhancement method, when used in conjunction with automatic speech recognizer back-end
processing, is shown to improve the recognition performance compared to three other state-of-the-art techniques.
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1 Introduction
Automatic speech recognition (ASR) is becoming an
effective and versatile way to interact with modern
machine interfaces. However, in order to successfully
adopt ASR in any practical application, high robustness
to non-stationary speaker and environmental factors is
required. While many noise-robust ASR techniques have
been shown to meet the demands of specific applica-
tions (e.g., mobile communication), they often fail in more
complex scenarios such as in the presence of room rever-
beration.
Recently, conventional Gaussian mixture model (GMM)

and hidden Markov model (HMM)-based ASR systems
have been superseded by hybrid multilayer-perceptron
(MLP)-HMM systems [1], often referred to as deep neu-
ral network (DNN) systems. Despite all the successes
obtained with DNNs, attributed to their ability to learn
from large amounts of potentially noisy data, investi-
gations have shown DNN systems can be quite sensi-
tive to mismatched environments. For instance in [2], it
was shown that even with state-of-the-art DNN systems,

*Correspondence: sami.keronen@aalto.fi
1Department of Signal Processing and Acoustics, Aalto university, P.O. Box
13000, 00076 Aalto, Finland
Full list of author information is available at the end of the article

front-end processing is helpful in increasing ASR perfor-
mance in mismatched conditions.
Previous studies have attempted to counteract the con-

volutional distortion caused by reverberation using a
number of denoising methods, such as frequency domain
linear prediction [3], modulation filtered spectrograms
[4], or missing-data mask estimation designed for dere-
verberation [5]. All of these approaches make weak
assumptions about the reverberant data (e.g., they do not
require that the room impulse response is known) but
they achieve only a moderate increase in ASR perfor-
mance. More recent techniques include MLP-based fea-
ture enhancement systems; for example, a deep recurrent
neural network (RNN) approach for log-spectral domain
feature enhancement was recently proposed in [6] and
applied to dereverberation. Similarly, an RNN exploiting
long-range temporal context by using memory cells in the
hidden units was applied to dereverberation in [7]. A fur-
ther example is the reverberation modeling for speech
recognition (REMOS) framework [8], which combines a
clean speech model with a reverberation model to deter-
mine clean speech and reverberation estimates during
recognition via a modified Viterbi algorithm. In condi-
tions with relatively long reverberation times, REMOS
provides higher recognition accuracy than a matched
model.
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This article focuses on one of the most powerful
approaches for denoising of recent years—non-negative
matrix factorization (NMF)—which models the speech
spectrogram as a sparse non-negative linear combination
of dictionary elements (“speech atoms”). NMFwas formu-
lated in [9] to decompose multivariate data and has been
the basis of several sound source separation [10, 11] and
denoising [12] systems. Noise robust ASR systems based
on NMF were introduced in [13], using either feature
enhancement or hybrid HMM decoding with so-called
sparse classification. An alternative formulation of NMF,
non-negative matrix factor deconvolution (NMFD), was
introduced in [14] to take better advantage of temporal
information. NMFD lends itself naturally to dereverbera-
tion; [15, 16] describe methods for blind dereverberation
by decomposing the reverberated spectrum into a clean
spectrum convolved with a filter, while constraining the
properties of the speech spectrum.
Our previous work, published in two papers in the

REVERB’14 workshop [17, 18], described two derever-
beration techniques that are combined and extended in
the current study. In the first paper [17], a technique
was described for speech dereverberation that draws on
the fundamental idea of NMF, in that it models speech
as a linear combination of dictionary elements. However,
the NMF-based approach was extended to incorporate
a filter in the Mel-spectral domain that could be opti-
mized for arbitrary convolutions. Furthermore, [17] used
missing-data mask imputed (MDI) [19, 20] spectrograms
to produce the initial estimate of the sparse represen-
tation of the clean speech signal, giving more effective
dereverberation. Our second REVERB’14 workshop paper
proposed a distribution matching (DM) scheme for unsu-
pervised dereverberation of speech features [18]. This
utilizes stacked and decorrelated spectro-temporal vec-
tors containing a long time context. In the decorrelated
transformation domain, the distributions of reverberant
supervectors are equalized to match the a priori clean
speech distribution by applying a non-parametric his-
togram equalization-based approach [21].
Bringing the ideas in our two workshop papers together,

the current paper proposes a novel dereverberation fea-
ture enhancement method in a noise-robust ASR frame-
work by combining the NMF and DM methods — a
combination that was not tested in either of the workshop
papers. More specifically, we present a single-channel
source separation technique which extracts the speech
signal from the observed mixture of speech and noise
signals and train the ASR back-end with the enhanced
(dereverberated) features to increase the recognizer tol-
erance for artifacts generated in denoising. Our previous
work [17, 18] shows that DM outperforms MDI as a
feature enhancement strategy. This brings us to the goal of
the present study: to investigate whether the performance

advantage of DM translates into better initial estimates
of the sparse representation of the dereverberated speech
features, compared to that obtained with MDI. The pro-
posed method is evaluated on the reverberant 2014
REVERB Challenge data set [22] and shown to provide
equal or higher ASR performance than three existing
state-of-the-art feature enhancement methods, using sim-
ilar back-end processing provided by the Kaldi toolkit [23].
Among the methods compared against our new approach,
we include the RNN-based feature enhancement, a feature
enhancement based on blind reverberation time estima-
tion, and our previous system which usedMDI to produce
the initial clean speech estimate.
The remainder of the paper is structured as follows.

Section 2 gives an overview of the proposed two-stage fea-
ture enhancement process. Sections 3 and 4 define the
DM- and MDI-based initializations, used to estimate the
initial sparse representation of the clean speech signal for
NMF. Section 5 describes the procedure for non-negative
matrix factorization of reverberant speech. Section 6
gives an overview of the experimental setup including the
data set, the ASR system, parameter optimization, and
brief descriptions of an additional multichannel feature
enhancement and the computational requirements of the
two-stage feature enhancement. Our results are presented
and discussed in Sections 7 and 8, and conclusions from
the study are presented in Section 9.

2 Overview of the dereverberation process
The flowchart of the dereverberation process and the
overall ASR system is shown in Fig. 1. First, the speech
signal is pre-processed (denoted by 1. Pre-processing) into
frames of Mel-scale filterbank energies, which are used
as an input to the NMF part of the feature enhance-
ment (denoted by 2. Feature enhancement) for derever-
beration. Conventional NMF feature enhancement would
then be initialized with the previously described reverber-
ant speech, but our implementation divides the feature
enhancement into two stages: in the first stage, we con-
struct an initial estimate of the non-reverberant speech
that is used to initialize the NMF algorithm in the second
stage. The factorization algorithm is initialized either with
DM (described in Section 3) or MDI (briefly described
in Section 4) dereverberated speech. The ASR back-end
(denoted by 3. Back-end in the figure) consists of either
GMM- or DNN-based acoustic modeling of enhanced and
transformed features and an HMM-based decoder.

3 Distributionmatching initialization
The goal of the distribution matching (DM) method [18]
is to recover the clean speech spectra x from the observed
reverberant speech spectra y when the clean speech prior
distribution p(x) is assumed to be known and the distri-
bution of the observed reverberant speech p(y) can be
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Fig. 1 General flowchart of the feature enhancement method and back-end ASR system. Overview of the speech signal processing pathway from
time domain audio to decoding and recognition hypothesis

estimated during recognition. As our goal is to counter-
act the effects of reverberation, it is important to take into
account the long time span in the effects of reverberation.
In the following, we develop a method to map the dis-
tribution of reverberant speech observations to the clean
speech prior. The DM method is also illustrated in Fig. 2.
The method uses long time contexts decorrelated by lin-
ear transformations, after which a histogram equalization
(HEQ) mapping can be utilized using one-dimensional
distribution samples. HEQ was originally proposed for
image processing [24] but subsequently has also been
utilized in ASR to counteract noise and speaker changes
over short temporal windows [21]. With a longer tempo-
ral context, as in the present study, HEQ has been used

for feature space Gaussianization [25] to obtain a feature
space that is easier to model with GMMs.
DMutilizes three steps that are applied in two iterations.

The first step of the method is to find a signal representa-
tion that has a sufficiently long time context to counteract
the effects of reverberation. Assuming that the effects of
reverberation are linear and convolutive with the speech
signal, we can represent them in the feature domain as lin-
ear transformations. Our basis features areC-dimensional
Mel-spectral feature vectors of observed speech y that
have been normalized to compensate for spectral distor-
tion. The normalization is performed by estimating the
reverberation-free spectral peaks to compute the normal-
ization coefficients [5]. In the first iteration round, the

Fig. 2 Distribution matching (DM) flowchart. An overview of the DM dereverberation process. Here, the reverberant speech input and
dereverberated speech output are represented as Mel-spectral feature vectors
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observed speech y corresponds to original reverberated
speech, whereas in the second iteration round, we use
the dereverberated estimate as the observation y = x̂.
To take into account the duration of reverberation, the
Mel-spectral observations are stacked over T consecutive
frames to form CT-dimensional supervectors

yt =
[
y�
t . . . y�

t+T−1

]�
, (1)

where T is chosen large enough compared to the dura-
tion of the room impulse responses (RIRs) and� indicates
transpose. Consequently, the speech features y affected by
convolution can be formulated as y ≈ Hx, whereH is a fil-
ter matrix that performs convolution on the supervector
x constructed from clean speech features.
The second step is to find a transformed feature domain

that allows the use of one-dimensional mapping func-
tions from the observed feature distribution to the non-
reverberant target distribution. The supervector-based
feature vectors x and y are highly correlated along the fea-
ture dimension because each vector includes spectral and
temporal context, which introduces problems. In order to
map such highly correlated features from the observed to
the non-reverberant distribution, a complex multivariate
mapping would be needed. However, the problem can be
simplified by applying a decorrelating linear transforma-
tion to the spectral-temporal supervectors, after which it
is possible to perform one-dimensional mappings. In this
study, the applied transformation D is based on principal
component analysis (PCA) to decorrelate the elements of
the speech feature supervectors on a log-scale,

g′
y = D log y ≈ D logHx, (2)

where y corresponds to reverberant speech in the first
iteration and to the dereverberated speech estimate y =
x̂ in the second iteration. The quantity g′

y denotes the
observed speech supervector features in the decorrelated
feature space, and the log operation is computed element-
wise. The number of retained low-order principal compo-
nentsM ofD can be treated as a tunable free parameter to
obtain a more or less smoothed representation.
The third step is to develop the one-dimensional map-

ping functions that can be applied elementwise in the
decorrelated feature domain. First, we make an assump-
tion that the transformation D that decorrelates the
non-reverberant speech supervectors x in the estima-
tion of clean speech prior distribution also decorrelates
all the observed speech supervectors y regardless of the
extent of reverberation. Then, we can formulate one-
dimensional elementwise bijective (one-to-one) mappings
F(m)
yx from PCA-transformed reverberant supervector ele-

ments g′
y(m) to dereverberated ones g̃′

x(m) as follows

g̃′
x(m) = F(m)

yx

(
g′
y(m)

)
, (3)

where m indexes the mapping for each feature element.
As the PCA-transformed supervectors g′

y represent suf-
ficient temporal context relative to reverberation effects,
it is possible to find effective mappings from reverberant
speech to clean speech (see [18]).
In this work, functions for F(m)

xy are obtained bymapping
the distribution of observed speech to match the distribu-
tion of the clean speech prior. In the first iteration step,
we use the original reverberant speech as observations,
and in the second step, we use the dereverberated esti-
mate from the first iteration round. Themapping is easy to
find if the distributions of clean and observed speech are
represented by inverse cumulative distribution functions
(ICDF) [21, 25]. In general, the empirical ICDF�−1

y can be
obtained simply by scaling and sorting the data samples.
In our case, however, we omit the scaling as the data has
already been equalized for spectral deviation. From now
on, we simplify the notation and operate on individual
components of the decorrelated supervectors by dropping
all indicesm. The mapping function Fyx from reverberant
speech ICDF �−1

y to clean speech ICDF �−1
x is imple-

mented by constructing a lookup table �−1
y −→

F
�−1

x with
piecewise cubic Hermite interpolation (Section 3.3. in
[26]). When applied in practice, the lookup table needs to
be updated to reflect the current reverberation condition
encountered during recognition. Assuming that reverber-
ation conditions change slowly, a sample of reverberant
data is collected during recognition to model reverberant
distribution �−1

y , which is the mapping input data distri-
bution. While the input data distribution needs updating,
the mapping target distribution�−1

x is always represented
using the same static clean speech sample. In the present
study, the mapping input distribution is updated during
recognition passes by using batches of development or
test-set data. Each batch corresponds to a static reverber-
ation condition in the REVERB Challenge data, described
in Section 6.1.
We can now produce the estimate of the dereverberated

log-spectral supervector x̃′ as

x̃′ = D−1Fyx
(
g′
y

)
, (4)

where the mapping Fyx is realized using separate lookup
tables F(m)

yx for each elementm of g′
y andD−1 is the inverse

PCA transformation. Then, supervectors x̃′ are unstacked
to the linear Mel-spectral domain x̃ with one frame time
context using overlap adding, so that regions in adjacent
supervectors containing Mel-spectra of the same time
frame are averaged. Thus, linear Mel-spectral vectors x̃
are obtained as

x̃ = exp
(
1/T

T∑
t=1

x̃′
T−t(ψ)

)
, (5)
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where t indexes both the frames of adjacent supervectors
and also the component Mel-spectral vectors within the
range ψ =[ (t − 1)C + 1, . . . , tC] in each supervector.
However, the dereverberated feature estimates x̃ in this

form are smoothed by the PCA and averaging operators.
Therefore, we apply a Wiener filter to reintroduce some
short-term variation that was present in the original rever-
berant observations y but was removed by the smoothing.
For the Wiener filter, we also need a version of the rever-
berated features ỹ that were smoothed by the same PCA
transformation D. The Wiener-filtered feature estimate x̂
is given by

x̂ = x̃ ./ỹ .∗ y (6)

where ./ denotes elementwise division and .∗ element-
wise multiplication. The importance of Wiener filtering is
demonstrated in our previous work [18].
After progressing through the above three steps

(Eqs. (1)–(6)) in the first iteration, the reverberant obser-
vation y is substituted with the current estimate x̂. After
the second iteration, we obtain the estimates x̂ that are
used either directly as enhanced features or as initializa-
tion estimates for the NMF processing.

4 Missing data imputation initialization
The missing data imputation method used here utilizes
the bounded conditional mean imputation (BCMI) as pro-
posed in [19]. The method uses a GMMmodel to capture
the clean speech statistics for reconstructing the unreli-
able noisy regions of the observed speech spectrum. Here,
we denote the noise-free reliable part of the speech spec-
trum by xr and the noisy unreliable part by xu. The BCMI
produces the clean speech estimate x̂u using the condi-
tional distribution p(xu | xr) with an assumption that the
observed noisy speech xu acts as the upper bound for the
underlying clean speech.
For estimating the missing data mask that specifies the

reliable and unreliable regions, we use the approach pro-
posed in [27]. The method uses a modulation band-pass
filter along the time trajectory, tuned to the speech sylla-
ble rate. The filter emphasizes reverberation-free speech
onsets so that they can be distinguished from reverber-
ant segments of speech. Regions which are emphasized
by the filter are labeled reliable, while regions that are
de-emphasized are labeled as unreliable.

5 Non-negativematrix factorization of
reverberant speech

Methods based on the non-negative matrix factoriza-
tion (NMF) framework have been widely used for var-
ious speech processing tasks. A typical application of
NMF is noisy speech feature enhancement via super-
vised source separation [13]. Given a pre-set dictionary of
fixed-size magnitude spectrogram atoms of both speech

and noise, an observed spectrogram is modeled by their
non-negative linear combination. The individual recon-
structions of both clean speech and noise spectrograms
are based on estimating the corresponding dictionary
atoms and their coefficients in the NMF representation.
To account for observations of arbitrary length, the pro-
cessing can be performed in (overlapping) windows of a
fixed length of T frames.
In this work, we consider reverberant but relatively

noise-free speech. Hence, we do not make use of the noise
dictionary but still build on the same underlying speech
model. We denote by Y the observed speech, represented
by a TC × N matrix. Each column of Y is a collection
of T frames of a C-dimensional Mel-scale spectrogram,
stacked into a single vector. Under the NMF model, we
have the approximation

Y ≈ SA, (7)

where S is a TC × K dictionary matrix of K spectrograms
of clean speech, while A is the K × N activation matrix
holding the linear combination coefficients.
The effect of reverberation extends across frame bound-

aries in theMel-spectrogram domain. This can be approx-
imated by a convolution of the samples of each frequency
channel with a channel-specificTf -sample filter. Using the
stacked vector representation of the T-frame windows,
the model of Eq. (7) can be extended to perform this
convolution within each window. The resulting approxi-
mation is

Y ≈ RSA, (8)

where, denoting Tr = T +Tf − 1, R is a TrC ×TC matrix
of the form

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

r1,1 0 0
0 r1,2 0 · · ·
0 0 r1,3

...
. . .

r2,1 0 0
0 r2,2 0 · · ·
0 0 r2,3

...
. . .︸ ︷︷ ︸

C

r1,1 0 0
0 r1,2 0 · · ·
0 0 r1,3

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

The diagonal structure of R is designed so that a left mul-
tiplication of a stacked window vector of T frames results
in the discrete convolution of the filter

[
r1,c r2,c · · · rTf ,c

]
and the samples of the frequency channel c in that win-
dow. It is worth noting that Eq. (8) can be interpreted
as either reverberating the clean speech estimate, R(SA),
or making a linear combination of reverberated speech
atoms, (RS)A.
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5.1 Optimization of the filter and activation matrices
Following the supervised NMF model, the dictionary
matrix S is held constant. In the sliding window model,
the values of the filter and activation matrices R andA are
obtained independently for each window t. Denoting by
Yt andAt the corresponding columns ofY andA, the filter
and activation matrices are set to minimize∑

t
(d(Yt ,RSAt) + λ ‖At‖1) , (10)

where the d(Yt ,RSAt) term is a distancemeasure between
the observation and the NMF approximation. The second
term, which consists of the L1 norm ‖·‖ of the acti-
vation weights multiplied by the sparsity coefficient λ,
is intended to induce sparsity in A and thereby yield a
sparse representation of the observation. In this work, the
generalized Kullback-Leibler divergence is used for d.
The form of Eq. (10) admits the use of conventional

iterative NMF optimization algorithms [9, 13] to per-
form multiplicative updates to both the R and Amatrices.
However, the optimization problem is not convex, and a
simple scheme of alternately updating R and A did not
yield results useful for dereverberation in earlier experi-
ments [17]. The reasons behind this are hypothesized in
Section 8. Accordingly, we use the following series of steps
to obtain the factorization RSA:

1. A simpler dereverberation method is used to obtain
an initial estimate of the non-reverberant speech of
the observation, denoted by X̄. In this work, the
estimate is obtained either through DM or MDI
initialization, described in Sections 3 and 4,
respectively.

2. The activation matrix A is initialized to all ones and
iteratively updated for I1 rounds to perform the
factorization X̄ ≈ SA.

3. While the dictionary atoms of S are strictly clean
speech, the initial estimate X̄ is never perfectly
dereverberated. Consequently, the activations A
resulting from the preceding step will reflect the
effects of reverberation, typically characterized by
sequences of consecutive non-zero activations of the
same dictionary atom. We therefore filter the time
sequences of activations for each atom using a filter
HA(z) and clamp the result to be non-negative. This
filtering step has the effect of biasing the following
estimation of R to emphasize the reverberation.

4. The filter matrix R is initialized to hold the constant
Tf -sample filter 1

Tf

[
1 · · · 1] for each frequency

band. While keeping the Amatrix fixed, R is
iteratively updated for I2 rounds to minimize the cost
in the approximation Y ≈ RSA. However, the
multiplicative updates are neither guaranteed to
preserve the filter structure described in Eq. (9),
except for the zero elements, nor to result in a

realizable filter. To enforce these properties, R is
processed to have the form of Eq. (9) after each
iteration: The new values of the filter coefficients rt,c
are obtained by averaging over all their occurrences
in the updated R, and clamping large values to satisfy
∀t : rt+1,c ≤ rt,c. The coefficients are also uniformly
scaled to

∑
t,c rt,c = C.

5. As a final step, the Rmatrix is kept fixed, and the A
matrix is iteratively updated for I3 rounds based on
Y ≈ RSA.

To demonstrate the behavior of the algorithm described
above, Fig. 3 illustrates the cost function of Eq. (10) as a
function of the update iterations. All three iterative stages
of the algorithm are shown: I1 = 50 iterations of updat-
ing activations A based on the initial estimate X̄ in step 2,
I2 = 50 iterations of updating the filter matrix R in step 4,
and finally I3 = 75 further iterations to obtain the final
values of A in step 5. The activation filtering in step 3 is
reflected by a discontinuity in the cost function between
steps 2 and 4. Note that the plotted cost function is based
on the reverberant observation Y, which is not directly
used as the optimization target in step 2. The cost func-
tion also measures only the accuracy of the reconstruction
RSA and the sparsity of A and therefore does not indicate
the dereverberation strength, which depends primarily on
the filter represented by R.
A major drawback of this simple sliding window scheme

in reverberant conditions occurs when the start of a
window coincides with a silent interval in the underly-
ing speech signal. In this case, the early frames of the
window are dominated by observed reflections. When
such a window is represented using a dictionary of
individually reverberated atoms, the energy in the early
frames is interpreted as direct sound and not properly
attenuated.
To alleviate this issue, we use the NMFD [14] model,

so that an individually reverberated dictionary atom acti-
vated in one window can “explain away” the energy of its
reflections in succeeding overlapping windows. For the
stacked vector representation, a computationally efficient
implementation of the NMFD optimization scheme can
be formulated by modifying the multiplicative update rule
for the activation matrix A used in the iterative steps 2, 4,
and 5 of the above algorithm.
For conventional NMF processing, the multiplicative

update of matrix A that corresponds to the cost function
given in Eq. (10) is defined as [13]

A ← A .∗ (RS)� Y
RSA

(RS)�1 + λ
, (11)

where .∗ denotes elementwise multiplication, the division
of two matrix operands is likewise performed element-
wise, and 1 is a TrC ×N all-one matrix. We introduce the
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Iteration
Start upd. A 25 Start upd. R 75 Start upd. A 125 150 175

C
os

t f
un

ct
io

n 
in

 lo
g-

sc
al

e

  

 

 

  MDI init.

 DM init.

Fig. 3 The cost function of NMF parameter optimization in log-scale. The solid and dashed lines illustrate the NMF optimization with DM and MDI
initializations, respectively. The cost function is computed as the average of ten randomly selected far recorded SimData utterances. Here, the
activation matrix A is updated for the first 50 iterations, the reverberation matrix R is updated for the next 50 iterations, and finally the activation
matrix A is updated again

dependencies between consecutive windows by adjusting
the Y

RSA term, so that the new update rule is

A ← A .∗
(RS)�s

(
y

o(RSA)

)
(RS)�1 + λ

, (12)

where y is the original, non-stacked observation spectro-
gram. In the update rule, the o(Z) function denotes the
result of overlap-adding the stacked vectors of matrix Z to
a single spectrogram (in the same way as in Eq. (5)), while
the s(z) function denotes the conversion of spectrogram
z to the stacked form. The corresponding change is also
made to the update rule of the Rmatrix,

R ← R .∗
s
(

y
o(RSA)

)
(SA)�

1(SA)�
. (13)

5.2 NMF-based feature enhancement of reverberant
speech

Based on the factorization, we can directly reconstruct the
reverberant observation as Ỹ = RSA and the underlying
clean speech as X̃ = SA. By overlap-adding the stacked
vectors, we obtain the corresponding Mel-scale spectro-
gram estimates ỹ and x̃. While x̃ could be used directly
as input for a speech recognition system, in existing work
on NMF-based source separation for speech in additive
noise [13], better performance was obtained by using
the same Wiener-filtering approach we have described
for the DM-based initialization. Therefore, we compute
the final enhanced features, as in the DM method, by
filtering the original observation with the time-varying
Mel-spectral filter defined as x̃ ./ỹ, where ./ denotes
elementwise division.

The full NMF-based feature enhancement algorithm is
provided in pseudo-code form in Algorithm 1.

Algorithm 1: The NMF-based feature dereverberation
algorithm of Section 5.
Input : a reverberant Mel-scale spectrogram y a

clean speech dictionary matrix S iteration
limit parameters I1, I2, I3 for the NMF
factorization

Output: A dereverberated Mel-scale spectrogram
estimate x̂

1 x̄ ← initial dereverberation estimate from DM or
MDI processing of y;

2 Y ← windowed stacked-vector representation of y;
3 X̄ ← windowed stacked-vector representation of x̄;
4 perform the NMF factorization
5 see Section 5.1 for a detailed description of the

factorization algorithm;
6 A ← an all-ones matrix;
7 for i ← 1 to I1 do
8 update A to approximate X̄ ≈ SA;
9 end for

10 filter each row ofAwith the activation filterHA(z);
11 for i ← 1 to I2 do
12 update R to approximate Y ≈ RSA;
13 compute filter coefficients rt,c by averaging

their occurrences in R;
14 clamp rt+1,c ≤ rt,c and scale

∑
t,c rt,c = C;

15 reconstruct the filter matrix R;
16 end for
17 for i ← 1 to I3 do
18 update A to approximate Y ≈ RSA;
19 end for
20 end
21 ỹ ← overlap-add the stacked vectors of RSA;
22 x̃ ← overlap-add the stacked vectors of SA;
23 x̂ ← (x̃ ./ỹ) .∗ y;
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6 Experimental setup
6.1 Data set
The proposed feature enhancement method presented in
the paper is evaluated on the 2014 REVERB Challenge
data set [22]. The data set is only briefly described here.
The first part of the data set, denoted by SimData, con-
sists of an artificially reverberated British English version
of the 5000-word Wall Street Journal corpus [28] mixed
with recordings of background noise at a fixed signal-
to-noise ratio (SNR) of 20 dB. SimData contains far and
near microphone positions in three rooms of different size
for a total of six recording scenarios. The second part of
the REVERB Challenge data set contains real recordings,
denoted by RealData, extracted from the multichannel
Wall Street Journal audio visual corpus. The utterances of
RealData have been recorded in a reverberant office space
with background noise originating mostly from the air
conditioning [29]. A summary of the SimData and Real-
Data recording conditions is presented in the upper part
of Table 1.
The data set is divided into speaker-exclusive train-

ing (clean speech), development, and evaluation sets. The
RIRs are also different in the development and evalu-
ation sets. The durations and the numbers of speakers
and utterances of the sets are shown in the lower part of
Table 1. In addition to the clean speech training set, an
equal-sized multicondition (MC) training set is provided.
The MC training data is artificially corrupted in the same
manner as SimData but with unique impulse responses.
All the reverberant utterances in the REVERB Chal-

lenge data set are provided as single-channel, 2-channel,

Table 1 Summary of recording conditions and data set
parameters. SimData denotes artificially reverberated speech
data with real RIRs and RealData denotes true recordings made in
a reverberant room

Recording type Room size T60 (s) Near mic. Far mic.
distance (m) distance (m)

SimData Small 0.25 0.5 2.0

SimData Medium 0.5 0.5 2.0

SimData Large 0.7 0.5 2.0

RealData Large 0.7 1.0 2.5

Data set Recording Number of Utterances Duration (h)
type speakers

Training Clean speech 92 7961 17.5

MC training
Similar to

92 7961 17.5
SimData

Development SimData 20 1484 3.3

RealData 5 179 0.3

Evaluation SimData 20 2176 4.8

RealData 10 372 0.6

and 8-channel recordings. However, experiments in this
study use either the single-channel setup, which is the
main part of the study, or the 8-channel system in an addi-
tional experiment. The 8-channel system is constructed
by applying a frequency domain delay-and-sum (DS)
beamformer prior to the feature enhancement to investi-
gate whether multichannel setups gain from the proposed
method. The DS beamforming is briefly described in
Section 6.4.

6.2 ASR system
In total, six feature enhancement, or front-end process-
ing, combinations are applied in the evaluation; DM alone,
NMF alone, DM-initializedNMF (denoted byDM+NMF),
and MDI-initialized NMF (denoted by MDI+NMF).
Moreover, the DM+NMF and MDI+NMF enhancements
are combined with the additional DS beamformer in
order to recognize the 8-channel audio. All systems with
feature enhancements are trained on the MC training
set.
The ASR back-end processing is performed using the

publicly available Kaldi recognition toolkit [23] and the
system utilized here is based on REVERB scripts pro-
vided in the toolkit. The use of Kaldi allows us to obtain
results that are competitive with the state-of-the-art and
also allows direct comparison with other studies that are
based on the Kaldi back-end such as [6, 7, 30].
Two hybrid DNN-HMM and four GMM-HMM back-

end systems of increasing acoustic model complex-
ity are trained. The first back-end system, denoted by
LDA+MLLT, is a triphone-based recognizer which uses
feature vectors constructed from the first 13 of 23 Mel-
frequency cepstral coefficients (MFCCs) drawn from nine
consecutive frames. The feature vector dimensionality
is reduced to 40 by linear discriminant analysis (LDA).
Furthermore, a maximum likelihood linear transform
(MLLT) is applied to improve the separability of acous-
tic classes in the feature space. The LDA+MLLT system is
trained with the MC training set, but a similar system is
also trained with the clean speech data for reference.
The second back-end system, denoted by LDA+

MLLT+SAT, supplements the LDA+MLLT system with
utterance-based speaker adaptive training (SAT). This is
based on a variant of feature domain-constrained maxi-
mum likelihood linear regression (fMLLR) [31] designed
for rapid adaptation on very small amounts of adaptation
data.
The third back-end system, denoted by LDA+

MLLT+SAT+f-bMMI, uses the acoustic model of the
LDA+MLLT+SAT back-end to execute feature-space
boosted maximum mutual information (f-bMMI) -based
discriminative training [32]. The LDA+MLLT+SAT+f-
bMMI is trained to obtain fully comparable single and
8-channel results with the feature enhancement proposed
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in [30] and comparable 8-channel results with [6]. In the
experiments, we set the boost factor to 0.1.
The fourth back-end system, denoted by LDA+MLLT+

SA+bMMI+MBR, is based on the LDA+MLLT system
and supplements it with utterance-based fMLLR speaker
adaptation, boosted MMI (bMMI), and minimum Bayes
risk (MBR) decoding [33]. The LDA+MLLT+SA+bMMI+
MBR system is trained to obtain fully comparable results
with the feature enhancement proposed in [6].
The fifth back-end is a hybrid DNN-HMM system,

denoted by LDA+MLLT+SAT+DNN, trained with the
adapted features of the LDA+MLLT+SAT back-end using
a frame-based cross-entropy criterion and p-norm non-
linearities [34]. The DNNs consisted of 4 hidden lay-
ers and approximately 6.3 million parameters. The sixth
back-end, denoted by LDA+MLLT+SAT+DNN+SMBR,
supplements the LDA+MLLT+SAT+DNN back-end with
state-level minimum Bayes risk (SMBR) criterion-based
discriminative training [35] to obtain comparable results
with the feature enhancement proposed in [30]. The
SMBR training is applied only to the best performing
LDA+MLLT+SAT+DNN back-end in the development
set.
For the language model (LM), we use the 5000-word

trigram model provided in the WSJ corpus. The LM
weights are optimized separately for each back-end and
for each feature enhancement combination, based on
the averaged recognition word error rate (WER) over
all eight test conditions in the development set. The
optimized LM weights are also used in the estimation
of fMLLR transformations for the first-pass recognition
hypotheses.

6.3 Parameter setup
The parameter setups of the DM,MDI, andNMFmethods
use the same values as the best performing systems in the
experiments of our previous studies [17, 18]. The settings
are briefly summarized here. Mel-spectral features of T =
20 subsequent frames were collected for each DM super-
vector. The PCA transformation in Eq. (2) was estimated
from 1000 randomly selected clean-speech training set
utterances and applied to reduce the supervector dimen-
sionality to M = 40 principal components. We have also
conducted unpublished experiments utilizing both clean
and reverberant data in the PCA training, which yielded
slightly inferior ASR results compared to using only clean
training data. The reasons behind this may be that is diffi-
cult to learn a transform that simultaneously decorrelates
both clean speech and speech reverberated with a range
of reverberation times, and it may be more important to
decorrelate the target rather than the source domain prior
to the mapping.
In the ASR experiments, the distribution mapping is

applied in two iterations (see Section 3). The mapping

function was updated every time that reverberation con-
ditions changed and the ICDF �−1

y of observations were
collected from the full batch of utterances in each test
condition. For the clean speech prior, we used a collec-
tion of random samples from the clean speech training
set whose length was equal to that of the observation
sample. Collectively there are three tunable paramaters in
the DM initialization method (PCA-dimension M, stack
dimension T and number of iterations).
Regarding the MDI system, the mask estimation stage

requires three free parameters that were chosen to be
the same (α = 19, β = 0.43, and γ = 1.4) as in
our earlier studies [17, 27]. In the imputation stage, we
also utilized the same GMM-model as in our previous
study; a 5-component GMM trained on a random 1000
utterance subset of the clean speech training set with
a time context of three consecutive Mel-spectral feature
frames. Taking together the parameters in the mask esti-
mation as well as imputation stage totals to five tunable
parameters.
For the NMF window length, we chose T = 10

frames, which offered a good balance between dictio-
nary complexity and ASR performance. The length of
the NMF R matrix initialization filter that functions as
an upper bound on the reverberation time the update
algorithm can handle was set to Tf = 20 samples to
accommodate normal-sized rooms. The sparsity coeffi-
cient and iteration counts were set as follows: λ = 1,
I1 = I2 = 50, and I3 = 100. The clean speech dic-
tionary consisting of K = 7 681 atoms was constructed
by selecting one random T-frame segment from each
clean speech training set utterance. The filter in step 3
of the update algorithm was optimized to give the NMF
feature enhancement low average WER on all reverbera-
tion conditions and therefore it is not optimal for all the
separate conditions. Based on multiple small-scale exper-
iments, the filter was selected as HA(z) = 1 − 0.9z−1 −
0.8z−2 − 0.7z−3. From dozens of candidates, the selected
filter was the only one to work well on all reverberation
conditions.

6.4 Delay-and-sum beamforming
For the delay-and-sum (DS) beamforming feature
enhancement, we use the implementation of [36]. To
describe DS beamforming in brief, it selects one of the
channels as the reference signal and the differences
between the arrival times of the reference and the other
channel signals are estimated by generalized cross-
correlation with a phase transformation [37]. By delaying
the other channels by their estimated arrival times and
summing all the signals, the coherent sound sources are
amplified and the SNR of the speech signal is increased.
In this work, DS is applied to the 8-channel data on the
LDA+MLLT+SAT+f-bMMI back-end.
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6.5 Computational requirements
The overall real-time factor for both DM+NMF and
MDI+NMF feature enhancements is approximately 6.9 on
one thread of an Intel Xeon E3-1230V2 processor. There
is no significant difference between the computational
costs of the DM and MDI initialization methods, and the
real-time factors for both methods are less than one. In
fact, the NMF enhancement is the most computationally
demanding processing stage of the whole ASR system.
Since both initialization methods also utilize the same
amount of training data, the benefit of the DM method
over MDI is that there are only three free parameters to
tune instead of five. During recognition, the DM method
operates in full batch mode, whereas MDI works on an
utterance-by-utterance basis.

7 Results
The ASR results for the REVERB Challenge development
set are collected in Table 2 and for the evaluation set
in Table 3. This section primarily reviews the evaluation
set results of our systems. Comparable ASR results from
external studies [6, 30] are also gathered in Table 3 and
analyzed in Section 8. The feature enhancement combina-
tions are grouped by their respective back-end systems. In
Table 2, the results are shown as average WERs separately
for the SimData and RealData recordings. In Table 3,
the results are also shown for each recording condition,
but the comparisons between the feature enhancement
methods are based on their respective average WERs.
For reference, the REVERB Challenge baseline results,
with and without MC training and batch-based MLLR
speaker adaptation, are shown in the first two rows of the
result tables. The Challenge baselines make use of MFCC
features concatenated with their first- and second-order
derivatives and bigram LMs.
For each back-end system, omitting the feature

enhancement produces the highest error rates with the
exception of DM enhancement on the LDA+MLLT+
SAT+f-bMMI back-end, which gives the highest average
error rate on RealData. For each back-end, the lowest
error rates are obtained by taking advantage of either
DM or MDI initialization in NMF feature enhancement,
except for the LDA+MLLT back-end where NMF alone
is the best performing feature enhancement. For each
enhancement method, the corresponding average WERs
are shown to decrease consistently on SimData while
increasing the complexity of back-end processing. On
RealData, however, none of the feature enhancements on
the LDA+MLLT+SAT+DNN back-end is able to exceed
their respective average results with the LDA+MLLT+
SAT+f-bMMI back-end.
For both single-channel SimData and RealData, the

proposed DM+NMF feature enhancement outperforms
MDI+NMF for the majority of back-end systems.

Table 2 Average SimData and RealData word error rates for the
REVERB Challenge development set

The following abbreviations are used in the table: multicondition (MC), baseline
(BL), speaker adaptation (SA), linear discriminant analysis (LDA), maximum likelihood
linear transform (MLLT), distribution matching (DM), missing data imputation (MDI),
non-negative matrix factorization (NMF), speaker adaptive training (SAT),
delay-and-sum (DS), feature domain boosted maximummutual information
criterion (f-bMMI), deep neural network (DNN), minimum Bayes risk (MBR) decoding
and discriminative training with state-level minimum Bayes risk (SMBR) criterion. The
dashed line separates the performance-wise comparable back-ends

The WER improvements for the proposed DM+NMF
method over the MDI+NMF are 0.45 % and 0.9 %
on LDA+MLLT+SAT+DNN and LDA+MLLT+SAT+f-
bMMI back-ends, respectively. On 8-channel recordings,
DS+DM+NMF produces the lowest averageWER on Sim-
Data, whereas DS+MDI+NMF gives the best performance
on RealData.

8 Discussion
We have shown that the proposed DM+NMF feature
enhancement achieves the highest average performances
on both single-channel SimData and RealData recordings.
However, these highest performance figures are achieved
by a small margin relative to MDI+NMF and NMF and
with different back-ends. DM+NMF is also conceptu-
ally simpler than our previous MDI+NMF approach, with
fewer parameters to optimize. It also gives a performance
advantage compared to the systems of Weninger et al. [6]
and Tachioka et al. [30]. In the following subsections, we



Keronen et al. EURASIP Journal on Advances in Signal Processing  (2015) 2015:76 Page 11 of 14

Table 3 Average SimData and RealData word error rates for the REVERB Challenge evaluation set

Comparable single and eight channel feature enhancement results from studies by Weninger et al. [6] and Tachioka et al. [30] are also presented for the most complex 1- and
8-channel back-ends. The best results for each recording condition and for both 1- and 8-channel systems are printed in boldface. Here, in addition to the abbreviations of
Table 2, BF denotes beamforming in general and as an example, R1F is decoded as Room 1, Far microphone. The dashed line separates the performance-wise comparable
back-ends

discuss the principles underlying our approach and how
these give rise to the performance gains observed and then
compare our results with those from other studies.

8.1 The principles of the approach
The main features of the enhancement method proposed
in the current study are that it is unsupervised and makes
only weak assumptions about the reverberation in both
the DM and NMF stages. In contrast to DM, the MDI
front-end requires a measurement of the extent of rever-
beration which is mapped to masked thresholds utiliz-
ing a function with three experimentally adjusted free
parameters [27]. In the DM initialization, the two main

assumptions are that reverberation effects are convolu-
tive and long term, and that the same transformations can
be used to decorrelate each reverberation condition. In
the NMF stage, reverberation is again assumed to be con-
volutive with a long-term effect. The activation filtering
assumes certain characteristics of temporal modulation
patterns of activations that are common to all rooms.
Therefore, neither the DM initialization nor NMF make
assumptions relating to any specific room.
That said, the unsupervised nature of the proposed

method also raises some challenges. The cost function we
use measures the success of reconstructing the original
observed speech, but its relation to the dereverberation
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or room characteristics is indirect (see Fig. 3). Therefore,
it is possible for the cost function to converge even when
the method does not apply dereverberation. This also
explains why we needed to modify the iterative update
rules to implement the NMFD model—our preliminary
experiments conducted with and without initialization
showed that the cost function converged, but the NMF
dereverberation was not successful.
The filtering of the activation matrix by HA, done in

step 3 of the NMF update algorithm, is motivated by
the need to remove traces of reverberation that remain
in matrix A. These traces are caused by imperfections
in the initial estimation stage and by the first stage of
NMF reconstruction before the filter update is applied
(step 2 and Fig. 3). More specifically, filtering the activa-
tion matrix by HA serves to move the traces of reverber-
ation that remain in A to matrix R, which is updated in
the next stage of iterations (step 4). The filtering scheme
is similar to other approaches that apply modulation fil-
ters to counteract reverberation (e.g. [5]). It emphasizes
reverberation-free speech onsets through a smoothed
derivator filter along the time trajectory; not in spectro-
grams as in earlier studies, but in the activations A. The
filtering also increases the sparsity ofA. After thematrixR
update iterations (step 4), the following activation matrix
A update (step 5) does not use activation filtering. The
filtering scheme is motivated by the notion that it is
more useful to model reverberation as much in matrix
R as possible. The reason for this, as discussed above,
is that the NMF cost function measures the precision of
reconstruction of the original reverberant speech, rather
than dereverberation that should be left for matrix R.
Note that matrix R is updated only once, as our prelimi-
nary experiments revealed that by alternating the R andA
updates, it is difficult to obtain stable estimates for both
matrices. Our hypothesis is that either the cost function
optimized by NMF is not optimal for reverberation or
that the optimization algorithm gets easily stuck in local
minima. Evidence supporting the former explanation is
that increasing the iteration counts did reduce the cost
function but impaired the recognition performance.
Considering the initialization step in the NMF algo-

rithm on the most complex LDA+MLLT+SAT+f-bMMI
and LDA+MLLT+SAT+DNN back-ends, the results indi-
cate that it is beneficial to apply dereverberation
during initialization. However, on the less complex
LDA+MLLT+SAT back-end, the benefit is negligible and
on the least complex LDA+MLLT back-end, the initializa-
tion step is detrimental as the NMF alone provides the
lowest average WERs on both SimData and RealData.
Our previous studies [17, 18] have shown that DM out-

performs MDI by a small margin in feature enhancement
as it achieves 37.87 % and 72.25 % average WERs on
the REVERBChallenge SimData and RealData recordings,

respectively, while MDI yields 39.14 and 71.67 %. This
observation may also explain why DM is better than MDI
when applied as the initialization method. However, we
cannot conclude that any better dereverberation method
used to initialize NMF would also lead to better factor-
ization. For instance in [17], experiments were conducted
using NMF and MDI as separate feature enhancement
methods for a system with acoustic models trained on
unenhanced MFCCs. For non-reverberant speech signals,
the MDI feature enhancement had no notable impact on
performance compared to the clean-speech-trained base-
line (the authors report WERs of 12.70 and 12.55 %,
respectively). However, the MDI-initialized NMF feature
enhancement severely degraded the clean speech recog-
nition accuracy (17.37 % WER), because the NMF intro-
duced prominent artifacts in the speech signals.

8.2 Comparison to similar studies
As discussed in Section 8.1, one key factor of our two
step feature enhancement is the ability to generalize. Our
approach is based on unsupervised learning, in which a
filter with an arbitrary impulse response can be learned
from data, and arbitrary speech utterances can be mod-
eled through the combination of dictionary atoms using
NMF. Accordingly, the dereverberation approach general-
izes well to unseen data. In contrast, the RNN-based sys-
tem in [6] requires supervised training and may become
over-trained to particular reverberation conditions or
speaker attributes. This may limit its ability to general-
ize to unseen data. Evidence that our system generalizes
comparatively well to unseen room conditions can be
found by comparing the SimData and RealData results
for our system and the Weninger et al. system. Relative
error reduction (calculated between average results of our
DM+NMF method and LDA+MLLT+SA+bMMI+MBR
back-end and the Weninger et al. system) for our sys-
tem compared to the Weninger et al. system is twice as
large for RealData (6.0 %) than for SimData (3.0 %), indi-
cating better performance for our system in mismatched
conditions.
A closer examination of the results obtained with LDA+

MLLT+SAT+f-bMMI and LDA+MLLT+SAT+DNNback-
ends reveals that although the MDI+NMF and DM+NMF
feature enhancements benefit the DNN-based back-end
system in terms of SimData performance, the improve-
ments on RealData are not as large as with f-bMMI
discriminative training. This may be due to non-optimal
DNN training, as the risk of over-training is relatively
prominent with DNNs.
The feature enhancement method of Tachioka et al. [30]

is based on blind reverberation time estimation for a dere-
verberation process similar to spectral subtraction. Our
method, on the other hand, does not make use of rever-
beration time but makes only weak assumptions about
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the reverberation conditions, as discussed in Section 8.1.
With the LDA+MLLT+SAT+f-bMMI back-end, the DM-
only feature enhancement achieves nearly as good a per-
formance as Tachioka et al., with a relative average error
increase of 4.1 % on SimData and 0.9 % on RealData. In
our previous study [17], the MDI system based on the
same mask estimation method as in the current study was
shown to outperform an MDI method with mask estima-
tion based on assessment of room reverberation. These
findings imply that the final recognition performance can
be significantly degraded by inaccuracies in reverberation
estimates. In multichannel recordings, the Tachioka et al.
system invokes DS beamforming with a cross-spectrum
phase analysis and a peak-hold process for the direction
of arrival estimation. While the beamforming in [30] is
essentially an improved version of our DS implementa-
tion, our results indicate that a conventional DS performs
better for the REVERB Challenge data. This is apparent
from the observation that the relative difference between
the average error rates of Tachioka et al. and DM+NMF
are larger on 8-channel than on single-channel setups, for
both SimData and RealData.
Even though our average DNN+SMBR discriminative

training-based results (9.17 %) are slightly better than
the comparable DNN+bMMI results of Tachioka et al.
(9.77 %) on SimData, the Tachioka et al. system pro-
vides higher average performance on RealData (26.56 %
vs. 25.83 %, respectively). It is also noteworthy that in our
experiments, discriminative training brought little benefit
to the DNN system, whereas a more significant improve-
ment was seen for Tachioka et al.’s DNN back-end. The
best single-channel results in the study of Tachioka et al.
are obtained by combining the results from 16 separate
recognition systems by using recognizer output voting
error reduction (ROVER). The average WERs for the
ROVER system are 8.51 % for SimData and 23.70 % for
RealData. To put things in perspective, the best perform-
ing single-channel recognizer in the REVERB Challenge,
proposed by Delcroix et al. [38], achieved average WERs
of 5.2 % on SimData and 17.4 % on RealData. The most
significant benefit of the Delcroix et al. system compared
to ours lies in the acoustic model, which has higher input
dimensionality and was trained on an extended data set
approximately five times the size of the REVERB Chal-
lenge training data set. The Delcroix et al. system also
operated in full-batch mode.

9 Conclusions
This paper proposed a two-stage feature enhancement
method for dereverberation of speech for noise robust
ASR, based on a combination of distribution match-
ing and non-negative matrix factorization. The proposed
method was evaluated with modern ASR back-ends
based on variants of the GMM-HMM and DNN-HMM

frameworks and shown to outperform our previous com-
bination of missing data imputation and NMF [17] by a
small margin. In several instances, the proposed method
also gave higher recognition accuracy than the state-of-
the-art reference approaches by [6, 30] with similar back-
end processing. The main benefit of the proposed method
over the reference approaches is that it generalizes well
to unseen reverberation conditions. This was reflected in
themost difficult real-data scenarios in the REVERBChal-
lenge, where our DM+NMF-based ASR systems achieve
the largest performance gains over reference approaches.
Moreover, the NMF alone and MDI+NMF-based systems
were also shown to perform well with respect to the
reference approaches.
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