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• This chapter characterizes robustness, reliability, resilience, and elasticity (R3E) in architectural designs for
end-to-end big data machine learning systems.

• We provide a novel model of quality of analytics chain (QoAChain) to abstract and define constraints for assuring
robustness, reliability, resilience, and elasticity of end-to-end machine learning.

• We present a concept of R3E objects and operations abstracting components in big data machine learning
systems.

• We discuss engineering methods for coordinating, monitoring, analyzing, and testing R3E attributes.
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ABSTRACT
Concerns of robustness, reliability, resilience, and elasticity in Machine Learning (ML) systems
are important and they must be considered in trade-off with efficiency factors. However, they
need to be supported and optimized in an end-to-end manner, not just for ML models. In
this chapter we present a conceptual approach to architectural design and engineering of the
robustness, reliability, resilience, and elasticity (R3E) for end-to-end big data ML systems at
runtime. We propose quality of analytics as a contractual means for optimizing end-to-end big
data machine learning (BDML) systems. Based on that, we propose to define and abstract diverse
types of components under R3E objects and devise operations and metrics for managing R3E
attributes. Through a set of proposed coordination, monitoring, analytics and testing methods,
we identify essential tasks for tackling R3E concerns when developing BDML systems. Finally,
we illustrate our approach with an example of an end-to-end BDML system for building objects
classifications.

1. Introduction
Big Data Machine Learning (BDML) systems enable different types of ML-based pipelines, which deal with big

data in motion or at rest. End-to-end BDML systems support tasks from processing raw data to producing inference
results. Thus, BDML systems involve several different software components, including data sources collectors/con-
nectors, message brokers, edge data preprocessing and aggregators, cloud data stores, ML serving platforms, and ML
services. These components are cross-layered and cross-infrastructural, due to the nature of diverse ML pipelines and
data to be supported by such systems. Thus, components of an end-to-end BDML system are potentially deployed
and offered in multiple edge and cloud infrastructures. Typically, the data to be inferenced and the application using
the ML model-as-a-service are from the consumer, whereas the ML model-as-a-service can be run in the edge or
cloud by the ML service provider, which offers the service to many consumers. Furthermore, computing, storage and
communication services might be offered by other providers. Such systems for real-world ML must be designed with
robustness, reliability, resilience and elasticity (R3E) concerns from a multi-party perspective. Although individual
components may be designed and tested with certain degrees of R3E, the challenging question for the development of
end-to-end BDML systems is to guarantee expected runtime R3E attributes across layers and infrastructures. Therefore,
recently, the role of software systems and underlying distributed computing platforms and their intersections with
ML have been discussed intensively. Since BDML systems are complex and typically used for critical businesses, the
R3E attributes play a key role in BDML software architectures and implementations. Ensuring R3E is challenging for
complex software systems because R3E attributes are highly interdependent and multi-dimensional. Especially, R3E
attributes inBDML systems are related to three aspects: services, data, andMLmodels. The key research question in our
work is how to build and optimize the R3E attributes for BDML systems in an end-to-end manner; and the “end-to-end”
aspect forces us to examine various components of BDML systems together, following their dependencies, interactions
and functions.

This chapter presents a novel conceptual approach to R3E engineering for BDML systems, in which we will focus
on software architecture and design aspects. We develop abstractions and methods for architectural designs, runtime
optimization, and engineering analytics in BDML. Our approach considers different levels of abstractions of BDML,
from data collection to training to model serving to determine key constraints, engineering steps, monitoring, and
management processes for making BDML robust, reliable, resilient, and elastic. Our conceptual approach makes the
following contributions:
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• QoAChain as a means to combine quality of analytics constraints, services contracts, and data contracts for
specifying runtime R3E attributes and constraints.

• abstractions and models for R3E objects and operations in BDML.
• engineering methods for coordinating, monitoring, analyzing and testing R3E attributes.

Our approach covers key aspects of R3E engineering and layouts the foundational work for the development of specific
techniques and tools to support R3E in BDML systems. To illustrate our approach, we will use a realistic example of
end-to-end BDML for building objects classifications.

The rest of this chapter is organized as follows: Section 2 characterizes R3E in BDML and presents our motivating
examples and research questions. Section 3 presents our R3E approach. We present a concrete example of R3E aspects
and identified requirements in Section 4. Further related work will be discussed in Section 5. We conclude the chapter
and outline the future work in Section 6.

2. Background and Motivation
2.1. Background – Characterizing BDML

A BDML system can be characterized as follows:
• system structures and functions: a BDML system includes various components implementing different functions.

Examples of components are a data storage service and anML serving platform, whose functions are storing data
and serving ML models, respectively. Components have different relationships and possible inputs and outputs.
R3E attributes can be associated with individual components, a set of components, and the system as a whole.

• supporting computing, data and communication infrastructures: computing infrastructures provide different
types of computing resources for different tasks, notably data preprocessing, training, and serving. Typically,
such infrastructures include advanced computing systems like CPU/GPU resources, containers and Kubernetes,
message brokers, and edge systems. The data infrastructures provide data for training and data being inferenced
as well as other types of data related to ML, such as ML model experiments and performance of ML services.
Our focus is on big data infrastructures.

• runtime quality/capabilities: they include multiple attributes, for example, regarding to fault-tolerance, high
performance, high availability, and security of software services. From the data view, a BDML system has to deal
with big data characteristics, such as volume, variety, velocity, and veracity, from the data source to the end of
the ML pipelines. Furthermore, ML models have different quality attributes, depending on domain requirements
and business contexts.

For example, Figure 1 shows a view from common tasks in end-to-end BDML pipelines. From the ML pipelines
perspective, the system-as-a-whole can be seen as a meta pipeline orchestrating different sub systems, where each
subsystem can be implemented differently, such as with Airflow, Lambda, TensorFlow, and other supporting services.
Each of them requires a variety of components for data, software services, ML algorithms, and pipeline orchestration.

In this chapter, we consider well-studied R3E attributes in the state-of-the-art literature:
• robustness attribute (Gribble, 2001; Laranjeiro et al., 2021) is about the ability to cope with errors, such as with

the error of the data (Sehwag et al., 2019).
• reliability attribute (Littlewood and Strigini, 2000; Saria and Subbaswamy, 2019; Elsayed, 2012) is about the

ability to properly function/operate according to the service specification, e.g., the availability of a service must
be 99%.

• resilience attribute (Trivedi et al., 2009; Brtis et al., 2021) is about the ability to hold out required capabilities
under adversity, e.g., due to system failures or security attacks.

• elasticity attribute (Dustdar et al., 2011) is about the ability to stretch and return to normal service capabilities,
e.g., under external forces of usage demands.

We will rely on common definitions and usages of these attributes from the big data and ML perspectives. Table 1
gives examples about key R3E concerns and factors from big data and ML views of BDML systems. Our approach will
support R3E attributes in such common senses.
Hong-Linh Truong: Preprint submitted to Elsevier Page 2 of 15
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Figure 1: Example of ML pipelines and components in BDML systems

R3E
attributes

Cases from big data view Cases from machine learning view

Robustness deal with erroneous and bad data (Zhang et al.,
2017), data processing job robustness

dealing with imbalanced data, learning in an open-
world (out of distribution) situations (Kulkarni
et al., 2020; Sehwag et al., 2019; Saria and Sub-
baswamy, 2019; Hendrycks and Dietterich, 2019)

Reliability reliable data sources, support of quality of data
(Zhang et al., 2020; Lee, 2019), reliable data ser-
vices (Kleppmann, 2016), reliable data processing
workflows/tasks (Zheng et al., 2017)

reliable learning and reliable inference in terms of
accuracy and reproducibility of ML models (Saria
and Subbaswamy, 2019; Henderson et al., 2017);
uncertainties/confidence in inferences; reliable ML
service serving

Resilience software bugs, infrastructural resource failures,
fault-tolerance and replication for data services and
processing (Yang et al., 2017)

bias in data, adversary attacks in ML (Katzir and
Elovici, 2018), resilience learning (Fischer et al.,
2018), computational Byzantine failures (Blanchard
et al., 2017)

Elasticity utilizing different data resources; increasing and
decreasing data usage with respect to data volume,
velocity and quality; elasticity of underling resources
for data processing (Wang and Balazinska, 2017)

elasticity of resources for computing (Huang et al.,
2015; Harlap et al., 2017; Gujarati et al., 2017),
elasticity of model parameters; performance loss
versus model accuracy; elastic model services for
performance

Table 1
Common R3E with big data and ML concerns

2.2. Motivating example – machine learning for classifying building elements
We consider a prototype for an end-to-end BDML system for classification of Building Information Modeling

(BIM) elements in the architect, engineering and construction domain. ML-based BIM classification allows speedup
the design and check conformity of building models. In our collaboration, an initial end-to-end BIM BDML system has
been developed using various AWS services for moving data and ML capabilities are built with TensorFlow and Keras
(Ryu et al., 2021). Figure 2 shows a simplified view of a new architectural design for the discussion of the role of R3E
in this chapter, where we are leveraging serverless platforms to better manage and optimize the complex relationships
between various components. In the new design, data exported from user tools will be moved to Data Service. New
data will be detected, and preprocessing and feature engineering will be triggered by serverless platforms, before ML
Service serves requests of classifications. Atop theML Serving Platformwe haveML Servicewith differentMLModels
for BIM classification.

Figure 2 not only shows an end-to-end system with various components but also creates clear interfaces between
different sub-pipelines, like preprocessing, feature engineering and serving, enabling us to carry out different
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Figure 2: Overview of an end-to-end big data machine learning system for BIM

performance/cost optimizations for different pipelines and their underlying components. It also allows us to deal with
R3E attributes more flexible for subpipelines and underlying components. However, it creates various R3E concerns
that need to be addressed together. For example, ML Service has to be elastic to support different requirements with
respect to accuracy, cost, and performance. This is dependent on the elasticity of the underlyingML Service Platform,
which is strongly linked to computing resources, and on the output of feature engineering, which in turn is strongly
dependent on the exported data sent to Data Service and preprocessing robustness and reliability.
2.3. Research questions

Key issues of end-to-end BDML are not just about efficiency, such as highly responsive in serving the classification
with a minimum cost, but also in trade-offs with robustness, reliability, resilience, and elasticity. For example, in the
BIM scenario (Section 2.2), the accuracy of inference results from ML service and the resilience of ML service are
more important than the response time due to the business nature of the domain. As recognized in (Ackley, 2013),
performance must also be aligned with robustness and resilience. The robustness of the MLmodel depends on the data
input. From the computation and network, reliability concerns for edge-cloud have many issues (Suryavansh et al.,
2019; Nguyen et al., 2019). The reliability concern from the data aspect is that the data source must provide “reliable
data”, interpreted as the data quality and quantity satisfied the required conditions. On the other hand, from the service
viewpoint, the ML model serving will be considered as a reliable service when it can return the results in specified
time. This turns out to be dependent on multiple factors, such as, the reliability of the underlying computing resources
(e.g., no failure) and the elasticity of the resources (e.g., in order to assure response times in the expected range).

We see that R3E concerns exist in different parts of a BDML system. However, currently, there is no systematically
way to capture, represent, monitor, and optimize such R3E attributes from the design and architecture viewpoint. Our
vision in this chapter is:

R3E attributes can be systematically modeled, programmed, and captured at different levels of abstractions
in BDML systems, enabling the coordinated optimization of these attributes in an end-to-end view, based on
specific contexts of the intended end-to-end ML pipelines executed in BDML systems.

Consequently, we have the following important research questions (RQs):
• RQ1: what would be the model for abstracting R3E constraints?With diverse R3E concerns, we need to capture

key R3E attributes and describe them into appropriate constraints.
• RQ2: how can we abstract complex components in the R3E view and define suitable operations for managing

R3E?Components in BDML systems need to be managed through the R3E view, which should capture attributes
and essential operations.

• RQ3: which are the key engineering methods for achieving R3E? Engineering methods for monitoring and
managing R3E attributes across components of BDML systems must be laid out, paving the way to develop
suitable tools and frameworks.

The R3E approach will provide key conceptual steps and components to address the above-mentioned questions.
Hong-Linh Truong: Preprint submitted to Elsevier Page 4 of 15
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3. Key elements of R3E Approach
3.1. QoAChain – Chaining diverse types of quality constraints as a contract for optimizing

end-to-end BDML
RQ1 requires us to determine how to abstract R3E attributes and to specify R3E concerns for optimizing

BDML systems. Figure 3 gives a high-level view of the complex relationships among various concerns of different
attributes when optimizing BDML. Given an application, big data and ML pipelines are combined and executed to
analyze input data (data in) and produce results. Such executions are carried out with edge-cloud resources as services.
There are many questions with respect to attributes associated with used models, input data, results, and execution
environments of computing, data and communication services, as exemplified in Figure 3. These concerns are from
different involved stakeholders, such as the application users, the BDML system provider, the developer and scientist
of ML pipelines, and the resources provider. Overall, they reflect the concerns of dealing with trade-offs between R3E
and efficiency.

Consider the complex relationships among various components and stakeholders in BDML, we choose to combine
the concept of quality of analytics (QoA) (Truong et al., 2018), machine learning service contracts (Truong andNguyen,
2021), and data contracts (Balint and Truong, 2017; Truong et al., 2012) for end-to-end BDML. We summarize these
works in the following:

• Quality of Analytics (QoA) (Truong et al., 2018) emphasizes the need to optimize data analytics based on specific
contexts that is elastic. It characterizes complex relationships between quality of results, performance, and cost
that are not fixed, but changing according to requirements, even for the same system:

– Quality of results, outputted from data analysis tasks including ML ones, are characterized by the
user/domain expert, e.g., quality of data of the output and the accuracy of predictions.

– Input data has complex characteristics with respect to, for example, quality of data and data volume and
velocity, that strongly influence infrastructural resources as services, such as task execution, computing
machines, and storage.

– Complex types of cost (money) and performance are based on business purposes, contextually expected
and changed by involved stakeholders.

• The recent work on machine learning contracts (Truong and Nguyen, 2021) defines contractual terms between
ML service providers andML customers. ML contracts focus onML-specific attributes, such inference accuracy,
at runtime that are agreed between the customers and the services.

• Existing data contracts (Truong et al., 2012; Balint and Truong, 2017) focus on constraints on data to be delivered
from data sources (providers) to consumers. They focus very much on quality of data attributes.

Clearly the above-mentioned concepts aim at guaranteeing important constraints seen in BDML systems. ML-
specific attributes, data quality attributes, and common service attributes can be associated with various parts of a
BDML system. The associations can be for individual components or a whole pipeline, and can indicate different
expectations in the BDML system. Due to the diversity of component types, inputs and outputs, it is difficult to have a
single way to specify such constraints for BDML systems.

A “reliable BDML system” should guarantee the specified runtime quality attributes built from the work on QoA,
ML contracts and data contracts, while maintaining designed R3E attributes. Due to the nature of ML systems, we can
use these concepts to specify constraints for different parts of a BDML system for different purposes, such as:

• data contract: a constraint on data completeness for input IoT data.
• ML contract: a constraint on inference accuracy for inference results.
• common service contract: a constraint on the response time for the end-to-end processing.
These examples show that runtime constraints can be defined for different components for different attributes and

these constraints might be specified by different models. An BDML system is designed and optimized for different ML
pipelines, which serve different business purposes, depending on the usage of the resulting outcome of the pipelines

Hong-Linh Truong: Preprint submitted to Elsevier Page 5 of 15



R3E for end-to-end machine learning systems

Figure 3: Concerns among components and stakeholders in optimizing ML

and the business goal of the provider of the pipelines supported by theBDML system. Therefore, a QoA-based approach
can help to deal with the diversity of what, when, where, and how runtime attributes related to R3E can be supported.
The QoA-based approach should include metrics for services, data and ML models to reflect the end-to-end view.
It should support human-in-the-loop and domain expert integration when defining QoA, due to the domain aspect
of end-to-end BDML. To this end, we define “Chaining QoA for BDML” (QoAChain) as a contractual means for
optimizing end-to-end BDML systems. QoAChain constraints described in a “contract” for optimizing R3E attributes
(i) implement service contract and data contract models, (ii) enable monitoring and optimization techniques centered
around contracts, and (iii) allow runtime changes and updates according ML-specific contexts by people or intelligent
software. QoAChain constraints are based on various metrics inherent in BDML.

Figure 4 shows key sub-elements of a proposed QoAChain and its relation to a BDML system. First, in our view, a
BDML System consists of many Components; each Component may have sub components. A Component will utilize
some resources (in order to implement required functions) and/or will deliver resources (e.g., featuring data/resulting
prediction). Resources in our view can be simple or complex, and they are not just infrastructural resources. There
main categories of resources to be utilized or delivered are Services and Data. Services can be further divided
into different types, such as for data processing, computing, storage and inferencing. Data can be used to represent
input data as well as output data (e.g., inference result in the case of ML service). In terms of quality, represented
by Quality, there are many attributes known in big data and ML, such as ResponseTime, Data Quality, and
Inference Quality (see also Section 2.1) that we just illustrate some of them in Figure 4. QoAChain for a BDML
System consists of different QoAConstraints, which are associated with Components or the BDML System as a
whole. QoAConstraints are used to specify constraints on attributes that should be monitored and optimized for
R3E. They include tradeoffs among Resources, Quality, and Costs. QoAConstraints can be implemented by
using existing, specific contract specifications. Examples of constraints in a chain are:

• a constraint on data completeness for IoT input data sent to a message broker, which passes the data to an ML
service for dynamic inference of the IoT data.

• a constraint on inference accuracy for an ML service, given a constraint on data completeness and data volume
that the ML service handles in a window of time.

• a constraint on the response time between from the time a component sends a batch of data to a message broker
to an ML service until the time the component receives the inference result.

Based on QoAChain, the next question is how to manage R3E attributes across multiple contexts in end-to-end
BDML systems, such as to which components we should associate QoAChain and how to manage them.
3.2. R3E Objects and Operations

For RQ2, we will address fundamental abstractions for objects and operations for R3E. Consider the internal
structure of a BDML: BDML = {c1, c2,⋯ , cn} whereas ci is a component, which is a part of BDML. A component
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Figure 4: A simplified view of QoAChain and its relations to BDML systems and existing contracts

can be a software service, a container instance, a virtual machine (VM), or a middleware; a component can be
instantiated as a resource-as-a-service. A component can be composed from a set of components, creating a complex
component as a subsystem of a BDML system. For example, a subsystem for data preprocessing in a BDML can
include containers and workflow orchestration components. Given the structure of BDML explained in Section 2.1, a
component of BDML can be described using a set of objects; an object can represent a very complex component, such
as an extract-transform-load process that filers data suitable for feature engineering, or represent a simple task, e.g., a
data validation task.
3.2.1. Conceptualize R3E objects

In terms of management, we view components, pipelines, tasks as well as their input/output as programmable
objects. We define an object as an R3E object if we can associate R3E policies and attributes with the object, meaning
that we can examine R3E capabilities for the object and control these attributes. Given a BDML, not all the objects
can be an R3E object. Furthermore, in the view of the developer, they might not see an object as an R3E object if they
cannot apply R3E techniques. However, the operator of BDML might see that object as an R3E one. For example,
consider an ML model which has no elastic parameters to influence robustness. The developer might not focus on the
ML model as an R3E object. The operator sees that the underlying computing resources can be changed for the ML
model, thus it can be an R3E object.

We propose to conceptualize R3E objects, shown in Figure 5. An R3Eobject represents a BDML Component.
BDML Component can be classifieds according to their functionality and layers, such as infrastructural objects,
ML algorithm objects, and data objects. Furthermore, an BDML Component can be composed from other BDML
Components. Therefore, we have a similar classification of R3Eobject. An R3EObject will have to implement a set
of operations/APIs for controlling and monitoring and will be associated with a set of attributes – R3EAttributes,
each attribute is represented as a metric name and value.

When applying the R3E approach, R3E objects can be identified and built from two perspectives: existing
knowledge about contemporary objects that we use, such as containers, VMs, and middleware, which already have
built-in features for controlling certain aspects of R3E. Second, the newly objects to be developed for BDML must
implement such features. Given an BDML system, in our approach, we do not need to represent R3EObject for all
possible BDML Components. However, using a composition model, we can also build an R3EObject for the entire
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Figure 5: A simplified conceptual model of R3E objects

BDML system that links to other R3EObjects representing other components. Via the dependency of R3EObjects, we
can capture the whole picture of the system to be optimized. For the implementation, we are investigating two models:
R3EObject as implemented as a resource of a microservice (an adaptor model) and as an interface implemented within
components themselves.
3.2.2. R3E attributes associated with R3E objects

We classify attributes into different sub categories, associated with services, data, andMLmodels, shown in Figure
4. Each attribute is represented as a metric under a tuple (name, value).

• Services quality: covers different types of attributes for a variety of services, including infrastructural computing
services, data storage, communication services, and platform services. Common quality attributes are well-
known in literature, such as response time, availability, and MTBF.

• Data quality: covers data quality metrics, such as completeness, timeliness, currency, validity, format, accuracy,
and data drift.

• ML models quality: includes known quality in ML models, such as accuracy, F1 Score, and MSE.
These metrics are captured for individual components and composite components as well as tasks of ML pipelines
carried out atop such components.
3.2.3. R3E operations and APIs

Given an R3E object, we must be able to control it to meet R3E constraints, which are pre-defined or changed
during runtime. For example, if parameters of an ML model as a R3E object can be controlled to affect the ML model,
we can then optimize the ML model for different degrees of robustness, reliability, resilience, and elasticity. Similarly,
if an object performing feature engineering can be tuned with different granularity of feature extraction and selection,
then we can control the object to have different data quality values. Furthermore, to allow for controlling, we must be
able to monitor and query states of R3E objects at runtime. This can be done directly through querying the object or
indirectly through the monitoring systems. Shown in Figure 5, two types of key operations are for R3E controlling and
monitoring. An R3E operation associated with R3E objects will be implement as an API. Inputs and outputs of the
API are centered around metrics and constraints specified in QoAChain.
3.3. Engineering Methods

For RQ3, we propose a set of engineering methods for R3E coordination, monitoring and analytics, and testing,
benchmarking and experiments. We will describe engineering methods but leave the implementation of tools and
frameworks for such methods out of the scope of this chapter.
Hong-Linh Truong: Preprint submitted to Elsevier Page 8 of 15
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3.3.1. Coordination for R3E
Having R3E objects enables us to optimize theBDML system through control and reconfiguration of R3E attributes,

thus leading to changes in components of the BDML system. Due to the complexity and structure of the BDML system,
coordination of such controls and configurations is challenging.
Architectural styles for R3E coordination: To perform the coordination of controls and reconfigurations of various
R3E objects, we must consider suitable architectural styles coupled with BDML systems. Most architectures for end-to-
end BDML systems follow either the reactive style or the workflow style as the basic architectural style. Furthermore,
due to the complexity of individual components, each component might also follow the workflow or reactive style.
Basically,

• reactive style: the data/event from one task/component triggers the next action in the pipeline/system (Smith,
2018). This model usually fits very well with large-scale BDML systems

• workflow style: a workflow is used to control tasks/components inML pipelines/systems. However, most systems
focus on leveraging workflows in the training or inferencing.

We design our approach to workwith the reactive system style. This will be alignedwithBDML pipelines consisting
of components across different layers and different infrastructures (e.g., edge and cloud) and different providers.
Furthermore, using reactive models, we can intercept BDML systems at different places to create optimization and
feedback channels to support R3E. Figure 6 present the high-level components view. A BDML system consists of
different subsystems, such as Computing and Data Platform, Data Processing Platform, and Serving Platform. Each
subsystem is complex and can be implemented with different technologies. ML tasks in ML pipelines are spread in
these subsystems and they are coupled through reactive principles by using messages. Therefore, we do not need a
global workflow system to orchestrate them but we can use a set of R3E Managements. Each R3E Management will
interact with a subsystem using three interfaces: R3EPolicies are used to control subsystems, R3EAttributes are
used to capture states and R3EConstraints specifies QoAChain. Among R3EManagements the reactive principle is
also used to provide an end-to-end view of the whole system.

Figure 6: R3E Reactive systems with group of management

Distributed controls: Each component, based on the view in Figure 1, can be controlled and managed through the
individual component’s R3E object. For example, data collections can be controlled to select suitable data sources
and such controls are independent from another control of the ML model service. However, from an end-to-end
viewpoint, we need to coordinate these controls to achieve the defined QoAChain for the whole BDML system.
Hong-Linh Truong: Preprint submitted to Elsevier Page 9 of 15
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Figure 7: Distributed monitoring and control processes utilizing R3E objects

Figure 7 presents our approach to control ML tasks and corresponding components by using Monitoring Process
and Control Process to interact with R3EObject. For each subsystem and sub-pipelines on that subsystem,
R3EObjects are used to monitor and control tasks and components. Corresponding Monitoring Process and
Control Process will interact with these R3Object. Exchanges among subpipelines, such as the featuring data
outputted from feature engineering subpipeline to training subpipeline will be also monitored. Individual
Control Process for different subpipelines will be coordinated by a crossover Control Process. Thus, we have
distributed controls but through a centralized coordination. In our implementation, we plan to implement functions in
Monitoring Process and Control Process using serverless frameworks. Note that Monitoring Process will
need to work with monitoring systems that we will discuss in the next section.
3.3.2. Monitoring and Analytics

Monitoring and analytics monitor and analyze R3E attributes of services, data and ML models and map the
R3E attributes to R3E objects. For the whole approach, we need to leverage different methods for monitoring and
analytics. Shown in Figure 8, we will need (i) monitoring probes and frameworks, (ii) tests and benchmarks units
and frameworks, and (iii) data analysis/machine learning for understanding monitoring data. We will support different
scopes of monitoring and analytics: the system as a whole, subsystem/subpipeline and component/task. With such
scopes, we will focus on end-to-end aspects. For example, data reliability can be examined along the path from data
sources to the final inference results. The consumer can also expect an end-to-end R3E attribute, such as accuracy and
response time, which can only be achieved if we are able to monitor different parts and to perform coordination-aware
assurance, e.g., using elasticity principles, at the system as a whole scope. For the implementation, we will need
to integrate various monitoring systems for services (such as Prometheus), for data (e.g., data validation tools from
scikit-learn and TensorFlow Data Validation), and for ML models (e.g., extracted from ML frameworks).

In terms of analytics, we also have different perspectives about which techniques can be applied for which parts and
whether we can have evaluation and interpretation in a subjective manner. Here the context of analytics is important.
Therefore, we suggest to use a context model of What, When, Where, Who and How for analyzing R3E. Figure 9
presents the context model for understanding R3E attributes. Our approach in the implementation is to extend the
work on monitoring of ML service contracts (Truong and Nguyen, 2021) to cover R3E.
3.3.3. Testing, Benchmarking, and Experimenting for R3E

To run tests, benchmarks and experiments (TBE) is of paramount importance for optimizing R3E. The challenge
is that it is not just related to ML training and serving, but also to other tasks in the whole BDML system. Testing,
benchmarking and experimenting have to do across subsystems and focus on correlating R3E issues. Current ML
testing frameworks are mainly focused on ML models (Aggarwal et al., 2019; Riccio et al., 2020). Testing big data is
currently focused on data storage and querying (Alexandrov et al., 2013; Li et al., 2016; Baru et al., 2012; Gulzar et al.,
Hong-Linh Truong: Preprint submitted to Elsevier Page 10 of 15
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Figure 8: Scopes of tests, benchmarks and experiments

Figure 9: R3E W4H analytics context

2019; Bajaber et al., 2020). Combination of different tests into a coherent R3E view is currently missing. Furthermore,
ML experiment solutions (Gharibi et al., 2019; Duarte et al., 2017) focus on mainly model metadata, used data sets, and
hyperparameters but the management of data sources, services performances and code/data versions is not integrated.

Figure 10 outlines our approach for testing, benchmarking, and experimenting. R3E TBEUnit is an abstract
unit designed for testing, benchmarking, and experimenting. At the top level, we use workflows to coordinate
tests/benchmarks across subsystems for different subpipelines. We will develop a variety of R3E test/benchmark units
for BDML; each unit does test/benchmark not only one component but also a layer or an aspect, e.g., data. Last, R3E
integration tests/benchmarks/experiments carried out for individual subsystems and components are linked together.

4. Illustrative Examples
In this section, we explain strategies for optimizing the BIM scenario mentioned in Section 2.2. Considering that

we must have to apply the R3E approach for the BIM scenario to allow the optimization of the BIM ML pipeline in
an end-to-end manner. To this end, we analyze the scenario and apply step-by-step of the R3E approach mentioned in
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Figure 10: Conceptual view of R3E tests, benchmarks and experiments

Section 3. In the following we summarize R3E aspects, identified requirements to be addressed. For each category, we
only show key examples.

In terms of QoAChain we have identified:
Aspects Identified requirements
model accuracy as a contractual means between BIM and customers for the whole system
response time as a contractual means between the ML service provider and customers for

inferencing
accuracy & response time
tradeoffs

accuracy is more important than response time to customers. Therefore, elas-
ticity of cloud resources for ML services can be flexible (using CPU, GPU and
even spot instances)

The accuracy and response time tradeoffs are based on the business of the BIM scenario: it is important to predict
and classify building objects with a high degree of accuracy to make sure that the design is correct and reliable. For
this, the customer does not need a real time prediction. Consequently, in terms of R3E at runtime, computing and data
resources could be allocated differently with respect to the cost. For example, GPU resources might be used only if
a higher cost is accepted by the customer, whereas more computing resources are needed for data preprocessing and
feature engineering phases.

In terms of R3E objects and operators, we have identified:
Aspects Identified requirements
R3E objects include (i) data resources collector and selector (trustful data sources, text and

3D data); (ii) feature engineering component (3D data extraction granularity); (iii)
machine learning models (model versions and parameters); (iv)ML services (cou-
pled with ML models and underlying computing resources); computing resources
(cloud-based CPU & GPU resources)

Operators data feature engineering operators are for fine-grained and high-grained of data
extraction; changes of ML models and parameters; elastic computing resources
with possibility to have different types of resources, including edge hardware,
cloud-based CPU and GPU
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The data resource collector and selector are not designed as data sources are typically fixed, e.g., from S3 storage or
shared file-based storage. This requires the design of new components for data collector and selector that are integrated
with data sourcemetadata and data resource catalogs as well as the change of the data pipeline from User Tool to Data
Service(see Figure 2). One example is to use DVC1 in combination with quality of data metrics, such as trust, data
completeness, and timeliness, that are determined during the data export task. Another aspect is to control feature
engineering task which is tightly coupled with preprocessing but strongly influences the accuracy, cost and time
of the prediction in ML models. This requires us to separate preprocessing and feature engineering tasks.

In terms of R3E Engineering, we have identified:
Aspects Identified requirements
Coordination for R3E three subsystems are identified: preprocessing, featuring engineering, and serving.

They can be optimized independently or together
Monitoring and Ana-
lytics

quality of data in data collection; model accuracy metrics during serving; perfor-
mance response time; costs paid to cloud resources

Tests, benchmarks and
experiments

tests of data validation; benchmarks in training; monitoring and provenance for data
resources and machines for individual experiments

Through the separation between preprocessing and feature engineering, and introduce an R3E object between
the two tasks for controlling feature engineering. Finally, ML models need to be controlled separately through
QoAChain coupling the ML models with resource elasticity.

5. Discussion
Different communities have advocated R3E in different ways. In ML benchmarks, various initiatives for testing

robustness, performance and cost have been carried out (Fei Tang et. al, 2020). Recently the discussion of end-to-end
ML has been attracted many researchers. Especially, in the software engineering and ML production, the optimization
of many phases in end-to-end ML pipelines is on the focus (Amershi et al., 2019). AIOps (Dang et al., 2019) focuses
on using AI to optimize quality of software. Our work has a similar ultimate goal but our approach differs as we focus
on software service programming, engineering and analytics. To our best knowledge there is no previous roadmap for
R3E for end-to-end BDML.

Different components of an end-to-end BDML system have different R3E attributes and concerns that lead to
different optimization focuses of R3E. For example, in ML services and models, robustness as a critical concern has
been discussed intensively (Sehwag et al., 2019). However, the elasticity of ML services has not been studied well
(Huang et al., 2015), while the elasticity of infrastructural resources for enabling cloud computing has been studied
intensively. Another example is that, while data is very important for robustness in ML training and ML services,
monitoring quality of data monitoring and supporting data resources elasticity in ML have not been well developed.
The reliability, reflecting the concept of offering “reliable service” (Kumar and Vidhyalakshmi, 2018; Galetzka et al.,
2006), for different individual components (e.g., ML services, data stores, and data brokers) has been studied intensive
but the reliability of BDML systems has not been studied well in an end-to-end manner. Resilience (Robbins et al.,
2012) is mostly addressed at the system services. We need to understand how ML models resilience (Park et al.,
2017) is related to elasticity of data and other aspects, e.g., message middleware (Wang et al., 2010) and programming
languages (Grove et al., 2019) in our pipeline design.

6. Conclusions and Future Work
In this chapter we present a novel conceptual approach for implementing robustness, reliability, resilience, and

elasticity for end-to-end big data machine learning systems, called R3E. Given R3E attributes, we proposed to use
QoAChain as a contractual means for specifying constraints of R3E. To manage R3E of components and tasks, from
the R3E view, we abstract them under R3E objects and devise operations for monitoring, controlling and optimizing
R3E. Our approach has presented key engineering methods for main design and engineering activities with respect
to R3E. In our current work, we have not addressed all tools implemented our abstractions and engineering methods.
We are working on the monitoring and observability of ML services (Truong and Nguyen, 2021) and a service for
collecting trails from tests, benchmarks, and experiments for end-to-end ML systems. However, this chapter layouts
fundamental steps for addressing R3E design and engineering in the future.

1https://dvc.org

Hong-Linh Truong: Preprint submitted to Elsevier Page 13 of 15

https://dvc.org


R3E for end-to-end machine learning systems

We foresee that different scenarios can be elaborated to have a deeper view on R3E. Details of tools and components
can be carried out for training optimization, runtimeMLmodel serving, out-of-distribution detection and optimization,
and elasticity serving. The situation is even more challenging when BDML systems have more distributed learning
(Verbraeken et al., 2020), as the nature of complexity is increasing. We will revise our approach to address such new
development. Our current work is to focus on two aspects: end-to-end self-optimized solutions and QoAChain toolset.
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