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ABSTRACT
This paper considers model-based fault detection of large-scale (possibly rank-deficient) dynamic sys-
tems. Assuming only global (and not local) observability over a sensor network, we introduce a single
time-scale networked estimator/observer. Sensors take local outputs/measurements of system states with
partial observability and share their information (including estimation and/or output) over a communica-
tionnetwork, andgaindistributedobservability.Wedefine the conditions on thenetwork structure ensuring
distributed observability and stabilising the error dynamics. However, system outputs are prone to faults
and uncertainties, which affect the state estimation of all sensors as a consequence of communicating
(possibly) faulty data. From the cyber-physical-systems (CPS) perspective, such faults add bias to the data
transferred from the physical layer (dynamic system) to the cyber layer (sensor network). In this work, we
propose a localised fault detection and isolation (FDI) mechanism at sensors to secure distributed estima-
tion. This protocol enables every sensor to locally identify the possible fault at the sensor measurement,
and, via local detection and isolation, to prevent the spread of biased/faulty information over the net-
work. This distributed isolation and localisation of fault follows from our partial observability assumption
instead of full observability at every sensor. Then, other sensors can estimate/track the system by using
observationally-equivalent output information to recover for possible loss of observability. In particular, we
study rank-deficient systems as they are known to demand more information-sharing, and thus, are more
vulnerable to the spread of possible faults over the network. One challenge is the detection of faults in the
presence of system/output noise without making (simplifying and unrealistic) upper-bound assumptions
on the noise support. We resolve this by adopting probabilistic threshold designs on the residuals. Further,
we show that additive faults at rank-deficiency-related outputs affect the residuals at all sensors, a con-
sequence that mandates more constraints on the (distributed) FDI strategy. We address this problem by
constrained LMI design of the feedback gain matrix. Finally, we design q-redundant distributed estimators,
resilient to isolation/removal of up to q number of faulty sensors, and further, we consider thresholding
residual history over a sliding time-window, known as the stateful FDI.
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1. Introduction

Designing sensor networks resilient to faults or attacks, has
motivated simultaneous estimation and FDI via Linear Dynam-
ical State-space (LDS) models (Barboni et al., 2020; Giraldo
et al., 2018; Yılmaz et al., 2016). This is to detect possible anoma-
lies in the system outputs and to avoid biased (and unstable)
tracking of the system states. In the CPS setup, such faults
appear at the connection from the physical layer to the cyber
layer, where well-designed detection strategies can significantly
improve CPS reliability. This paper provides a “distributed”
(or networked) estimation and FDI protocol to locally detect
possible output faults with no need for central coordination.
In particular, secure networked estimation with application to
CPS (Doostmohammadian et al., 2020; Nweke et al., 2021) and
Internet-of-Things (IoT) (Chen et al., 2018) is of interest in this
paper. This is motivated by many existing large-scale applica-
tions, such as smart-grid monitoring (Abbaszadeh, 2019; Khan
& Doostmohammadian, 2011; Khan & Stanković, 2013) and
social network inference (Doostmohammadian et al., 2021).

CONTACT M. Doostmohammadian doost@semnan.ac.ir, mohammadreza.doostmohammadian@aalto.fi
This article has been republished with minor changes. These changes do not impact the academic content of the article.

In networked/distributed estimation, a collaborating group
of (possibly spatially distributed) sensors tracks the state of the
(large-scale) dynamical system with partial observations, local
data-processing, and information-sharing over a communica-
tion network. The main concern in networked estimation is
that the sensors’ observations are prone to faults, anomalies,
or can be even manipulated by adversaries/malicious-threats.
Sharing such faulty data over the sensor network affects the
estimation performance of some (or all) other sensors. Our
remedy is to design a distributed and local FDI strategy to
detect faulty sensors and, further, to reconfigure the sensor
network setup by removing the faulty sensors and recover-
ing the loss of observability. In contrast to the existing cen-
tralised solutions (e.g. joint estimation and detection in Yılmaz
et al., 2016), various networked estimation scenarios are con-
sidered in the literature, ranging from multi time-scale (MTS)
methods (Battilotti & Cacace, 2021; He, Hu, et al., 2019; He,
Ren, et al., 2019; He et al., 2021; Olfati-Saber, 2009) to single
time-scale (STS) approaches (Azizi & Khorasani, 2014; Battis-
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telli et al., 2012; Boukhobza et al., 2009; Kar et al., 2012; Lopes
& Sayed, 2008; Park & Martins, 2012; Ren & Al-Saggaf, 2017).
More recently, the protocols are further developed to detect pos-
sible attacks/faults in a distributed way (Deghat et al., 2019;
Guan & Ge, 2017; He, Ren, et al., 2019; He et al., 2021; Mitra
& Sundaram, 2018). Such distributed FDImethods are a signifi-
cant improvement over the classic centralised FDI counterparts
(Chong et al., 2015; Davoodi et al., 2014; Giraldo et al., 2018;
Kodakkadan et al., 2017; Lee et al., 2015; Li & Jaimoukha, 2009;
Li et al., 2012; Pajic et al., 2015; Rahimian & Preciado, 2015;
Rank & Niemann, 1999; Zhang et al., 2021) since the fault
can be detected and isolated locally with no help of centralised
supervision. Such strategies prevent single-node-of-failure and,
further, can be improved by changing the network connectivity;
for example, Doostmohammadian et al. (2018) considers cost-
optimal network design while addressing distributed observ-
ability. A practical approach is to add observability redun-
dancy (Lee et al., 2019; Mitra et al., 2021) to make the esti-
mation resilient to the isolation of a few faulty sensors (or
sensor failures). In this direction, some works based on struc-
tured systems theory are considered in centralised cases, e.g.
the centralised graph-theoretic FDI on system digraphs (Com-
mault et al., 2006) and preventive structural design to avoid
the so-called zero-dynamics attacks (Weerakkody et al., 2017).
Structural-based observability analysis of distributed CPS with
applications in distributed estimation and networked control
system is discussed in Doostmohammadian and Khan (2020).
In some literature, Static Linear State-space (SLS) solutions
are considered with no knowledge of the system dynamics.
Such centralised SLS scenarios are mostly data-driven using
machine learning and binary classification tools (e.g. support-
vector-machines) to classify faulty output data from normal
data (Abbaszadeh, 2019; Kurt et al., 2018). In general, as com-
pared to LDS solutions, SLS solutions may need more system
outputs (in theory as many as system states) to gain system
observability. This is also referred to as static observability as
compared to dynamic observability, where the difference ismore
significant in large-scale applicationswith an increasing number
of states. Overall, distributed LDS detection scenarios are more
compelling in large-scale as they do not require a large num-
ber of outputs/sensing-resources and long-range costly (even
infeasible) coordination with the centralised detection unit.
Further, SLS models only aim for FDI, while LDS models can
aim for joint FDI and estimation by knowledge of the sys-
tem dynamics with possible applications in, e.g.satellite atti-
tude control system (Nasrolahi & Abdollahi, 2018) and Cyber-
Physical-Energy-Systems (CPES) (Ilić et al., 2010) as shown in
Figure 1.

Main contributions:Wepropose a joint estimation, detection,
and isolationmethod in a ‘distributed setup’. A group of sensors
tracks the entire state of a large-scale dynamical systemwith sys-
tem matrix A, while the system is partially observable to any
sensor. Sensors share their estimates and/or measurements to
‘gain observability over the network’ (referred to as distributed
observability). To overcome this challenge, some works pro-
pose a multi time-scale (MTS) distributed estimation (Battilotti
& Cacace, 2021; He, Hu, et al., 2019; He, Ren, et al., 2019; He
et al., 2021; Olfati-Saber, 2009), where sensors need to per-
form large number of communications and consensus iterations

Figure 1. This figure shows a possible application of distributed fault detection
and state estimation in CPES (Ilić et al., 2010) (in contrast to the centralised solu-
tions). A geographically distributed sensor network monitors a renewable-energy
grid including wind and solar-farms. Localized estimation and detection strategies
enable distributed data-processing (e.g. in cloud-based architecture) and monitor-
ing with no need for central coordination. This prevents a single-node-of-failure
and global shut-down of the entire grid by localising the detection and isolation of
faulty assets.

over the sensor network between every two consecutive time-
steps of the system dynamics. Consequently, withmore iterations
than the sensor network diameter, every sensor receives infor-
mation of every other sensor and, therefore, the underlying
system becomes observable to all sensors between every two
system time-steps. This solution imposes high communication
load/traffic over the sensor network and fast costly process-
ing/communication units. In particular, this ismore challenging
for large-scale CPS as the number of sensors and either the
sensor network diameter or linking grow larger. To avoid this,
single time-scale (STS) distributed estimation protocols are pro-
posed (Azizi & Khorasani, 2014; Boukhobza et al., 2009; Kar
et al., 2012), where sensors perform only one step of commu-
nication and consensus update at every system time-step (i.e. at
the same time-scale). However, these works assume the system
is observable in the direct neighbourhood of all (or some) sen-
sors. This requires densely-connected sensor networks where
every sensor is directly linked to many other sensors. Both
mentioned solutions are costly in terms of either the network
traffic or the need for fast communication and computation
units, or both. On a large-scale, these might be even infea-
sible as they require (i) very fast long-range communication
and data-processing or (ii) high network traffic at every time-
step that may increase congestion, latency, and packet losses. In
this paper, we provide a single time-scale (STS) protocol with
no local observability assumption at any sensor node, with no
need for costly fast communication/processing facilities, and
less communication requirement over the sensor network (to
reduce the mentioned networking issues). The proposed STS
protocol is significant in the following aspects: (i) Unlike (Bat-
tistelli et al., 2012; Doostmohammadian et al., 2018; Lopes
& Sayed, 2008; Park & Martins, 2012) and similar to Deghat
et al. (2019), Mitra and Sundaram (2018), it is not assumed that
the system is full-rank or self-damped, and the solution is valid
for general possibly rank-deficient systems; (ii) Unlike (Azizi
& Khorasani, 2014; Boukhobza et al., 2009; Kar et al., 2012) and
similar to Deghat et al. (2019) and Mitra and Sundaram (2018),
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no local observability in the neighbourhood of any sensor is
assumed to reduce network connectivity and communication
traffic/load on sensors.

The performance of the proposed STS protocol is analysed
under possible sensing faults. We adopt a residual-based FDI
scenario to detect and isolate possible faults (or bias) at state
measurements by sensors (considering possible system rank-
deficiency). Recall that localisation of faults is more challenging
here as the system is not necessarily observable in the neigh-
bourhood of any sensor. This follows our partial (and not full)
observability assumption in the local neighbourhood of sensors,
however, it demands more complex residual analysis and more
constraints on the observer gain design. From structured sys-
tems theory perspective (as in Commault et al., 2006), the adja-
cency graph (or system digraph) of such possibly rank-deficient
systems contains the so-called contraction components1 (dual
of the dilation components for controllability Doostmohamma-
dian, 2019; Liu et al., 2011). Outputs of state nodes in contrac-
tions play key roles in the (distributed) structural observability
(Doostmohammadian & Khan, 2020). In this direction, this
paper advances the current state-of-the-art in distributed FDI
by addressing how rank-deficiency affects networked estima-
tion and detection. We provide a sensor classification to divide
sensors into three groups based on their state measurements
and the system digraph structure. One class of sensors recov-
ers the system rank-deficiency (with outputs of contractions),
the second class recovers the output-connectivity (with outputs
of parent-SCCs), and the third class is auxiliary or unnecessary
for observability. We show that for the first class any measure-
ment/output fault affects the residuals at all sensors (making
it harder to isolate the fault), while for the other two classes
the fault only affects the residual at the faulty sensor. This
demands different detection and isolation methods at different
classes. In this direction, this work extends and generalises our
previous works (Doostmohammadian et al., 2021; Doostmo-
hammadian &Meskin, 2020) in which only full-rank dynamical
systems are considered. In the proposed STS estimation proto-
col, the system rank-deficiency is addressed by adding a step
of measurement sharing (or innovation-update) over the sen-
sor network. In this work, probabilistic thresholds are designed
(in contrast to deterministic thresholds) on the residuals of
the noise-corrupted sensors to detect possible additive faults.
Stateful measures (also known as distance measures) consider-
ing the history of the residuals over a sliding time-window can
also be considered as in Doostmohammadian et al. (2021). The
faulty sensor needs to be removed (or isolated) to avoid cas-
cading faulty-data over the distributed estimation network. Fur-
ther, to recover for distributed observability, a graph-theoretic
algorithm is proposed to replace the faulty sensor with an
observationally-equivalent one. In another viewpoint, using the
notion of q-redundant observability, we propose a mechanism
to design q-redundant distributed estimators/observers, where
the observability (and observer error stability) is preserved
after removal/isolation of up to q number of failed/faulty sen-
sors. The main contributions of this paper are summarised as
follows:

• We propose joint (STS) distributed estimation and (LDS)
detection over sensor networks, with no assumption on the

system rank and the local observability at any sensor. As
mentioned above in detail, a protocol in this framework out-
performs existing ones in terms of needed communication
traffic, network connectivity, and data-processing load on
sensors.

• This work advances the previous works on full-rank sys-
tem dynamics (Doostmohammadian et al., 2021; Doost-
mohammadian & Meskin, 2020), to rank-deficient mod-
els. We show that system rank-deficiency imposes more
outputs and network connectivity on the distributed esti-
mation network. This makes the detection strategy more
challenging in terms of extra constraints on the LMI gain
design as compared to full-rank systems inDoostmohamma-
dian and Meskin (2020), Doostmohammadian et al. (2021),
Doostmohammadian and Khan (2013a) and Khan and Jad-
babaie (2011).

• Our proposed graph-theoretic sensor classification makes
the detection/isolation of faults more simple via structural
constraints on the LMI gain design. For example, we add dif-
ferent LMI constraints for each class of sensors, whichmakes
this work different from our previous works (Doostmoham-
madian et al., 2021; Doostmohammadian & Meskin, 2020).

• Unlike most literature on fault/attack detection (Chong
et al., 2015; Kar & Moura, 2011; Kodakkadan et al., 2017;
Lee et al., 2015; Pajic et al., 2015; Rank & Niemann, 1999),
we do not assume that the system and/ormeasurement noise
are of bounded support. We avoid this simplifying assump-
tion by considering Gaussian noise with no upper-bound.
This is more realistic as compared to the existing literature,
and results in our probabilistic threshold design. We clearly
define the probability of false-alarm and false-negative for
the proposed probabilistic thresholds.

• We consider an observability recovery method based on the
concept of observational-equivalence (Doostmohammadian
& Khan, 2016; Doostmohammadian et al., 2018). In par-
ticular, we provide a graph-theoretic algorithm to replace
a faulty sensor (of each class) with an observationally-
equivalent one of the same class. This is closely tied with
the concept of redundant observability, relating a secu-
rity index for attack detectability/recovery to observability-
preserving (Lee et al., 2019). In this direction, a graph-
theoretic algorithm is proposed in this paper to design
q-redundant networked observers/estimators, i.e. distributed
observers robust to failure or removal of up to q sensors. In
otherwords, after removal of up to qnumber of faulty sensors
(and cutting their network links), the remaining sensors can
still estimate the system over the (reduced-connectivity) sen-
sor network with stable steady-state error. Similarly, resilient
solutions to the removal of up to q communication links over
the network can be considered.

• We extend the stateful detection methods in Doostmoham-
madian et al. (2021) to rank-deficient systems. We introduce
distancemeasures based on residual history and probabilistic
thresholds via χ2 CDF to improve the detection probability
and reduce the false-alarm rate.

Paper organisation: Section 2 gives the preliminaries and
states the problem. Section 3 describes the networked estima-
tion protocol. In Section 4, the fault detection scenario and
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sensor classification are presented. Section 5 presents the algo-
rithms for (i) fault compensation scenario to recover for loss of
observability and (ii) designing q-redundant distributed estima-
tors. Section 6 provides an illustrating example and comparison
with recent literature. Finally, Section 7 concludes the paper.

2. The framework

In this work, we consider noise-corrupted linear systems in
discrete-time as,

xk+1 = Axk + νk (1)

where xk ∈ R
n represents the system state (vector) at time-step

k, A = [aij] ∈ R
n×n is the system matrix, and νk = N (0,Q) is

the system noise with covariance Q ∈ R
n×n. Note that in this

paper we make no assumption on the rank of the systemmatrix
A and it could be rank-deficient. Also, to avoid trivial solutions,
we make no assumption on the stability of the system, i.e. it is
possible that ρ(A) > 1, where ρ(A) denotes the spectral radius
of matrix A. System outputs are taken by a group of N sensors
as, ⎛⎜⎝y1k

...
yNk

⎞⎟⎠ =

⎛⎜⎝C1
...

CN

⎞⎟⎠
⎛⎜⎝x1k

...
xnk

⎞⎟⎠+

⎛⎜⎝ζ 1
k
...

ζN
k

⎞⎟⎠+

⎛⎜⎝ f1k
...
fNk

⎞⎟⎠
where Ci is the measurement/output2 matrix at sensor i. The
above can be written in brief as,

yk = Cxk + ζ k + fk, (2)

where ζ k = N (0,R) is the measurement noise which is
assumed to be independent at each sensor. Matrix R is the
covariance matrix, which is a diagonal matrix of the variances,
and fk represents additive fault at sensors. We make standard
assumptions on Gaussianity and statistically independency of
the noise terms as E(νkνm) = 0 and E(ζ kζm) = 0 for all time-
steps k �= m. Further, without loss of generality, we assume that
every sensor i takes the output of one system state (i.e. Ci is a
row-vector and yik is a scalar, i.e.y

i
k ≡ yik) and, hence, yk ∈ R

N .
Similarly, ζ i

k ≡ ζ i
k and f ik ≡ f ik.

Remark 2.1: Typically in fault/attack detection literature
(Chong et al., 2015; Kar & Moura, 2011; Kodakkadan
et al., 2017; Lee et al., 2015; Pajic et al., 2015; Rank & Nie-
mann, 1999) it is assumed that the noise terms are of bounded-
support, i.e. |ζ i

k| < ζ and ‖νk‖ < ν, with ζ and ν as some
upper-bounds. In this paper, we make no such assumptions and
consider the noise in its most general form.

2.1 Preliminaries on graph theory

We introduce some graph-theoretic concepts needed for struc-
tural analysis of system observability. Denote a graph by G =
{V , E} with V = {1, . . . , n} as the set of nodes and E as the set
of links i → j (or pair (i, j)) with i, j ∈ V . A graph is strongly-
connected (SC) if there exists a directed path from every node
to every other node. In a non-SC digraph, define a strongly-
connected-component (SCC) as a component/subgraph in
which nodes are strongly-connected to every other node in that

component. Among the SCCs, define a parent SCC Sp
i , as the

SCC with no outgoing link to any other SCC. The number
of parent SCCs is denoted by |Sp| (with | · | as the set cardi-
nality). The decomposition of SCCs and finding their partial
order are set via Depth-First-Search (DFS) algorithm (Cor-
men et al., 2009). Next, define a maximum matchingM as the
maximal set of links in E that share no end-node or begin-
node. Define a matched node as the end node of any link
in M. Otherwise, the node is unmatched. Denote the set of
unmatched nodes by δM. One can find themaximummatching
and unmatched nodes via Dulmage-Mendelsohn (DM) decom-
position (Dulmage & Mendelsohn, 1958; Murota, 2000). In
graph theory, a connected graph G is called κ-connected (or κ-
vertex-connected) if it remains connected after removing κ (or
fewer) nodes. FromMenger’s theorem, the size of the minimum
node-cut (or vertex-cut) between two nodes i and j (the mini-
mum number of vertices whose removal disconnects i and j) is
equal to the maximum number of pairwise disjoint paths (also
referred to as q+ 1-linking (Weerakkody et al., 2017)) from i
to j. In particular, we use q-connected digraphs (with q pair-
wise disjoint paths) to design q-redundant observer networks
in Section 5.2 along with a simulation example in Section 6.
We refer interested readers to Hellwig and Volkmann (2008) for
sufficient conditions for designing κ-connected digraphs and to
Lau et al. (2009), Sadeghi and Fan (2019) and Umsonst (2019)
for a similar concept for survivable network design.

2.2 System digraph representation

For linear system given by (1), define the system digraph GA =
{VA, EA}, as a graph associated to the system matrix A, where
VA = {1, . . . , n} is the set of state-nodes and EA is the set of links.
There is a link from state-node i to node j, i.e. (i, j) ∈ EA or i →
j, if Aji �= 0. Many generic system properties including system
observability/controllability (Dion et al., 2003; Lin, 1974) are
tightly related to the structure of the system digraph. Moreover,
one can detect input faults (Commault et al., 2008) or determine
the generic/structural rank (or S-rank) of the system matrix
(Harary, 1962) using the system digraph GA. The following
theorem is proved in our previous works (Doostmohammadian
& Khan, 2016; Doostmohammadian et al., 2020).

Theorem 2.1: Given the system digraph GA associated with
dynamic system (1), the following state-outputs are necessary for
system observability:

(i) output of one state node in every parent SCC Sp
l , l ∈

{1, . . . , |Sp|}.
(ii) outputs of all the unmatched state-nodes in δM.

Note that the number of unmatched nodes in the system
digraph is tightly related with the S-rank of the system. It can
be proved that Doostmohammadian and Khan (2013b) and
Doostmohammadian et al. (2018):

|δM| = n − S-rank(A). (3)

with | · | denoting the set cardinality. Recall that the S-rank of
the system matrix is the number of non-zero entries in dis-
tinct rows and distinct columns of the matrix A (Harary, 1962).
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In GA, the S-rank equals the maximum size of a disjoint fam-
ily of cycles spanning all state nodes (Reinschke, 1988). Note
that based on (3), the number of unmatched nodes equals the
rank-deficiency of the system (matrix). Therefore, there is no
unmatched node in the system digraph associated with a full-
rank dynamical system, e.g. a self-damped system. It is known
that condition (i) in Theorem 2.1 recovers the output connec-
tivity and condition (ii) recovers the system S-rank. Therefore,
for full-rank systems (as in Doostmohammadian et al., 2021;
Doostmohammadian & Meskin, 2020) condition (ii) is already
satisfied.

2.3 q-redundant observability

Recall that observability refers to the possibility of reconstruct-
ing the entire system states xk via some state measurements
(outputs) yk over finite time-interval. Denote by OA,C the
observability Gramian matrix defined as,

OA,C =

⎛⎜⎜⎜⎝
C
CA
...

CAn−1

⎞⎟⎟⎟⎠ (4)

Having rank(OA,C) = n implies that the system (1) is observ-
able by outputs (2) and the states (at every time k) can be
obtained by solving the following set of linear algebraic equa-
tions on the outputs,⎛⎜⎜⎜⎝

xk
xk+1
...

xk+n

⎞⎟⎟⎟⎠ = O−1
A,C

⎛⎜⎜⎜⎝
yk
yk+1
...

yk+n

⎞⎟⎟⎟⎠ .

Recall that if the conditions (i)–(ii) in Theorem 2.1 hold on the
structural system representation, observability GramianOA,C is
full-rank for almost all numerical values of the non-zero entries
in the system matrix A and output matrix C (Dion et al., 2003;
Doostmohammadian & Khan, 2020).

Definition 2.1 (Lee et al., 2019): Define C� as the reduced-size
output matrix by removing the outputs associated with the set
�, i.e. by setting the rows of C indexed by � to all-zeros. The
pair (A,C) in (1)–(2) is then said to be q-redundant observable if
the pair (A,C�) is observable for any� ⊂ {1, . . . ,N} satisfying
|�| ≥ N − q.

The above definition simply implies that the system is
observable by using any subset of outputs of size n−q (or larger),
or it remains observable by removing any subset of outputs of
size q (or smaller), i.e. rank(OA,C�) = n. We use this notion
along with the structural observational-equivalence to design
q-redundant networked observers/estimators in Section 5.2.

2.4 Problem statement

Given the system and measurements by (1)–(2), for (both cen-
tralised and distributed) estimation, it is necessary that the pair

(A,C) be observable. Thus, assuming the observability condi-
tions in Theorem 2.1, we introduce an STS networked estima-
tion protocol that requires only one step of estimate sharing
and innovation-update (possibly via sharing outputs) between
every two time-steps k and k+ 1 of system dynamics. We pro-
vide structural sensor classification to derive the necessary con-
ditions for distributed observability and design the network
topology and the gain matrix to stabilise the networked esti-
mation error. In the case of non-zero additive faults at sensors,
a residual-based fault detection logic is proposed. Possible bias
f ik �= 0 (deviating the real output from the predicted one) causes
the residual (or distance measure) at sensor i to exceed certain
probabilistic thresholds, which triggers the fault alarm at that
sensor. The schematic of the networked estimator/observer and
the local fault detectors is shown in Figure 2. In the case of
detecting a faulty sensor i and isolating it (to prevent the distri-
bution of faulty data over the sensor network), a compensation
method is proposed to use observationally-equivalent sensors to
recover for loss of observability.We further propose a technique
to design q-redundant networked estimators, such that by isola-
tion (or removal) of up to q faulty (or failed) sensors the system
remains observable (in the distributed sense) to the rest of the
sensors over the network.

3. Single time-scale networked estimation

In this section, we propose a single time-scale estima-
tor. At every time-step k every sensor sends (to its direct
out-neighbours) and receives (from its direct in-neighbours)
one packet of data consisting of estimate and/or output/
measurement. Every sensor performs one step of (i) averaging
(consensus) on the priori estimates (to improve its predictions)
and, (ii) measurement-update (known as innovation) to refine
the estimate by output information, which gives the posteriori
estimate. This represents a distributed predict and updatemech-
anism, resembling an alpha-beta-type filter as in the Kalman
filter. The innovation phase further helps to find the residual
between the predicted output and the true output to detect
possible output bias (for model-based FDI). The proposed dis-
tributed protocol is as follows,

x̂ik|k−1 =
∑

j∈Nβ(i)

WijÂx
j
k−1|k−1, (5)

x̂ik|k = x̂ik|k−1 + Ki
∑

j∈Nα(i)

C	
j

(
yjk − Cĵxik|k−1

)
. (6)

where x̂ik|k is the estimate of system state xk given all the
measurements up to time-step k. Define Nβ(i) as the in-
neighbourhood of sensor i over which sensors share their esti-
mates andNα(i) as the in-neighbourhood of sensor i overwhich
sensors share their measurements. In this direction, two net-
works are considered: (i) network Gβ for estimate-sharing, and
(ii) network Gα for output-sharing. The combination of the two,
makes the communication network or the sensor network. Both
Gβ and Gα need to be designed such that distributed observabil-
ity is satisfied (as we explain in the rest of this section). Matrix
W includes the consensus weights for averaging prior estimates,
i.e.Wij is the consensus gain at sensor i on the prior estimate of
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Figure 2. This figure shows the schematic of the proposed localised detection via a network of local estimators. All sensors are subject to noise and possible fault. The
networked estimators at sensors cooperatively track the states of the dynamical system (e.g. an energy grid) locally while having partial observability. A localized detector
is embedded at every sensor, which triggers the alarm in case the residual is over a probabilistic threshold (with specified false-alarm (false-positive) and false-negative
rates).

the in-neighbour sensor j. The structure ofW follows the graph
topology (or structure) of Gβ , while the entries satisfy row-
stochasticity (e.g. see Charalambous & Hadjicostis, 2013; Xiao
et al., 2005) to ensure the consensus nature of Equation (5). We
make no constraining assumption on the entries Wij and they
follow random consensus weights. In case of using non-random
entries, e.g.Metropolis-Hastings fusion rule (Xiao et al., 2005)),
the observability should be rechecked numerically (see Doost-
mohammadian et al., 2021 for more details on this). Define
matrixU as the 0−1 adjacencymatrix of Gα , i.e.Uij = 1 if j → i
andUij = 0 otherwise. Note that, we assume self cycles (or self-
loops) at every node, i.e. Uii = 1 and Wii �= 0 for all i, since all
sensors use their own outputs and priori estimates. The matrix
Ki, representing the feedback gain for stabilising the estima-
tion error at sensor i, needs to fulfil specific constraints for FDI
design (discussed in Section 4.1).

Remark 3.1: Recall that in the LDS model, knowing the sys-
tem dynamics A (all sensors), significantly reduces the number
of necessary sensors to satisfy system-observability (the so-
called Gramian rank-condition in Section 2), while in the SLS
model with no information of system dynamics more sensors
(in theory as many as system states) are needed.

Note that the proposed estimator outperforms the MTS
networked estimation proposed in Olfati-Saber (2009), He
et al. (2021), He, Ren, et al. (2019), He, Hu, et al. (2019) and
Battilotti and Cacace (2021) in terms of real-time capabilities
and network communication load at sensors. In these works,
sensors need to perform L steps of averaging (consensus) and
L steps of communication between every two steps of system
dynamics k−1 and k. This requires the communication and pro-
cessing units at sensors to be L times faster than the sampling of
the system dynamics. However, the proposed protocol (5)–(6)
only needs 1 step of consensus and communication between
time-steps k−1 and k of the system dynamics, see Figure 3.

Remark 3.2: In MTS networked estimation, the number of
communication iterations L is (at least) more than the diameter
dN of the sensor network. This implies that the information of
every sensor reaches every other sensor in the network between
every two time-steps k−1 and k, and thus, the system becomes

Figure 3. This figure shows the difference of single and multi time-scale estima-
tors (STS versus MTS). In STS (left) every sensor performs only one step of commu-
nication and consensus update between two consecutive time-steps k and k+ 1 of
system dynamics (hence, the same time-scale). In MTS scenario (right) sensors do
many steps of communication and consensus update between k and k+ 1 to gain
local observability (hence, multi time-scale).

observable to every sensor at every time-step k, which makes
the solution trivial by imposing high communication/consensus
load on sensors.

We need to design the structure of W and U matrices (to
address distributed observability) and to find the structured gain
matrix K to stabilise the estimation error in the steady-state. In
this direction, define the estimation error at every sensor i at
time-step k as eik = xk|k − x̂ik|k. This error can be formulated
based on the system parameters in Equations (1) and (2) and
estimation parameters in Equations (5) and (6) as follows,

eik = xk −
⎛⎝̂xik|k−1 + Ki

∑
j∈Nα(i)

C	
j (yjk − Cĵxik|k−1)

⎞⎠
= xk −

⎛⎝ ∑
j∈Nβ(i)

WijÂx
j
k−1|k−1

+ Ki
∑

j∈Nα(i)

C	
j

⎛⎝yjk − Cj
∑

j∈Nβ(i)

WijÂx
j
k−1|k−1

⎞⎠⎞⎠ .

Substituting (1)–(2) in the above,

eik = Axk−1 + νk−1 −
⎛⎝ ∑

j∈Nβ(i)

WijÂx
j
k−1|k−1
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+ Ki
∑

j∈Nα(i)

C	
j

⎛⎝Cjxk + ζ
j
k + f jk

−Cj
∑

j∈Nβ(i)

WijÂx
j
k−1|k−1

⎞⎠⎞⎠
= Axk−1 + νk−1 −

∑
j∈Nβ(i)

WijÂx
j
k−1|k−1

− Ki

⎛⎝ ∑
j∈Nα(i)

C	
j Cj(Axk−1 + νk−1) + C	

j ζ
j
k + C	

j f
j
k

− C	
j Cj

∑
j∈Nβ(i)

WijÂx
j
k−1|k−1

⎞⎠ .

Using the row-stochastic property of theW matrix,

Axk−1 =
∑

j∈Nβ(i)

WijAxk−1.

Substituting this in the error equation,

eik =
∑

j∈Nβ(i)

WijAxk−1 −
∑

j∈Nβ(i)

WijÂx
j
k−1|k−1

− Ki
∑

j∈Nα(i)

C	
j Cj

⎛⎝ ∑
j∈Nβ(i)

WijAxk−1

−
∑

j∈Nβ(i)

WijÂx
j
k−1|k−1

⎞⎠+ νk−1

− Ki
∑

j∈Nα(i)

C	
j ζ

j
k + C	

j f
j
k + C	

j Cjνk−1

=
∑

j∈Nβ(i)

WijAe
j
k−1−Ki

∑
j∈Nα(i)

C	
j Cj

∑
j∈Nβ(i)

WijAe
j
k−1+ηik,

(7)

where ηik collects the noise and fault terms as,

ηik := νk−1 − Ki
∑

j∈Nα(i)

(
C	
j ζ

j
k + C	

j f
j
k + C	

j Cjνk−1

)
. (8)

Let ek = (e1k; . . . ; e
N
k ) be the collective error vector. Then,

ek = (W ⊗ A − KDC(W ⊗ A))ek−1 + ηk = Âek−1 + ηk, (9)

where K := blockdiag(Ki) is the block-diagonal gain matrix
(to be designed to stabilise the error dynamics (9)) and DC is
defined as,

DC :=

⎛⎜⎜⎜⎜⎜⎜⎝

∑
j∈Nα(1)

C	
j Cj

. . . ∑
j∈Nα(N)

C	
j Cj

⎞⎟⎟⎟⎟⎟⎟⎠

Table 1. Comparison between different distributed estimation/detection meth-
ods in terms of ‘network-connectivity’× ‘communication-rate’.

time-scale STS STS MTS

system dynamics SLS LDS SLS/LDS
communication
links×rate

N(N − 1) × 1 (nα(N − 1) + N) × 1 2N × Lwith L � 1

knowledge of
dynamics A

No Yes No/Yes

Using these definitions, the collective noise vector ηk is,

ηk := 1N ⊗ νk−1 − KDC(1N ⊗ νk−1) − KDCζ k − KDCfk,

where 1N is the column vector of 1s of size N and DC � (U ⊗
1n) ◦ (1N ⊗ C	)with ‘°’ as the entry-wise (or Hadamard) prod-
uct. Based on Kalman (1960), the error dynamics (9) is stabi-
lizable (in fault-free case) if the pair (W ⊗ A,DC) is observable.
This condition is referred to asdistributed (or networked) observ-
ability (Doostmohammadian & Khan, 2016). In this direction,
the structure of matricesW and U (i.e. the topology of Gβ and
Gα networks) need to satisfy (W ⊗ A,DC)-observability. This is
discussed in the following lemma.

Lemma 3.1: (W ⊗ A,DC) is structurally observable (referred to
as distributed observability) if (i) W is irreducible, i.e. Gβ is SC
(This results in distributed observability for full-rank systems with
rank(A) = n) and (ii), for systems with rank(A) < n, Gα fur-
ther represents a network of hubs, where sensors with outputs of
the unmatched states (referred to as α-sensors in Section 4.1) are
the hubs of the network. In other words, every α-sensor j directly
shares its output of an unmatched state to every other sensor i, i.e.
j ∈ Nα(i).

Proof: The proof follows from (minimal) sufficient conditions
for observability of Kronecker product networks in Doostmo-
hammadian and Khan (2020). Note that the digraph associated
with W ⊗ A (as the overall distributed system matrix) can be
represented as the Kronecker network product (also called the
Tensor graph product) of the graphs GA and Gβ , and then, the
lemma directly follows from the results in Doostmohammadian
and Khan (2020). �

We compared the communication rate and network-
connectivity for different distributed estimation/detection
methods in Table 1, considering a large-scale system A, where
rank(A) = n − nα with nα  n as the system rank-deficiency.

From Lemma 3.1, for the proposed STS estimator (and the
LDS model), the minimum number of links to ensure dis-
tributed observability is nα(n − 1) on Gα and n on Gβ with
communication rate of 1 per step (O(nαn) links). This is illus-
trated in Section 6 with an example. Note that for large n the
STS estimator for the SLS dynamics needs an all-to-all network
with O(n2) communication links, since the system dynamics
A is not (needed to be) known. Note that, later in Section 5,
we show that α-sensor i needs to share its output information
with sensors that are not observationally-equivalent. Satisfy-
ing the above sufficient conditions for distributed observability,
one can design the block-diagonal gain matrix K such that
matrix Â in (9) is a Schur stable, i.e. ρ(Â) < 1. Further, this
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gainmatrixK is constrained to be block-diagonal, to address the
distributed nature of the networked estimator. We design this
K by using iterative cone-complementary optimisation meth-
ods (see Ghaoui et al., 1997) as the solution to the following
Linear-Matrix-Inequality (LMI),

min trace(XY)

s.t. X,Y � 0, K is block-diagonal.(
X Â	
Â Y

)
� 0,

(
X I
I Y

)
� 0,

(10)

with stopping criteria ρ(Â) < 1 or trace(YtX + XtY) < 2nN +
ε (with predefined ε). The iterative algorithm to solve the above
LMI can be implemented at the same time-scale of the sys-
tem dynamics, where the agents update the gain matrix Kk and
shared it at each time-step k to address implementations in
real-time. For static sensor network and fixed K, however, it
is typical to find this K matrix once offline and provide Kis to
sensors before the estimation process. See more information in
Doostmohammadian andMeskin (2020), Doostmohammadian
and Khan (2013a) and Khan and Jadbabaie (2011).

4. Sensor fault detection: threshold design and
sensor classification

This section presents our sensor fault detection logic based on
the residual definition and design of probabilistic thresholds via
a specific sensor/output classification. Following the method-
ology in Sundaram (2012), we first define the residuals for all
sensors. Given the estimation x̂ik at sensor i, define the estimated
output at this sensor as ŷik = Cîxik. Define the residual as the
difference between the original output yik and the estimated (or
predicted) output ŷik as,

rik = yik − yik = yik − Cîxik|k = Cieik + ζ i
k + f ik

= CiÂiek−1 + Ciη
i
k + ζ i

k + f ik, (11)

and the absolute value residual is,

rik = |rik| = |yik − ŷik| = |CiÂiek−1 + Ciη
i
k + ζ i

k + f ik|, (12)

where Âi is the ith hyper-row (i.e. the block of rows n(i − 1) + 1
to ni or Â((i− 1) ∗ n+ 1 : i ∗ n, :) in MATLAB code) of Â.
The results of previous section implies that in the absence of
faults, i.e. f ik = 0 for all i, the estimation error eik and the residual
rik are bounded steady-state stable for all i. Then, one can detect
possible faults in case of sufficiently large and biased resid-
uals. The schematic of the proposed fault-detection at every
estimator/sensor i is presented in Figure 4.

From the Schur stability of Â, we skip the first term in (11)
and the second term is,

Ciη
i
k + ζ i

k + f ik = Ciνk−1

− CiKi
∑

j∈Nα(i)

(
C	
j ζ

j
k + C	

j f
j
k + C	

j Cjνk−1

)
+ ζ i

k + f ik. (13)

Figure 4. Following Figure 2, this figure shows the procedure of fault detection at
every sensor/estimator. The difference of the true output and the estimated out-
put gives the residual at sensor/estimator i, i.e. rik = |Cixik − Cîxik|. The detector at
estimator i compares the residual with the probabilistic threshold Tπ (designed in
Section4.2) and raises the alarm if rik ≥ Tπ . The threshold Tπ canbedesignedbased
on specific false-alarm rate.

In case f jk �= 0 for (at least) one sensor j ∈ Nα(i), the term
CiKiC	

j f
j
k adds bias to Ciη

i
k and the residual at sensor i.

This implies that, following the Gα network connectivity in
Lemma 3.1, the residual at sensors in the out-neighbourhood of
the faulty sensor jmight get biased. In caseNα(j) = {j}, sensor
j does not share its output over Gα as j /∈ Nα(i) for any i �= j and
f jk �= 0 only appears at the residual rjk and the fault can be eas-
ily isolated. This motivates the sensor classification in the next
subsection.

4.1 Sensor classification

Following Lemma 3.1, we classify the sensors based on the type
of their state measurement and structure of the system digraph.
For a given system digraph GA, three classes of sensors are as
follows:

• i ∈ α: every sensor i with output of an unmatched state
node (in δM). This type of sensors recover system rank-
deficiency.

• i ∈ β : every sensor iwith output of a state in a parent SCCSp
l .

This type of sensors recover output-connectivity of the sys-
tem.

• i ∈ γ : every sensor iwith output of any unnecessary state for
observability, i.e. every sensor i /∈ α ∪ β .

where the network connectivity requirement of every class
(from Lemma 3.1) is defined as follows,3

• Type-α: every α-sensor sends its output via a direct link to
every other sensor over Gα network.

• Type-β : everyβ-sensor sends its estimates via a path to every
other sensor over network Gβ .

• Type-γ : there is no connectivity requirement for a γ -sensor
to share its output/prediction. Every γ -sensor only need
to receive output information from α-sensors over Gα and
estimates from β-sensors over Gβ .

In case some contractions and parent SCCs share state nodes,
output of that state node is treated as both Type-α and Type-
β , see more details in Doostmohammadian (2019) for the dual
case of input classification for controllability. Next, assume non-
zero additive fault on at least one sensor, e.g. f jk �= 0. Recall from
Equation (13) that this may affect the residual of only sensor j
or many other sensors as discussed in the following,
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• Type-α: CjKjC	
j f

j
k �= 0 at the faulty sensor j and CiKiC	

j f
j
k �=

0 at all its out-neighbours j ∈ Nα(i).
• Type-β and Type-γ : CjKjC	

j f
j
k �= 0 only at the faulty β/γ -

sensor j and CiKiC	
j f

j
k = 0 for i �= j, sinceNα(j) = {j}.

In other words, additive fault at every α-sensor (i.e. ∀i ∈ α)
affects the residuals at all other out-neighbouring sensors, while
fault at any β/γ -sensor only affects the residual at the same sen-
sor. This results in the following fault-detection logic: If only the
residual at sensor i is biased (over certain threshold), then sensor i
is faulty. If the residual at all sensors is biased, one of the α-sensors
is faulty. Since, in the latter case, f jk �= 0 at α-sensor j results in
CiKiC	

j f
j
k �= 0 at all out-neighbouring sensors i, j ∈ Nα(i), we

need to add a new constraint on the gain K in (10). We redesign
the matrix K such that |1 − CjKjC	

j | is sufficiently large for
everyα-sensor j, while |CiKiC	

j | is sufficiently small ∀i �= j.This
implies that the residual at faulty α-sensor j is greater than the
residuals at all other non-faulty sensors∀i �= j, and one can detect
the faultyα-sensorwith greater residual as compared to all other
sensors.

Remark 4.1: The design of the gain matrix K for distributed
FDI on rank-deficient systems is more constrained than full-
rank systems. In order to isolate the residuals at every α-sensor
j, the constrained LMI design in (10) is revised as follows to sup-
press the cascaded bias at residual of sensors i (caused by bias at
sensor j ∈ Nα(i)) by constant 0 < τ < 1,

min trace(XY)

s.t. X,Y � 0, K is block-diagonal.(
X Â	
Â Y

)
� 0,

(
X I
I Y

)
� 0,

|CiKiC	
j |

|1 − CjKjC	
j | < τ , ∀j ∈ Nα(i), j �= i

(14)

with the same stopping criteria as (10).

Note that smaller constant τ implies smaller residual values
at neighbouring sensors i and, thus, better detection and isola-
tion of faulty α-sensor j, while this may affect the convergence-
time of the LMI optimisation problem as it reduces the set of
possible solutions for K. In the next subsection, we design the
fault-detection thresholds on the residuals.

4.2 Threshold design

In this subsection, using the noise statistics, we design the
thresholds to alarm faults whenever the residual is biased over
the threshold. Unlike many literature (Chong et al., 2015; Kar
& Moura, 2011; Kar et al., 2011; Kodakkadan et al., 2017;
Lee et al., 2015; Pajic et al., 2015; Rank & Niemann, 1999)
assuming the noise terms are only supported on a bounded
interval as |ζ ik| ≤ ζ and/or ‖νk‖ ≤ ν, we do not limit the
system/measurement noise to be of bounded support, see
Remark 2.1. This is more realistic in real applications of FDI
and estimation since the (commonly assumed) Gaussian noise

(as a random variable) is of unbounded support over all real
values. This mandates probabilistic threshold design instead of
deterministic thresholds in Pajic et al. (2015), Kar et al. (2011),
Chong et al. (2015), Lee et al. (2015), Kodakkadan et al. (2017),
Kar andMoura (2011) and Rank and Niemann (1999) designed
based on the bounds ζ and ν.

Let Pk = E(eke	k ) and� = E(ηkη
	
k ). From Equation (9) we

have,

Pk = ÂPk−1Â	 + � = ÂkP0(Â	)k +
k−1∑
j=0

Âj�(Â	)j (15)

Following the Schur stability of Â, in the steady-state (as k →
∞),

lim
k→∞

ÂkP0(Â	)k → 0,

Therefore,

P∞ := lim
k→∞

Pk =
∞∑
j=0

Âj�(Â	)j

Following similar analysis as in Khan and Jadbabaie (2014), one
can find a bound on ‖P∞‖2 as,

‖P∞‖2 ≤
∞∑
j=0

‖Âj�(Â	)j‖ ≤ ‖�‖2
b

(16)

for some b < 1 as a function of ‖Â‖2. Moreover, in the absence
of any faults,

ηkη
	
k = (INn − KDC)(1NN ⊗ νk−1ν

	
k−1)(INn − KDC)	

+ (KDC)ζkζ
	
k (KDC)	 (17)

where 1NN denotes theN byN matrix of all 1s. Applying the E-
operator on both sides of the above equation and recalling that
E(νk−1ν

	
k−1) = Q and E(ζ kζ

	
k ) = R,

� = (INn − KDC)(1NN ⊗ Q)(INn − KDC)	

+ (KDC)R(KDC)	 (18)

Taking the 2-norm of the both sides,

‖�‖2 ≤ ‖(INn − KDC)(1NN ⊗ Q)(INn − KDC)	‖2
+ ‖(KDC)R(KDC)	‖2

≤ ‖INn − KDC‖22N‖Q‖2 + ‖K‖22‖R‖2 (19)

where

R :=

⎛⎜⎜⎜⎜⎜⎜⎝

∑
j∈Nα(1)

C	
j RjCj

. . . ∑
j∈Nα(N)

C	
j RjCj

⎞⎟⎟⎟⎟⎟⎟⎠
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Let define a1 := ‖INn − KDC‖22 and a2 := ‖K‖22. Then, using
Equation (16),

‖P∞‖2
N

≤ a1N‖Q‖2 + a2‖R‖2
Nb

=: � (20)

‖P∞‖2 defines the 2-norm of the covariance of the collec-
tive error ek. To find the 2-norm of the covariance of eik at
every sensor i, ‖P∞‖2 is scaled by the number of sensors N
in Equation (20). This equation defines the bound � on the
error covariance at every sensor i. A similar setup is adopted
in Acemoglu et al. (2008) for social learning dynamics. As com-
pared to Acemoglu et al. (2008), in case ‖Q‖2 → 0 over time
(referred to as diminishing innovations) and N → ∞, we have
� = 0 implying perfect estimation for any potentially unstable
dynamics in contrast to neutrally-stable systems in Acemoglu
et al. (2008).

Following Khan and Jadbabaie (2014), for the fault-free case
(and large k → ∞ in steady-state), E(eik) = 0 and E(rik) =
0. Then, following the Gaussianity assumption on eik and rik,
one can claim that rik = |Cieik + ζ i

k| < c� + Rwhere c = ‖Ci‖1
denotes the norm 1 (the sum of absolute value) of the output
vector (c is also referred to as the measurement gain). Assum-
ing one state measurement at every sensor i, c is equal to the
absolute value of the non-zero entry of Ci. Following the notion
of confidence intervals, the probability of rik < 2c� + 2R and
rik < 3c� + 3R are (more than) 95% and 99%, respectively. This
simply implies that, assuming non-zero fault at any sensor i,
one can introduce probabilistic thresholds on the residual rik to
detect the fault. Let define T68% = c� + R, T95% = 2c� + 2R,
T99% = 3c� + 3R as the probabilistic thresholds on the resid-
uals. If the residual at sensor i (or more sensors) is biased over
T68%, the detector triggers the alarm and declares possible fault,
where the probability of false alarm (also known as false posi-
tive (Yan et al., 2019)) in this case is less than 32%. This implies
high-rate (32%) of incorrectly raising the alarm when there are
no true faults on the sensors. To reduce this rate, one can choose
higher thresholds on the residuals, e.g. T99% with (less than) 1%
probability of false alarm. For a given low false-alarm rateκ, the
threshold is defined as Tπ = √

2erf−1(π)(c� + R) with π =
1 − κ. For example, to have false-alarm rate less than κ = 3%,
the threshold is T97% = √

2erf−1(0.97)(c� + R) = 2.21(c� +
R). Similar claims can be stated for stronger fault detection
thresholds, e.g. T99% = 3c� + 3R. In general, for a given resid-
ual value rik the highest probability of false-alarm (and the asso-
ciated threshold) can be defined as follows (see the illustration
in Figure 5),

π = erf

(
rik√

2(c� + R)

)
→ Tπ , κ = 1 − π . (21)

Similar to false-alarm rate, the probability of false-negative
(i.e.detector raises no-alarmwhile indeed there is non-zero fault
at the sensor/output (Yan et al., 2019)) can be defined as illus-
trated in Figure 5, where the normalised residuals in the pres-
ence (red curve) and the absence (blue curve) of the fault follow
Normal PDFs; the probability that rik < m(c� + R), i.e. rik lies in
the confidence interval (−m(c� − R),m(c� + R)) of the non-
faulty (zero-mean) PDF, is erf( rik√

2(c�+R)
) = erf(m/

√
2) =: π .

Figure 5. This figure shows an example distribution of non-faulty residual (blue
curve) versus faulty residual (red curve) at sensor i. The green and red vertical
lines represent two example residuals rik : the green residual is very close to the
expected value (zero) of the fault-free PDF and, thus, most likely is due to sys-
tem/measurement noise; the red residual is far from the expected value (zero)
and, thus, faulty with probability more than 68.3% and less than 95.4% (based on
the shown confidence intervals as grey vertical lines). More accurate probability of
detection and false alarm for this example canbedefinedasπ = erf( 1.5√

2
) = 86.7%

and κ = 1 − π = 13.3% (for rik ≥ Tπ = 1.5(c� + R)), respectively. Considering
the absolute value of the residual rik , the blue shaded area equals to 1−π

2 , repre-
senting half of the probability of false-positive (the other half on the left-side is
not shown for simplicity), and the red shaded area equals to 1−π

2 , representing
(approximate) false-negative probability.

Therefore, in the fault-free case, with probability 1 − π , the
absolute residual rik ≥ m(c� + R) = Tπ and the fault detector
triggers the alarm (false positive). With similar line of reason-
ing for faulty PDF (red curve), with probability 1−π

2 the detector
does not trigger the alarm (false-negative)4. Note that these
thresholds closely depend on the parameters in (20). To find
tighter upper-bounds on ‖P∞‖2, one can reduce ρ(Â), ‖INn −
KDC‖22, and ‖K‖22 by optimal design of the gain matrix K. This,
further, improves the convergence rate of the networked esti-
mation error in the fault-free case (which is a direction of our
future research). By embedding these thresholds at every sensor
node, sensors can detect possible faults locally at the state output
with no need of any centralised decision making. Our proposed
simultaneous networked estimation and FDI is summarised in
Algorithm 1.

4.3 Chi-squared detector via the residual history

One can extend the results of this paper to consider the resid-
ual’s history over a predefined sliding time-window θ , instead of
residual at every time-step. This is also referred to as the stateful
detection (Giraldo et al., 2018) via distance measures. Define,
the sum of the normalised squared residuals (at sensor i) over
the sliding time-window θ as,

vik =
k∑

m=k−θ+1

(rim)2

c� + R
. (22)

It is known that the distribution of this distance measure vik
follows theChi-squarePDFwith degree θ , i.e.E[vik] = θ (Doost-
mohammadian et al., 2021; Greenwood & Nikulin, 1996; Ren-
ganathan et al., 2020). Extending the results in Doostmoham-
madian et al. (2021) to rank-deficient systems, one can design
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Algorithm 1: The proposed algorithm for distributed
estimation and FDI.
1 Input: System matrix A and digraph GA, system output

matrix C, false-alarm rate κ or detection probability
π = 1 − κ.

2 Classify the sensors (α, β , or γ ) as in Section 4.1;
3 Design the networks Gα and Gβ (the sensor network)

via Lemma 3.1;
4 Design the block-diagonal gain matrix K via LMI (14)

with small τ < 1;
5 begin at every time-step k every sensor j:
6 Shares estimate x̂jk−1|k−1 with sensors {i|j ∈ Nβ(i)}

and measurement yjk with sensors {i|j ∈ Nα(i)};
7 Finds the priori estimate x̂jk|k−1 via Equation (5) and

posteriori estimate x̂jk|k via Equation (6) using the
received neighbouring data;

8 Finds the residual rjk via Equation (11);
9 Finds the threshold Tπ = √

2erf−1(π)(c� + R) for
given π = 1 − κ;

10 if rjk > Tπ then
11 Alarm: sensor j is faulty with probability π (or

false alarm rate κ);

12 Output: estimate x̂jk|k, fault decision at sensor j;

thresholds using the CDF of χ2
θ -distribution as,

Tπ = 2�−1
(

π ,
θ

2

)
= 2�−1

(
1 − κ,

θ

2

)
, (23)

with κ as the probability of false-alarm and �−1(·, ·) denoting
the inverse regularised lower incomplete gamma function (Green-
wood & Nikulin, 1996). However, such detection method typi-
cally raises the alarm after certain delay depending on θ . This
is because, instead of the instantaneous residual at one time-
step, the summation in (22) over a (possibly) large time-window
θ is considered and compared with the thresholds; therefore,
the deviation of the residuals over many time-steps over θ

would raise the alarm. This is more illustrated by simulation in
Section 6.

5. Sensor fault compensation,
observational-equivalence, and q-redundant
networked observers

5.1 Observationally-equivalent state nodes

In this subsection, we propose a strategy to replace the
faulty sensor (detected via the logic in the previous section)
with an observationally-equivalent sensor. The concept of
observational-equivalence, introduced in Doostmohammadian
and Khan (2016) and Doostmohammadian et al. (2018), pro-
vides a methodology to recover for loss of observability by
replacing the biased/faulty output with an equivalent output in
terms of observability. This concept is better defined on the sys-
tem digraph (see Section 2.2). Recall that form Theorem 2.1

outputs/measurements of (i) one state in every parent SCC and
(ii) every unmatched node are necessary for observability. All
state nodes in the same parent SCC, Sp

l , are observationally-
equivalent in the sense that output of any one fulfils the observ-
ability condition in Theorem 2.1. On the other hand, the set
of unmatched nodes δM and maximum matching M are not
unique in general (Murota, 2000). In this direction, a con-
traction, Cl, is defined as the set of nodes in GA such that
|N (Cl)| < |Cl|, where N (Cl) = {j|(i, j) ∈ E , i ∈ Cl}. Let the set
of all contractions in GA be denoted by C; for every choice of
maximum matching M, there exists one unmatched node in
every contraction Cl and the number of all contractions equals
the number of unmatched nodes inGA, i.e. C = {C1, . . . , C|δM|}.
It is known that every observation/output of a state node in a
contraction Cl recovers the system S-rank by 1 (Doostmoham-
madian et al., 2018). In other words, denoting the outputs of all
nodes in Cl by CCl , we have,

S-rank
(

A
CCl

)
= S-rank(A) + 1. (24)

The above holds for any nonempty subset of Cl, and implies
the observational-equivalence of all state nodes in Cl. From
Section 2.3, output of states in Cl also recover the rank of
OA,CCl by (at least) 1. We refer interested readers to our pre-
vious work (Doostmohammadian et al., 2018) for more infor-
mation. Define the setsAi ⊂ α,Bj ⊂ β with i ∈ {1, . . . , |δM|},
j ∈ {1, . . . , |Sp|} as observationally-equivalent sensorswith out-
puts from states in Ci and Sp

j , respectively. Using the notion of
observational-equivalence, our fault compensation logic is as
follows,

• Type-α: replace the faulty sensor a ∈ Al by another sen-
sor a′ ∈ Al (both a and a′ possess outputs from the same
contraction Cl).

• Type-β : replace the faulty sensor b ∈ Bl by sensor b′ ∈ Bl
(both b and b′ possess outputs from the same parent SCC
Sp
l ).• Type-γ : remove the faulty sensor of this type. This type plays

no necessary role in system observability.

where the above compensation logic assumes that |Ai| ≥ 2 and
|Bi| ≥ 2. This assumption says that there exist (at least) two
(observationally-equivalent) state nodes in every parent SCC
and contraction. The connectivity of the new substitute α or β

sensor follows the same connectivity as the removed faulty one
(see connectivity conditions in Section 4.1). For Type-γ , there
is no need for substitute sensors, and the network connectiv-
ity of the remaining sensors needs to be adjusted to fulfil the
conditions in Section 4.1.

5.2 Proposed algorithm for q-redundant networked
observability

Following the definitions in Section 2, the concept of observ-
ational-equivalence is in close relation with q-redundant
observability. We are interested to design resilient networked
estimators to tolerate isolation/removal of faulty sensors (or
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Algorithm 2: The proposed algorithm to recover for
networked observability.
1 Input: System digraph GA, faulty sensor j from

Algorithm 1.
2 Remove sensor j and cut all its communication links

over Gα and Gβ ;
3 if j ∈ α then
4 Find {l|l ∈ {1, . . . , |δM|}, j ∈ Al};
5 Replace sensor j by (observationally-equivalent)

sensor j′ ∈ Al;
6 else
7 if j ∈ β then
8 Find {l|l ∈ {1, . . . , |Sp

l |}, j ∈ Bl};
9 Replace sensor j by (observationally-equivalent)

sensor j′ ∈ Bl;

10 Link sensor j′ to (and from) out-neighbours
(in-neighbours) of (removed) sensor j;

11 Output: substitute observationally-equivalent sensor j′
over the network;

failed sensors). In this direction, Algorithm 3 designs q-
redundant observable estimators. q number of detected faulty
sensors (via the FDI logic in Algorithm 1) can be iso-
lated/removed, while the remaining sensor network preserves
distributed observability. Note that q is limited by theminimum
size of observationally-equivalent sets (i.e. contractions and par-
ent SCCs), and this min size is defined by q in Algorithm 3.
Similarly, one can extend the results to design q-edge-connected
networks which remain SC after removal of (less than or equal
to) q number of links. This is referred to as survivable network
design (Lau et al., 2009; Sadeghi & Fan, 2019; Umsonst, 2019)
and particularly is related to the connectivity requirement of the
Type-β sensors. In other words, designing a q-edge-connected
sensor network ensures strong-connectivity after removal of (up
to) q links (or q lost-connectivity/missing-packets), which guar-
antees the connectivity requirement sensors over Gβ . Similarly,
for Gα , one can add more links from observationally-equivalent
α sensors.

6. Illustrative example and simulation

6.1 Illustrative simulation

We consider a linear system of 12 states with the digraph shown
in Figure 6. The link weights (chosen randomly in [0.02 1.1])
represent the non-zero entries of system matrix A; for exam-
ple, link from state 1 to 2 with weight 0.79 implies that a21 =
0.79 (a21 is the entry at column 1 and row 2 of A). The sys-
tem is considered in the discrete-time form (1) with noise ν =
N (0, 0.01). The associated system digraph includes two par-
ent SCCs Sp

1 = {1, 2, 3}, Sp
2 = {8, 9} and the set of unmatched

nodes is δM = {4, 10} and contractions C1 = {4, 8, 9}, C2 =
{10, 11}. Note that state nodes 8, 9 are shared between C1 and
Sp
2 . Following Theorem 2.1, state 1 from Sp

1 and state 8 from
Sp
2 and unmatched states {4, 10} are respectively measured by

Algorithm 3: Algorithm to design q-redundant net-
worked estimators.
1 Input: System digraph GA, redundancy q
2 Find contractions C = {C1, . . . , C|δM|};
3 Find parent SCCs Sp = {Sp

1 ,Sp
2 , . . . ,Sp

|Sp|};
4 Define q = mini∈{1,...,|δM|},j∈{1,...,|Sp|}{|Ci|, |Sp

j |} − 1;
5 Return:max possible redundancy as q;
6 if Ci ∩ Sp

j = ∅ for i ∈ {1, . . . , |δM|}, j ∈ {1, . . . , |Sp|}
then

7 For 1 ≤ q ≤ q define N = (q + 1)(|Sp| + |δM|) as
the min number of necessary state outputs for
q-redundant observability;

8 Assign N sensors to q + 1 state-outputs from every
Ci and Sp

j , i ∈ {1, . . . , |δM|}, j ∈ {1, . . . , |Sp|} and
design output matrix C;

9 DefineAi,Bj, i ∈ {1, . . . , |δM|}, j ∈ {1, . . . , |Sp|} as
the set of q + 1 observationally-equivalent sensors
(with outputs from the same parent
SCC/contraction);

10 else
11 Define N = ∑

i∈{1,...,|δM|},j∈{1,...,|Sp|}{Ci ∩ Sp
j �= ∅}

as the number of non-disjoint parent SCC and
contraction sets;

12 Reduce min number of necessary outputs N (by at
most N) via taking outputs from the shared state
nodes in every set {Ci ∩ Sp

j �= ∅}, see details in
Doostmohammadian (2019) Any sensor l with
outputs of states in {Ci ∩ Sp

j �= ∅} is both Type-α
and β , i.e., l ∈ Ai, l ∈ Bj;

13 ∀i ∈ {1, . . . , |δM|}, ∀m /∈ Ai, ∀l ∈ Ai: add a link l → m
in Gα , i.e.,m ∈ Nα(l);

14 Design Gβ as a (q + 1)-connected network of all sensors
(see Section 2.1);

15 Apply the networked estimation protocol (5)–(6) over
the networks Gα and Gβ ;

16 Output: (structured) matrix C and networks Gα ,Gβ ;

sensors β1,β2 (Type-β) and α1,α2 (Type-α), with measure-
ment noise ζ = N (0, 0.01). These outputs fulfil the necessary
conditions for (A,C)-observability (see the observability con-
ditions in Doostmohammadian & Khan, 2020). The networks
Gα and Gβ are designed as given in Figure 6, satisfying dis-
tributed observability conditions in Lemma 3.1. The networked
estimation protocol follows Equations (5) and (6), where sen-
sors share their estimates over the SC network Gβ (solid arrows)
and their measurements over the network Gα (dashed arrows).
Link weights in Gβ are chosen randomly such that the incoming
link weights sum to 1 to satisfy the row-stochasticity of consen-
sus matrixW, and for network Gα the link weights are equal to
1. The output gains, i.e. the non-zero entries of the Cmatrix, are
also equal to 1. System is unstable as ρ(A) = 1.155 > 1. In Gα ,
theα-sensors are the hubs of the network and directly send their
outputs to other sensors. We choose τ = 0.2 in the LMI gain
design (14), so that the residual at a faulty α-sensor (say α2) be
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Figure 6. This figure shows a setup for networked estimation over an example system digraph (left), with outputs of the blue-coloured state nodes taken by the red-
coloured ”sensor” nodes. The communication network (right) of the sensors includes networkGα (dashed arrows) over which α-sensors share their outputs to every other
sensor and SC network Gβ (solid arrows) over which sensors share their estimates. See Section 3 for details.

about 1
0.2 = 5 times greater than the residuals at the other non-

faulty sensors (say α1,β1,β2). Therefore, the conditions in (14)
are as follows,

|CiKiC	
j | ≤ 0.2|1 − CjKjC	

j |, j = α1, α2, j �= i (25)

For the sake of space, only Kα2 (feedback gain at sensor α2) is
given below as an example and the rest are skipped.

Kα2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.95 0 0 0 0 0 0
0 0 0 0 0 0 0

0.56 0 0 −0.653 0 0 0
0 0 0 0.95 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.1338 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
−0.0334 0 0.1584 0 0

0 0 0 0 0
0 0 0 0 0

0.0294 0 0.2730 0 0
−0.0299 0 0.142 0 0

0 0 0 0 0
0.95 0 0 0 0
0.8238 0 0.0697 0 0

0 0 0.95 0 0
−0.0265 0 0.1257 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The constrained LMI (14) is solved by MATLAB cvx, and

the resulting K gives
|CiKiC	

j |
|1−CjKjC	

j | < 1 × 10−6 for j = α2 and i =
α1,β1,β2, respectively. (similarly for j = α1). This implies that

the residual due to (sufficiently large) fault value f jk at sen-
sor j = α2 is at least 5 times greater than the residual at other
sensors i �= j. This helps to easily detect/isolate the fault at sen-
sor j = α2. We assume additive faults at sensors α2 and β1 as
f α2k≥25 N (1.2, 0.5) and f β1k≥55 = 1.2. In this example, b = 0.0505,
a1 = 1.753, a2 = 1.6551, and ‖R‖2 = 0.01. Putting these values
in (20), � = 0.41 and the thresholds are,

T68% = 0.42, T95% = 0.84,

T99.7% = 1.26, T99.99% = 1.68

The sensor residuals via Equation (12) and mean-square-
estimation-errors (MSEEs) under the proposed networked esti-
mation protocol (5)–(6) along with the thresholds are shown
in Figure 7. One can claim that sensor α2 and β1 are faulty
with a probability of 95% (for k ≥ 25 and k ≥ 55 respectively)
and the probability of false alarm is less than 5%. Next, follow-
ing Section 4.3, we consider stateful detection via the distance
measure (22) with sliding time-window of θ = 12-steps over
the residual history. The thresholds (with the same detection
probabilities) can be found via (23) as,

T68% = 13.7, T95% = 21.1,

T99.7% = 29.8, T99.99% = 39.1

From Figure 7, the Chi-squared detector raises a higher detec-
tion probability of 99.7% (lower false-alarm rate 0.3%), however,
with certain delays with respect to the exact fault-occurrence
times.

Next, we replace the two faulty sensors with new observat-
ionally-equivalent sensors via the results in Section 5 to recover
for loss of observability. The unmatched state 10 (with output to
sensor α2) belongs to the contraction C2 = {10, 11}. We replace
α2 by non-faulty sensor α′

2 with output of state node 11. Sim-
ilarly, sensor β1 with output of state node 1 in the parent SCC
Sp
1 = {1, 2, 3} is replaced by non-faulty sensor β ′

1 with output of
state node 2. This new setup is shown in Figure 8, where the state
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Figure 7. This figure shows the residuals and MSEEs at the setup given in Figure 6 for given faults at sensors β1 and α2. The residuals at faulty sensors β1 and α2 are over
the threshold T95%, implying possible faults with probability more than 95%. For the same faults, the distance measures are over the threshold T99.7% and Chi-squared
detector reveals a higher detection probability of 99.7%; however, the distance measures go over the thresholds with certain delay (i.e. delay in raising the alarm).

Figure 8. This figure shows the setup to compensate for the loss of observability
(after isolating/removing faulty sensors α2 and β1 in Figure 6). The set of orange-
coloured and green-coloured states respectively belong to a parent SCC and a
contraction. The faulty sensors α2 and β1 with outputs from states 10 and 1 (in
Figure 6) are replaced with new sensors α′

2 and β ′
1 respectively with outputs of

equivalent states 11 and 2 in the system digraph. The new setup ensures system
observability and results in bounded stable MSEE as shown in Figure 9.

nodes in the contraction C2 and parent SCC Sp
1 are coloured.

Figure 9 presents the performance of the networked estima-
tion protocol under the compensated setup (after replacing the
faulty sensors with their equivalents). As it is clear, the MSEE is
bounded steady-state stable at all sensors with no (considerable)
residual, implying the distributed observability recovery in the
new setup by Figure 8.

Note that, for this example system digraph, q = 1 from
Algorithm 3, as minimum size of the contractions and parent
SCCs is equal to 2. Thus, one can design a 1-redundant observer
as shown in Figure 10. The design follows fromAlgorithm 3: we
have N = 8 and N = 1 as C1 ∩ β1 = {4, 9}, and the minimum
number of necessary outputs for this case is 7. Therefore, the
sensor with output of state 9 is both Type α and β , shown as
α′
1β

′
1 in Figure 10. Every sensor receives two direct links from

every setA1 = {α1,α′
1} andA2 = {α2,α′

2}. The undirected net-
workGβ as an undirected cycle of all sensors is 1-connected (see

Table 2. Parameter values for the MTS protocol in He et al. (2021) and He, Ren,
et al. (2019).

L 20 α 0.5 β 0.5

‖A‖ 1.28 γ 0.2 N 4
s 2 bw 0.1 bv 0.1
λ0 1.95 η0 0.1 ρt0 0.1

Section 2.1), i.e. by removing any 1 sensor (or any 1 link) the net-
workGβ remains SC. Therefore, after removal/isolation of anyα

or β sensor (for example sensor α1), the remaining sensor net-
work still satisfies Lemma 3.1 and Theorem 2.1 (i.e. distributed
observability is preserved). Recall that the performance of this
1-redundant networked observer/estimator after removing one
sensor from every observationally-equivalent setA1,A2,B1,B2
is given, for example, in Figures 6 and 7 and in Figures 8 and 9.

6.2 Comparisonwith recent literature

In this subsection, we compare our proposedmethodology with
recent works (He et al., 2021) and He, Ren, et al. (2019) as they
make similar assumptions on system stability and distributed
observability, while most literature considers stable dynamics
and local observability in the direct neighbourhood of sensors.
He et al. (2021) and He, Ren, et al. (2019) propose an MTS pro-
tocol for distributed filtering and fault detection, which requires
L steps of consensus between two consecutive steps of system
dynamics. The detection logic in He et al. (2021) and He, Ren,
et al. (2019) is deterministic and claims to detect faults of a cer-
tain magnitude. We run this MTS protocol over the same setup
as in the previous subsection (Figure 6) for comparison, using
the same system parameters and outputs. The only difference
is that in He et al. (2021) and He, Ren, et al. (2019) the sen-
sor network needs to be undirected and we used bidirectional
Gβ with weightsW = W	+W

2 instead. Table 2 gives the chosen
parameters of theMTS protocol. Adopting these parameters the
MSEEs at all 4 sensors are shown in Figure 11. According to He
et al. (2021) andHe, Ren, et al. (2019), the fault is detectedwhen-
ever the measurement-update at a sensor is over the threshold
�. From the figure, one can see that both faults at sensorsα2 and
β1 are detected. However, the detector triggers alarm falsely at
sensor β2.

The improvements of our proposed distributed strategy over
this MTS solution are as follows:
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Figure 9. The MSEEs, residuals, and distance measures at all 4 sensors in the recovered setup in Figure 8 are shown here. The steady-state stability of MSEEs at all sensors
implies the networked observability of the proposed recovered estimation setup.

Figure 10. (Left) 2 outputs from states in every parent SCC and contraction are considered in the system digraph, so that the pair (A, C) is 1-redundant observable.
(Right) The proposed network topology to design 1-redundant networked observer/estimator is shown (following Section 4.1). The networked estimation can tolerate
removing/isolating any one faulty sensor. For example, assume Sα1 is isolated by cutting all its communications (colored by red). The black-coloured links show the
reduced communication network of Gβ (solid links) and Gα (dashed links). The conditions in Lemma 3.1 and Theorem 2.1 hold on the reduced setup, i.e. the system
(digraph) is structurally observable (in distributed sense) to all other sensors communicating over the reduced network. This 1-redundant networked observer can tolerate
isolation/removal of 1 sensor from every observationally-equivalent setA1,A2,B1,B2 as shown in Figures 6–7 and 8–9.

• First (and most important), the MTS strategy in He
et al. (2021) and He, Ren, et al. (2019) requires L (in
this example 20) consensus and communication iterations
between time-steps k and k+ 1, where L needs to be (at
least) more than the diameter dN of the sensor-network and,
further, needs to be large enough for resilient and fault-
tolerant filtering. L > dN guarantees that the information
of every sensor reaches every other sensor between k and
k+ 1. Thus, the system becomes locally observable to all
sensors at all time-steps k via the many iterations of consen-
sus/communication. In contrast, our proposed networked
estimator gains distributed observability at the same time-
scale k via the established network topology and LMI gain
design. The MTS approach in He et al. (2021) and He,
Ren, et al. (2019) requires (L-times) faster communication
facilities along with (L-times) faster computation units to
process the received information at every sensor. In large-
scale systems, e.g. geographically distributed grid monitor-
ing, with long-range communications and sparse network
connectivity (large diameter dN), the MTS approach is more

costly and even infeasible. Our proposed strategy demands
low-cost equipment with equivalent (and even better) esti-
mation and FDI performance (compare the MSEE perfor-
mance in Figures 7 and 11). Following Table 1, here the
‘network-connectivity’ × ‘communication-rate’ is 8 × 20 as
compared to (6 + 4) × 1 in Figure 6.

• The strategy in He et al. (2021) and He, Ren, et al. (2019)
detects the fault but provides no recovery solution for
faulty sensors, i.e. all other sensors keep receiving biased
information from the faulty ones. Having few averaging
iterations (small L) may bias the MSEEs at all sensors
(see Figure 11). To overcome this, the number of aver-
aging iterations L needs to be increased, which, in turn,
demands even faster communications/data-processing. In
contrast, using our recovery method via observational-
equivalence, one can recover the loss of observability
and even add redundant sensors to make the system q-
redundant observable. For example, compare the MSEE
performance of Figure 9 (after observability recovery) and
Figure 11.
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Figure 11. The MSEEs at 4 sensors are shown using the MTS protocol in He
et al. (2021) and He, Ren, et al. (2019) via L = 20 steps of averaging/consensus
between every two consecutive steps of system dynamics. The measurement-
updates (while tracking the unstable system in Figure 6 via the MTS protocol) are
given at all 4 sensors. This figure says that the faults at sensor α2 and β1 is above
the threshold� (detected), while the detector raises false alarm at sensor β2.

7. Conclusion

A residual-based distributed FDI method over distributed esti-
mation networks and a probabilistic threshold on the residu-
als is proposed in this paper to detect possible additive faults.
We validated our results on an academic simulation example.
The performance measures of the proposed joint estimation
and FDI algorithm are summarised as follows: (i) no need
for high communication/computation rate and costly network-
ing/processing resources as compared to MTS estimators, (ii)
less network traffic/connectivity as compared to locally observ-
able STS estimators, (iii) more accurate detection via prob-
abilistic threshold design with no simplifying upper-bound
assumption on the noise support (as compared to the deter-
ministic thresholds), and (iv) estimation recovery via adding
observationally-equivalent sensors and designing q-redundant
and fault-tolerant distributed estimators.

It is worth mentioning that the proposed methodology in
this paper is of polynomial-order complexity, which makes
it applicable in large-scale systems. The LMI approach to
design the gain matrix is of polynomial-order complexity (Nes-
terov & Nemirovskii, 1994; Ye, 1993). Moreover, the compu-
tational complexity of the DFS algorithm is O(n2) (Cormen
et al., 2009) and the computational complexity of the most effi-
cient algorithm forDMdecomposition and finding contractions
in the system digraph isO(n2.5) (Micali & Vazirani, 1980). As a
direction of future research, we are aiming to consider possible
time-delays over the communication network using the results
in Hadjicostis and Charalambous (2014) and Doostmohamma-
dian et al. (2021).

Notes

1. The relevant concepts of contractions and parent SCCs (strongly-
connected-components) and other structural observability notions are
defined later in Section 2.1.

2. Throughout this paper, the terms output and measurement are used
interchangeably.

3. Note that in this section, we do not consider observationally-equivalent
sensors, e.g, with outputs from the same parent SCC Sp

l . This is
discussed later in the next section.

4. Note that the given probability for false-negative is the approximate
value as we consider the absolute residual rik. This implies folded normal
distribution, i.e. to fold-over the probability mass to the right of 0 axis
by taking absolute value. Then, the exact probability of false-negative is

κ = 1−erf(m/
√
2)

2 − 1−erf(3m/
√
2)

2 = erf(3m/
√
2)−erf(m/

√
2)

2 . Form ≥ 2
one can approximate κ by 1−π

2 as 1 − erf(3m/
√
2) ≈ 2e−10.
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