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Distributed Channel Access for Control Over
Known and Unknown Gilbert–Elliott Channels

Tahmoores Farjam , Henk Wymeersch , and Themistoklis Charalambous

Abstract—In this article, we consider the distributed
channel access problem for a system consisting of multi-
ple control subsystems that close their loop over a shared
wireless network with multiple channels subject to Marko-
vian packet dropouts. Provided that an acknowledgement/
negative-acknowledgement feedback mechanism is in
place, we show that this problem can be formulated as a
Markov decision process. We then transform this problem
to a form that enables distributed control-aware channel
access. More specifically, we show that the control objec-
tive can be minimized without requiring information ex-
change between subsystems as long as the channel pa-
rameters are known. The objective is attained by adopting
a priority-based deterministic channel access method and
the stability of the system under the resulting scheme is
analyzed. Next, we consider a practical scenario in which
the channel parameters are unknown and adopt a learning
method based on Bayesian inference, which is compatible
with distributed implementation. We propose a heuristic
posterior sampling algorithm, which is shown to signifi-
cantly improve performance via simulations.

Index Terms—Bayesian inference, distributed channel
access, Gilbert–Elliott channel, online learning, wireless
networked control systems (WNCSs).

I. INTRODUCTION

R ECENT technological advancements have enabled mass
production of low-power wireless sensors with high
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computational capabilities at a lower cost. Wireless communica-
tion plays a key role in modern control environments since adopt-
ing wireless sensors leads to scalability, flexibility, and facilitates
breaking new disruptive technologies into the market [2]. The
communication resources within these environments are often
shared among various control loops and such systems are often
referred to as wireless networked control systems (WNCSs).

Using wireless communication for information exchange in
the control loops introduces several unique challenges that stem
from nonnegligible transmission error probability. This leads
to packet dropouts, which are typically modeled as an inde-
pendent and identically distributed (i.i.d.) Bernoulli sequence.
The impact of this phenomenon on the solution of the optimal
estimation and linear quadratic Gaussian (LQG) control problem
for a single loop has been investigated in seminal works [3]
and [4], respectively. The i.i.d. assumption, however, corre-
sponds to environments where path loss and small-scale fading
are dominant. In industrial environments, large moving objects
lead to shadow fading and burst error, which cause correlated
packet dropouts [5], [6]. This correlation can be approximated by
modeling the communication channel as a time-homogeneous
two-state Markov chain known as the Gilbert–Elliott (GE)
model [7], [8]. The impact of this type of channel on a single
control loop has also been studied [9], [10], [11], [12].

Typically, WNCSs contain several control loops, hereon
called subsystems, which communicate over a shared network
to perform their individual tasks. The limited capacity of the
network necessitates that only a subset of subsystems are al-
lowed us to communicate within each time slot. Devising a
policy for choosing a suitable subset of subsystems for achieving
the desired objective given the communication constraints is
known as the scheduling or channel access problem. These
policies often require solving a complex optimization problem
by a central entity in the network, which orchestrates channel
access, thus impeding scalability. In this article, we consider
the channel access problem over GE channels in the absence
of a central coordinator in the network. We derive the stability
conditions for our proposed distributed channel access method
and also extend its application to scenarios where the underlying
parameters of the GE channels are unknown.

A. Related Works

The seminal work [3] investigated the effect of i.i.d. packet
dropouts on Kalman filtering, which showed that a critical
dropout rate exists beyond which the estimation error covariance
cannot be bounded. This paved the way for a plethora of works
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on sensor scheduling policies over ideal channels such that
stability of the filter is preserved despite the intermittent arrival
of data packets. For instance, the single, two, and multisensor
scheduling problem subject to energy constraints were studied
in [13], [14], and [15], [16], respectively, showing that the
optimal schedule can be approximated by a periodic one. Sen-
sor scheduling with possibility of i.i.d. packet dropouts during
transmission has also been studied for bandwidth-limited sys-
tems [17], [18], [19] as well as systems with energy harvesting
capabilities [20], [21], [22]. In many practical scenarios, channel
states, and consequently, packet dropouts are time-correlated,
which motivates the use of GE channel model instead. The
study of this model in WNCSs has been mainly concerned with
stability [9], [11], [23], [24] and scheduling of a single sensor for
remote estimation [25], [26]. To the best of authors’ knowledge,
the only works that consider the closely related scenario of
multiple GE channels are [27] and [28].

The sensor scheduling problem for remote estimation is in
itself an interesting and prominent problem for applications,
such as target tracking. Nevertheless, state estimation is also
of paramount importance to feedback control. In the sem-
inal work [4], the LQG problem for a single control loop
subject to i.i.d. packet losses was considered and the cer-
tainty equivalence principle was shown to hold if instanta-
neous packet acknowledgements/negative-acknowledgements
(ACK/NACKs) are available through an error-free feedback
channel. Regarding the design of channel access policy, how-
ever, it is shown that the channel access decisions should also
be independent of the control inputs for certainty equivalence to
hold [29], [30]. It has been shown that minimizing the LQG cost
for WNCSs with certainty equivalent controller and i.i.d. chan-
nels requires solving a mixed-integer quadratic program [31].
The high computational complexity of this problem has mo-
tivated the adoption of LQG-related cost for prioritizing data
transmission in a computationally tractable manner [32], [33].

Distributed channel access methods are desirable for WNCSs
since they offer higher security and allow for flexibility and
scalability. Typically, due to computational intractability of the
optimal scheduling solutions [14], [15], [16], [17], [18], [19],
approximate solutions are proposed as a threshold policy [15],
[17], [18], or periodic schedule [14], [16] which, in theory,
can be successfully implemented with time-division multiple
access or carrier sense multiple access schemes, respectively.
Nevertheless, performance of such systems can deteriorate dras-
tically in practice due to additional packet dropouts that hap-
pen because of the prolonged delay or collisions [34]. This
has motivated novel control-aware distributed channel access
methods, such as try-once-discard (TOD) [35] and timer-based
mechanism (TBCoIL) [36] for wired networks. Unlike TOD,
TBCoIL is also capable of operating over wireless networks [37],
and more importantly, it allows for learning the parameters
of the communication channels for control-aware channel ac-
cess. Applying reinforcement learning methods for learning the
unknown system dynamics has a long history in the control
community; see [38]. Such methods have also been applied
for near-optimal sensor scheduling over channels with known
i.i.d. packet dropout rates [18], [39] or for learning the unknown

dropout rates [37]. In the closest settings to us, a centralized
method for learning of the channel statistics and scheduling over
GE channels have been proposed in [27], where the variations
of channel states are assumed to be fully observable.

B. Main Contributions

In this article, we consider a WNCS consisting of multiple
subsystems and multiple GE channels without a central schedul-
ing unit for coordinating channel access. The limited communi-
cation resources are such that only a subset of sensors can utilize
the shared network to communicate with their corresponding
estimator. We first show that despite the partial observations of
the channel states the optimal scheduling problem in the LQG
sense can be formulated as an markov decision process (MDP).
To the best of authors’ knowledge, this is the first time that
multiple partially observable GE channels have been considered
in WNCSs and such a formulation is provided. The scenario
closest to ours is investigated in [27], where the state variations
of wireless links are assumed to be identical for all subsystems,
thereby resulting in full observations. For distributed control-
aware channel access, we then utilize the concept of cost of
information loss (CoIL), originally introduced in [33], and show
that the resulting priority measure can be utilized in TBCoIL.
More specifically, the resulting priority measure for minimizing
the stage cost can be calculated by each sensor individually and
without requiring any explicit information exchange between
them which enables distributed channel access with TBCoIL.
We then derive the conditions under which implementing TB-
CoIL is guaranteed to stabilize the system. The framework used
for stability analysis is inspired by a work done on protocols with
redundant data transmission [40], but our method significantly
differs from the original work [40] and also seminal works [3],
[4], [9].

Operation of TBCoIL assumes knowledge of the parameters
of the underlying GE model. This can be restrictive in practice
and thus we relax this assumption by adopting a Bayesian frame-
work [41] for learning the channel parameters. This method
enables us to reduce uncertainty in the channel parameters by
incorporating information that is obtained from partial observa-
tions of the channel state variation. We then propose a heuristic
posterior sampling algorithm that, in addition to computational
tractability, allows us to address the exploration/exploitation
dilemma in a distributed and control-aware manner through
TBCoIL.

C. Organization and Notation

The rest of this article is organized as follows. In Section II,
we provide the system model and the necessary preliminaries.
In Section III, we provide the MDP formulation of the channel
access problem and propose a distributed solution and establish
the stability conditions. The adopted Bayesian framework for
learning the GE channel parameters is described in Sections IV
and the proposed learning algorithm is presented therein. In
Section V, we numerically evaluate the performance of the
proposed methods. Finally, Section VI concludes this article.

Notation:Z≥0 (Z>0) denotes the set of nonnegative (positive)
integers. The transpose, inverse, and trace of a square matrix X
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Fig. 1. Example of the WNCS layout with N subsystems competing to
access a shared channel j. Pi represents the plant of subsystem i, with
Si, Ei, and Ci being its sensor, estimator, and controller, respectively.
Note that the timer is embedded in the sensor block.

are denoted by XT, X−1, and tr(X), respectively, while the no-
tationX�0 (X�0) means that matrixX is positive semidefinite
(definite). E{·} represents the expectation of its argument and
P{·} denotes the probability of an event. fn(·) is the n-fold
composition of f(·), with the convention that f0(X) = X . The
Euclidean norm of a vector x is denoted by ‖x‖ and σmax(X)
denotes the spectral radius of a matrix X . The n by n identity
matrix is represented by In. 1n×p and 0n×p present an all-one
and all-zero n by p matrix, respectively. Finally, the cardinality
of a set X is denoted by |X |.

II. SYSTEM MODEL AND PRELIMINARIES

The layout of the considered WNCS is depicted in Fig. 1.
We consider multiple subsystems with decoupled dynamics
share a multichannel wireless network for information exchange
between their sensor and controller. The detailed model of the
involved components is described in the following.

A. Local Processes and Measurements

LetN denote the index set of subsystems with |N | = N . Each
subsystem i ∈ N is modeled by a linear time-invariant process
as follows:

xi,k+1 = Aixi,k +Biui,k + wi,k (1a)

yi,k = Cixi,k + vi,k (1b)

where xi,k ∈ R
ni , yi,k ∈ R

pi , and ui,k ∈ R
mi are the local

states, output, and control input at time k, respectively. Ai

and Ci are the system and observation matrices, respectively,
and we assume the open-loop dynamics are unstable to avoid
trivial problems, i.e., σmax(Ai) > 1. The initial state, process
disturbance, and measurement noise, denoted by xi,0, wi,k,
and vi,k, respectively, are assumed to be uncorrelated zero-
mean Gaussian random variables with respective covariances
Xi,0 � 0, Wi � 0, and Vi � 0.

We assume that smart sensors with sufficient memory and
computational capacity take the measurements (1b). This allows
each sensor to run a local Kalman filter to compute the minimum
mean square error estimate of the state, which is to be transmitted

to the corresponding estimator. This setup is commonly used for
remote estimation since it improves performance by resulting
in a smaller error covariance at the estimator [42]. Let Yi,k =
{yi,0, . . . , yi,k} be the history of measurements at smart sensor
for subsystem i ∈ N and define

x̂s
i,k|k−1 � E{xi,k|Yi,k−1}
x̂s
i,k|k � E{xi,k|Yi,k}

as the a priori and a posteriori state estimates, respectively, and
define

P s
i,k|k−1 � E{(xi,k − x̂s

i,k|k−1)(xi,k − x̂s
i,k|k−1)

T|Yi,k−1}
P s
i,k|k � E{(xi,k − x̂s

i,k|k)(xi,k − x̂s
i,k|k)

T|Yi,k}
as the a priori and a posteriori error covariance at the smart
sensor, respectively. All these are determined by the standard
Kalman filter equations. We assume that for all i ∈ N the pair
(Ai, Ci) is observable, and the pair (Ai,W

1/2
i ) is controllable.

As a result, the steady-state value of the a posteriori error
covariance, i.e., P s

i,k|k for k → ∞, exists and we denote it by P i

[43, Ch. 5, p. 110]. Since convergence to steady-state occurs
at an exponential rate, we can safely assume that the local
Kalman filter has already entered steady-state [18], [27], [39],
[44]. Therefore, at each time k, the generated data packet at the
sensor contains x̂s

i,k|k, which has error covariance P i.

B. Communication Channels

Let M denote the index set of the available channels with
|M| = M and define

δi,j,k =

{
1, if i transmits x̂s

i,k|k on channel j

0, otherwise.
(2)

Since the wireless links are unreliable, transmission of sensor i
on channel j at time k, i.e., δi,j,k = 1, might be unsuccessful. We
assume that each subsystem can listen to each of theM channels
simultaneously. We further assume that the network protocol
supports packet ACK/NACKs and that they are guaranteed to
be received by the transmitter [19], [45]. Let γi,j,k ∈ {0, 1}
correspond to this such that γi,j,k = 1 if δi,j,k = 1 and the
data packet is successfully received; otherwise, γi,j,k = 0. In
addition, to represent whether the estimator i receives the data
packet at k, we define

θi,k =

{
1, if

∑
j∈M γi,j,k = 1

0, otherwise.
(3)

We assume that one slot is sufficient for conveying all the
information from the sensor to the estimator and at any time
slot k, each subsystem occupies one channel at most, i.e.,∑

j∈M
δi,j,k ≤ 1 ∀i ∈ N ∀k ∈ Z≥0. (4)

Furthermore, we impose the following constraint on the channel
access decisions to ensure collision-free transmission:∑

i∈N
δi,j,k ≤ 1 ∀j ∈ M ∀k ∈ Z≥0. (5)
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Fig. 2. Two-state Markov chain of the GE channel model.

The effects of state quantization and transmission delays are
considered negligible and are, thus, ignored henceforth.

Fig. 2 depicts the two-state Markov chain corresponding to the
GE channel model considered here. Let ci,j,k ∈ {G,B} denote
the (possibly hidden) state of the wireless link at k, which can be
either good or bad denoted by G and B, respectively. Then, data
transmission over a link (δi,j,k = 1) is successful (γi,j,k = 1) if
the link is in good state (ci,j,k = G), otherwise the data packet
is dropped. The quality of each link is associated with the failure
rate and recovery rate defined as

pi,j = P{ci,j,k = B|ci,j,k−1 = G} (6a)

qi,j = P{ci,j,k = G|ci,j,k−1 = B} (6b)

respectively.
In case the channel state is not observed at a given time k, the

sensor can still maintain a belief of the channel being G at the
next time step. The evolution of the belief is given by

bi,j,k+1 =

⎧⎨
⎩
1− pi,j , if δi,j,k = 1 and γi,j,k = 1
qi,j , if δi,j,k = 1 and γi,j,k = 0
bi,j,k(1− pi,j) + (1− bi,j,k)qi,j , otherwise.

(7)

When the channel state is not observed consecutively, the belief
monotonically converges to the stationary probability of the
channel state being G, which is given by

bi,j,∞ =
qi,j

pi,j + qi,j
. (8)

C. Control and Estimation

We choose the standard quadratic cost over the infinite horizon
as the performance metric, which is given by

J∞ = lim
K→∞

1

K
E

{
K−1∑
k=0

∑
i∈N

(
xT
i,kQixi,k + uT

i,kRiui,k

)}
(9)

whereQi � 0 andRi � 0 are weighting matrices of appropriate
dimensions. We assume that the channel access decisions are
independent of the control inputs, thus guaranteeing that the
certainty equivalence principle holds [32]. As it will become
apparent in the following sections, our channel access policies
indeed satisfy this assumption. Therefore, the optimal controller
is linear and given by

ui,k = Li,∞x̂k|k (10)

where Li,∞ is the optimal feedback gain determined by

Li,∞ = −(BT
i Πi,∞Bi +Ri)

−1BT
i Πi,∞Ai (11)

where Πi,∞ is the positive semidefinite solution of discrete-time
algebraic Riccati equation

Πi,∞ = AT
iΠi,∞Ai +Qi − LT

i,∞(BT
i Πi,∞Bi +Ri)Li,∞.

(12)

By making the common assumption that the actuation links are
perfect [21], [29], [30], [31], [32], [33] and based on the assump-
tion that the pairs (Ai, Bi) and (Ai, Q

1/2
i ) are controllable and

observable, respectively, the positive semidefinite solution of
(12) always exists [46, Ch. 6]. Let x̂i,k|k � E{xi,k|Ii,k} denote
the a posteriori state estimate provided by the estimator at the
controller side. The information pattern can be described as

Ii,k = {ui,0, . . . , ui,k−1, θi,0, . . . , θi,k, x̂
s
i,0|0θi,0, . . . , x̂

s
i,k|kθi,k}

(13)

i.e., the successfully received estimates from the sensor and the
past applied inputs. Furthermore, the estimator can infer the time
elapsed since the most recent successful packet reception, which
is defined by

ti,k = min{κ ≥ 0 : θi,k−κ = 1}. (14)

Then, the computations at the estimator can compactly be written
as

x̂i,k|k = (Ai +BiLi,∞)ti,k x̂s
i,k−ti,k|k−ti,k

(15)

Pi,k|k = h
ti,k
i (P i) (16)

where Pi,k|k � E{(xi,k − x̂i,k|k)(xi,k − x̂i,k|k)T|Ii,k} denotes
the estimation error covariance at the estimator and the Lya-
punov operator hi is defined as hi(X) � AiXAT

i +Wi. Due to
optimality of the certainty equivalent controller and separation
of its design from the channel access decisions, the problem for
obtaining the optimal channel access scheme for minimizing (9)
can be formulated as Problem 1.

Problem 1:

min
Δ1,Δ2,...

J∞

subject to (4), (5)
(17)

where Δk is a binary matrix that includes all the optimization
variables at time k, i.e.,

Δk �

⎡
⎢⎢⎢⎢⎣
δ1,1,k . . . δN,1,k

δ1,2,k . . . δN,2,k

...
...

δ1,M,k . . . δN,M,k

⎤
⎥⎥⎥⎥⎦ . (18)

D. Cost of Information Loss

The concept of CoIL was introduced in [33] to capture the
impact of the loss of information of a subsystem on the cost of
the entire system. Define E0

i,k as the cost of subsystem i in case
it does not receive any data at k; similarly, E1

i,k is the cost when
its data packet is successfully received. The CoIL for subsystem
i at time k is defined as

CoILi,k � E0
i,k − E1

i,k. (19)
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This concept can be utilized for solving the optimal channel
access problem. Let Fk ⊆ N denote the set of subsystems that
transmit their data packet at k and Fk � N \ Fk. Assuming
perfect communication channels and one-step horizon, the ex-
pected value of the stage cost, denoted by Jk, can be written as

E{Jk|Fk} =
∑
i∈Fk

E0
i,k +

∑
i∈Fk

E1
i,k

=
∑
i∈N

E0
i,k +

∑
i∈Fk

(
E1

i,k − E0
i,k

)

=
∑
i∈N

E0
i,k −

∑
i∈Fk

CoILi,k. (20)

Since the first term in the last line of (20) is independent of the
channel access decisions, minimizing the cost is equivalent to
finding Fk such that the last term is maximized.

E. Timer-Based Mechanism

Inspired by the celebrated result for relay selection in wireless
cooperative networks [47], the TBCoIL was adopted and modi-
fied in [36] for providing distributed channel access in networked
control systems (NCSs). Although the original mechanism was
developed for networks with a single perfect shared channel, its
application was later extended to WNCSs with multiple lossy
channels [37]. Suppose that each subsystem is equipped with M
independent timers, i.e., a separate timer for each channel. At
the beginning of each transmission slot k, subsystems set their
timers and start the countdown to zero while being in listening
mode. The timer values are given by

τi,j,k =
λj

mi,j,k
(21)

where λj is a constant specific to channel j ∈ M but is identical
for all i, and the local cost, denoted by mi,j,k, is calculated
individually for each channel. Consequently, a larger local cost
corresponds to a smaller timer. For simplicity, we will assume
that λj is the same for all channels, i.e., λj = λ for all j. Let
{i∗, j∗} = arg mini,j{τi,j,k} represent the indices of the small-
est timer at k. As this timer reaches zero, subsystem i∗ switches
to transmission mode and sends a flag packet on channel j∗

immediately, which informs the listening subsystems to stop
their timers for j∗ and back off. Simultaneously, i∗ stops its
running timers, i.e., withdraws from competition for the other
channels, and transmits its data packet on j∗. By assuming that
the flag packet is always detected by all the listeners and that it
has a very short duration, data transmission will be collision-free.
Meanwhile, the remaining subsystems compete for the available
channels until all M channels are allocated. As this time slot
ends, the new timer values are determined based on the updated
local cost (mi,j,k+1) and the entire procedure is repeated in the
next slot. Fig. 3 demonstrates how this mechanism works for an
illustrative case of two subsystems sharing a channel at k.

The contention period can be adjusted by choosing λ as
required by the communication protocol. Its value cannot be
arbitrarily small though, because collision-free channel access

Fig. 3. Two subsystems sharing a single channel via timers at k.
Subsystem 1 has a smaller timer (τ1,k<τ2,k) and claims the channel.

requires that multiple timers do not expire within a shorter
interval than the duration of the flag. This tradeoff is addressed
by fine-tuning λ for specific configurations and based on the
involved control and communication parameters [36], [47]. Re-
garding the local costmi,j,k, it can be any nonzero cost, which is
to be defined according to a specific design objective. Defining
it is a rather challenging task since it should be such that the
resulting channel access decisions accomplish the prespecified
objective, whilst each subsystem is able to evaluate it based on
its local information. Recall that explicit information exchange
between subsystems is impossible, and thus, distributed channel
access requires mi,j,k to be based on local information. In
the following sections, we will specify this cost in a way that
implementing the TBCoIL achieves the channel access objective
in a distributed manner.

III. DISTRIBUTED CHANNEL ACCESS OVER KNOWN GE
CHANNELS

In this section, we first demonstrate that Problem 1 can be
formulated as an MDP despite the partial observations of the
channel state variations. Since the complexity of solving the
MDP impedes tractability, we adopt the concept of CoIL to allow
for solving the problem over a finite horizon in a distributed
manner. The solution is obtained by implementing a specific
timer setup in TBCoIL. Then, we derive the conditions that
guarantee the stability of the system under the resulting channel
access scheme.

For notational convenience and without loss of generality, we
drop the subscript j and consider M = 1 when necessary and
then provide the generalized results by reintroducing it.

A. MDP Formulation

Problem 1 can be simplified by only considering the com-
ponents of J∞, which are influenced by the channel access
decisions.

Problem 2:

min
Δ1,Δ2,...

J̃∞

subject to (4), (5)
(22)
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where

J̃∞ = lim
K→∞

1

K
E

{
K−1∑
k=0

∑
i∈N

tr
(
Γi,∞Pi,k|k

)}
(23)

and Γi,∞ = LT
i,∞(BT

i Πi,∞Bi +Ri)Li,∞.
Proposition 1: Problem 2 is equivalent to Problem 1.
Proof: From [48, Lemma 6.1, Ch. 8], it follows that for the

setup considered here, (9) can be written as

J∞ =
∑
i∈N

tr (Πi,∞Wi)

+ lim
K→∞

1

K
E

{
K−1∑
k=0

∑
i∈N

tr(Γi,∞Pi,k|k)

}
. (24)

Since the first term is independent of the channel access deci-
sions, the assertion follows. �

In order to formulate Problem 2 as an MDP, we define two
additional variables, which can be inferred from the information
available at the sensors. ConsideringM = 1 hereafter, we define
the holding time as

thi,k � min{κ ≥ 0 : γi,k−κ = 1} (25)

which describes the time elapsed since i transmitted successfully
on the channel. In addition, we define the observation time as
the time since the most recent observation of the channel state
by i, i.e.,

toi,k � min{κ ≥ 0 : δi,k−κ = 1}. (26)

From the definitions, we have toi,k ≤ thi,k for all k. Recall that
keeping track of the belief in (7) is crucial for sensors since
channel states variations are not constantly observed. Thanks to
the definition of (25) and (26), this belief can now be expressed
in closed form as

bi,k =

⎧⎪⎪⎨
⎪⎪⎩

qi + (1− pi − qi)
toi,k−1+1pi

pi + qi
, toi,k−1 = thi,k−1

qi − (1− pi − qi)
toi,k−1+1qi

pi + qi
, otherwise

(27)

where the conditions indicate whether the most recently ob-
served channel state wasG orB. In case of a failed transmission,
i.e., channel state beingB, observation time is reset to zero, while
holding time grows (toi,k−1 
=thi,k−1). Hence, toi,k−1 = thi,k−1 in-
dicates that the last transmission attempt has been successful,
i.e., the most recent observed channel state was G.

Problem 2 can be formulated as an MDP problem with an in-
finite time-averaged cost which can be described by a quadruple
(S,A,P{·|·, ·}, R(·, ·)), in which:

1) The state space S: is the collection of all holding times
and observation times, which can in turn determine the
beliefs as per (27). Let a hyperstate be defined by Ti,k �
(thi,k, t

o
i,k). Then, the state at k can be described by sk =

(T1,k, . . . , TN,k), i.e., the collection of all hyperstates
and, thus, the collection of all beliefs.

2) The action space A: contains all allowable channel ac-
cess decisions, i.e., A = {a = [a1, . . . , aN ]∈{0, 1}N :

∑
i∈N ai ≤ 1}. For M = 1, the action at k, i.e., ak, is

the first column of (18) and it inherently satisfies (4).
3) The transition KernelP{·|·, ·}:P{sk+1|sk,a} is the prob-

ability of moving from state sk to sk+1 if the action ak

is executed at k and it can be written as

P{sk+1|sk,ak} =

N∏
i=1

P{Ti,k+1|Ti,k, δi,k} (28)

where

P{Ti,k+1|Ti,k, δi,k}

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bi,k, if Ti,k+1 = (0, 0) and δi,k = 1

1−bi,k, if Ti,k+1 = (thi,k+1, 0) and δi,k = 1

1, if Ti,k+1 = (thi,k+1, toi,k+1) and δi,k = 0

0, otherwise.
(29)

Despite the possibly misleading appearance of (29), one
should distinguish the transition Kernel from the states.
When δi,k = 1, the transition probability is determined
by simply substituting the holding time and appearance
time included in Ti,k within (27), which yields a constant
value between 0 and 1. By evaluating (29) for all i, one
can obtain the transition probability Kernel from (28).

4) The cost function R(·, ·): From Proposition 1 and (16),
we obtain

R(sk,ak) =

N∑
i=1

tr
(
Γi,∞Pi,k|k

)
(30)

where Pi,k|k is given in (16) which depends on ti,k (14)
which is inferred from the holding time, i.e.,

ti,k = min
j∈M

thi,j,k. (31)

We define a policy π : S → A to be a mapping from the
states to actions and denote by Π the set of all admissible
policies. The goal of the MDP is to find the optimal policy,
which minimizes the expectation of the time-averaged cost over
the infinite horizon as

inf
π∈Π

Eπ

{
lim

K→∞
1

K

K−1∑
k=0

R(sk,ak)

}
. (32)

This framework is applicable to the case ofM>1 by considering
the hyperstates for each wireless link. Thus, the state space is
S = Z

2NM
≥0 and the action space and transition probabilities

are also defined accordingly. In principle, after truncating S
to a finite state space, solving (32) by dynamic programming
techniques, e.g., using policy iteration or relative value iteration,
is possible. However, even for the simplest case of M = 1, as
the number of subsystems grows linearly, the number of states
grows exponentially, and finding the optimal policy is shown to
be PSPACE-hard [49]. Although by choosing a finite horizon
in (32), the problem becomes computationally feasible for ap-
proximate methods, a central network managers with access to
information of all subsystems is required to solve the problem
and allocate the channels accordingly. Hereafter, we will instead
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consider the problem of minimizing the expected immediate cost
at each time step, i.e., as follows.

Problem 3:

min
Δk

E{R(sk,ak)}

subject to (4), (5). (33)

As it will become apparent in the following section, the
channel access policy for solving Problem 3, i.e., Δk as defined
in (18), can be determined in a distributed manner as required
by the WNCS architecture.

B. Distributed Channel Access

In the beginning of each time slot k, the sensors decide
whether to transmit within that slot based on their local infor-
mation that is given by

Is
i,k � Yi,k ∪ {δi,1, . . . , δi,k−1, γi,1, . . . , γi,k−1}. (34)

Note that it is implicitly assumed that the available information
at sensor i contains the past control inputs of i. The sensor does
not require additional communication from the controller and
can infer such information from the knowledge of the control
law (10) and utilizing the ACK/NACK signal to determine the
state estimate at the controller side.

The transmission decisions and their outcomes are sufficient
for inferring the holding time and the observation time, and
therefore, (34) is sufficient for evaluating the belief at k. By
utilizing this information, the CoIL for minimizing the stage
cost can be derived in a similar way to (20). Let Is

k � ∪i∈NIs
i,k.

From Proposition 1, it follows that Jk =
∑N

i=1 tr(Γi,∞Pi,k|k),
which is the same as the immediate cost in (30). As a result

E{Jk|Fk, Is
k} =

∑
i∈N

tr
(
Γi,∞E{Pi,k|k|Fk, Is

i,k}
)

(a)
=

∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)

+
∑
i∈Fk

tr
(
Γi,∞P i

)
E
{
γi,k = 1|δi,k = 1, Is

i,k

}

+
∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
E
{
γi,k = 0|δi,k = 1, Is

i,k

}
(b)
=

∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
+

∑
i∈Fk

tr
(
Γi,∞P i

)
bi,k

+
∑
i∈Fk

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)
(1− bi,k)

(c)
=

∑
i∈N

tr
(
Γi,∞h

ti,k−1+1
i (P i)

)

−
∑
i∈Fk

tr
(
Γi,∞

[
h
ti,k−1+1
i (P i)− P i

])
bi,k (35)

where (a) holds since the channel states evolve independently
of the dynamics and for subsystem that do not transmit at k,
i.e., i ∈ Fk, δi,k = 0. Since (34) is sufficient for inferring the

holding time and the observation time, the sensors can compute
the belief as per (27) which yields (b); finally, (c) is obtained by
rearranging the terms.

As a result, the optimal channel access problem for minimiz-
ing the stage cost is equivalent to finding Fk such that the last
summation in (35) is maximized. In accordance with the original
definition, CoIL for subsystem i at k can be formulated as

CoILi,k = tr
(
Γi,∞

[
h
ti,k−1+1
i (P i)− P i

])
. (36)

Since the sensors can keep track of the belief over all channels
in case M>1, it readily follows that by reintroducing the cor-
responding subscript in (35), Problem 3 can be formulated as

max
Δk

∑
i∈N

∑
j∈M

CoILi,kbi,j,kδi,j,k

subject to (4), (5). (37)

As mentioned in Section II-E, if local information is sufficient
for determining mi,j,k in (21), the TBCoIL ensures that channel
access is granted to the subsystems with the highest cost in a
distributed manner while inherently satisfying constraints (4)
and (5). Furthermore, each subsystem i only utilizes its local
information for evaluating CoILi,k and bi,j,k as per (36) and
(27), respectively. Therefore, by letting mi,j,k = CoILi,kbi,j,k
we obtain

τi,j,k =
λ

CoILi,kbi,j,k
. (38)

Consequently, using these values in the TBCoIL determines Δk

in a distributed fashion. Furthermore, since the evolution of CoIL
and belief are independent of the control actions, the certainty
equivalence principle holds and the controller given in (10) is
optimal for this channel access policy.

Note that even in case of networks containing multiple subsys-
tems with identical dynamics, this setup leads to collision-free
channel access since pi,j and qi,j have Lebesgue measure zero.
In other words, subsystems will almost surely have distinct
beliefs and, thus, distinct timer values. Additionally, in case
the network protocol requires bitwise arbitration for granting
channel access, collision-free transmission can be guaranteed by
implementing method, such as the one proposed in [50], where
contention is based on dynamic and static identifiers. In such
settings, the timer value in (38) can be utilized for assigning the
dynamic identifiers, while the distinct static identifier is assigned
as in [50].

C. Stability Analysis

We investigate the stability of the WNCSs in which timers are
employed as per (38) by considering the Lyapunov mean square
stability criterion. For ease of exposition, the subscript corre-
sponding to the index of a subsystem is dropped in Definition 1
and Lemma 1.

Definition 1 (Lyapunov mean square stability [51]): The
equilibrium solution is said to possess stability of the second
moment if given ε > 0, there exists ξ(ε) such that ‖x0‖ < ξ
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implies

E{‖xk‖2} < ε. (39)

Lemma 1: For the architecture considered in this work, (39)
is equivalent to existence of ϕ satisfying 0 < ϕ < ε such that

tr
(
E{Pk|k}

)
< ϕ. (40)

Proof: Let AL = A+BL∞ and ek|k � xk − x̂k|k. The state
dynamics in (1a) can be rewritten as

xk+1 = ALx̂k|k +Aek|k + wk

from which we obtain

E{‖xk+1‖2 |Ik} = tr
(
AT

LALE{x̂k|kx̂T
k|k|Ik}

)
+ tr

(
ATAE{ek|keT

k|k|Ik}
)
+ tr(W )

(41)

due to the fact that wk is zero-mean and independent of
the state and its estimate. Furthermore, E{eT

k|kx̂k|k|Ik} =

E{xT
k|Ik}x̂k|k − x̂T

k|kx̂k|k = 0. From the definition of the error
covariance matrix at the estimator and the law of total expecta-
tion it follows that

E{‖xk+1‖2} = tr
(
AT

LALE{x̂k|kx̂T
k|k}

)
+tr

(
ATAE{Pk|k}

)
+ tr(W ) (42)

whose boundedness guarantees stability as per Definition 1. Due
to the following property [52, Fact 8.12.28]

tr
(
ATAE{Pk|k}

) ≤ σmax(A
TA) tr

(
E{Pk|k}

)
(43)

we conclude that boundedness of E{Pk|k} ensures that the
second term in (42) is bounded. Additionally, thanks to the per-
fect communication link between the controller and actuators,
boundedness of E{Pk|k} guarantees that the feedback gain L∞
is stabilizing [4]. Since the certainty equivalence principle holds,
the adopted controller ensures boundedness of the state estimate
in steady state. Hence, the first term in (42) is bounded. Thus,
existence of 0<ϕ<∞ such that tr(E{Pk|k})<ϕ, ensures that
(42) is bounded by some ε<∞, which is greater than ϕ due to
nonnegativeness of all terms in (42), thus completing the proof.�

As a result of Lemma 1, the entire system is stable in the sense
of Definition 1 if and only if there exists 0 < ϕi < ∞ such that
tr(E{Pi,k|k}) < ϕi for all i ∈ N . Note that the time elapsed
since the last successful packet reception at the estimator, i.e.,
ti,k, is sufficient for computation of the error covariance as

Pi,k|k = hti,k(Pi) =

ti,k∑
c=0

Ac
iPiA

T
i
c
+

ti,k∑
c=1

Ac
iWiA

T
i
c

(44)

where
∑0

c=1 � 0. In the following, we take advantage of the
ergodicity of the process ti,k to derive stability conditions. The
following illustrative example demonstrates how the Markov
chain modeling ti,k can be constructed and analyzed for two
unstable subsystems sharing a single channel.

Example 1: Consider a WNCS that consists of two unstable
subsystems and a single channel, i.e., N = 2 and M = 1, and

the channel access is granted by utilizing the timer setup in
(38). Although the channel access decisions are time-varying,
the evolution of the system can be described by a Markov
chain such that these deterministic decisions are only depen-
dent on the state of the chain. Let S = Z

4
≥0 denote the state

space of a four-dimensional Markov chain, where each state
{(l, l′), (m,m′)}∈S corresponds to th1,k = l, to1,k = l′, th2,k =
m, and to2,k = m′. Therefore, according to their respective def-
initions in (25) and (26), the state space can be reduced to
all {(l, l′), (m,m′)} ∈ Z

4
≥0 such that l′ ≤ l and m′ ≤ m. Since

knowledge of the holding time and observation time is sufficient
for determining CoIL (36) and belief (27), the timer values and
the resulting channel access decisions are state-dependent. We
denote the decisions by

η =

{
0, if Subsystem 1 claims the channel

1, if Subsystem 2 claims the channel
(45)

where η = 0 and η = 1 correspond to Δ = [1 0]T and Δ =
[0 1]T, respectively. As a result, the (possibly) nonzero transition
probabilities are

P {{(0, 0), (m+ 1,m′ + 1)} | {(l, l′), (m,m′)}, η}
� ξ1 = (1− η)b1 (46a)

P {{(l + 1, 0), (m+ 1,m′ + 1)} | {(l, l′), (m,m′)}, η}
� ξ2 = (1− η)(1− b1) (46b)

P {{(l + 1, l′ + 1), (0, 0)} | {(l, l′), (m,m′)}, η}
� ξ3 = ηb2 (46c)

P {{(l + 1, l′ + 1), (m+ 1, 0)} | {(l, l′), (m,m′)}, η}
� ξ4 = η(1− b2) (46d)

where bi is the belief of subsystem i (27), which is also state-
dependent despite not being included in the notation for the ease
of exposition.

In order to describe the transition probability matrix in a
compact form, we use the following convention:

{l,m,m′} � {(l, 0), (m,m′)}, {(l, 1), (m,m′)}
. . . , {(l, l), (m,m′)} (47a)

{l,m} � {l,m, 0}, {l,m, 1}, . . . , {l,m,m}. (47b)

Let P 11
l,m � P{{l + 1,m + 1}|{l,m}, η} be a transition

probability submatrix given by

P 11
l,m =

⎡
⎢⎢⎢⎢⎣
Ξ4 Ξ2 0 0 . . . 0

Ξ4 0 Ξ2 0 . . . 0
...

...
...

... . . .
...

Ξ4 0 0 0 . . . Ξ2

⎤
⎥⎥⎥⎥⎦

where Ξ4=
[
0l+1×1 ξ4Il+1

]
and Ξ2=[ξ21l+1×1 0l+1×l+1].

Similarly, define submatrices P 10
l,m � P{{l+1,0}|{l,m}, η}
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and P 01
l,m � P{{0,m + 1}|{l,m}, η}, which are given by

P 10
l,m =

⎡
⎢⎢⎢⎢⎣
Ξ3

Ξ3

...

Ξ3

⎤
⎥⎥⎥⎥⎦ , P 01

l,m =

⎡
⎢⎢⎢⎢⎣
0 Ξ1 0 0 . . . 0

0 0 Ξ1 0 . . . 0
...

...
...

...
. . .

...

0 0 0 0 . . . Ξ1

⎤
⎥⎥⎥⎥⎦

whereΞ3 =
[
0l+1×1 ξ3Il+1

]
andΞ1 = ξ11l+1×1. As a result,

the transition probability matrix of the chain, denoted by P , can
be formed as shown in (48) shown at the bottom of this page.

Note that the state {0,0} is transient and it only exists when
initiating, and thus, we exclude it from the chain. Furthermore,
the unreachable states are removed from the chain and the tran-
sition probability matrix is modified accordingly, in order to en-
sure that the resulting chain has a unique stationary distribution.
More specifically, the communication constraints imply that
both subsystems cannot transmit simultaneously. Consequently,
{(l, l′), (m,m′)} ∈ S which satisfy l = m, l = m′, l′ = m, or
l′ = m′ are unreachable. By excluding such states from the state
space, the resulting chain has a single communicating class and
it is irreducible, aperiodic, and positive recurrent. Hence, it has
a unique stationary distribution denoted by π, which is found
by solving

πP = π π1 = 1 (49)

where 1 is the all-ones column vector of appropriate dimen-
sions [53, Ch. 1]. With respect to the introduced notation in (47a),
we can write π = [π{0,1},π{0,2}, . . .], where the dimensions
of π complies with the transition probability matrix P , and the
invariant probability of holding times at each subsystem is found
by solving (49). Since M = 1, ti,k = thi,k and we define

μ1(t) � P{t1,k = t} =

∞∑
m=0

π{t,m} (50)

μ2(t) � P{t2,k = t} =
∞∑
l=0

π{l,t} (51)

which are essential for the stability analysis.
Remark 1: Regarding the properties of the discussed Markov

chain, note that CoIL of unstable subsystems grows exponen-
tially with respect to time elapsed since the last successful

transmission. Since all subsystems in this work are assumed
to be unstable, regardless of their specific characteristics and the
parameters of the communication channels, a subsystem i with
a large enough holding time will attempt to transmit until its
packet goes through meaning that eventually Ti,k = (0, 0). As a
consequence, all states are accessible from each other (commu-
nicating), which ensures that the chain is irreducible. The chain
is indeed aperiodic due to the possibility of packet dropouts,
which means that all the nonzero transition probabilities are less
than 1. Moreover, from the preceding discussion it follows that
the waiting time for the chain to return to a state is almost surely
finite meaning that the chain is positive recurrent. Hence, the
chain has a unique stationary distribution.

The method described in Example 1 can readily be applied
to larger WNCSs. In such settings, the state space is given
by S = Z

2NM
≥0 and each recurrent state can possibly transition

to N !/(N −M)! other states. Despite the larger state space,
in principle, the transition probability matrix can be formed
similarly. By removing the transient states as discussed, the
resulting chain will have a unique limiting distribution and thus
μi(t) can be determined for all i ∈ N and t ≥ 0 accordingly.
The following result demonstrates how the boundedness of
tr(E{Pk|k}) in Lemma 1 and μi(t) are connected.

Theorem 1: The proposed channel access method stabilizes
the WNCS in the sense of Definition 1 if the following condition
holds for all i ∈ N :

lim
t→∞μi(t)

1/t <
1

σ2
max(Ai)

. (52)

Proof: The chain is irreducible, aperiodic, and positive recur-
rent. Thus, the ergodic theorem allows to write the limit of the
expected value of (44) as

lim
k→∞

E{Pi,k|k} =

∞∑
t=0

μi(t)

t∑
c=0

(
Ac

iPiA
T
i
c)

+
∞∑
t=0

μi(t)
t∑

c=1

(
Ac

iWiA
T
i
c)

. (53)

{0,1} {0,2} {0,3} . . . {1,0} ���{1,1} {1,2} {1,3} . . . {2,0} {2,1} ���{2,2} . . .

↓ ↓ ↓ ↓ ��↓ ↓ ↓ ↓ ↓ ��↓

P =

{0,1} →
{0,2} →

...

{1,0} →
���{1,1} →

...

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 P 01
0,1 0 . . . P 10

0,1 0 P 11
0,1 0 . . . 0 0 0 . . .

0 0 P 01
0,2 . . . P 10

0,2 0 0 P 11
0,2 . . . 0 0 0 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...

P 01
1,0 0 0 . . . 0 0 0 0 . . . P 10

1,0 P 11
1,0 0 . . .

0 P 01
1,1 0 . . . 0 0 0 0 . . . P 10

1,1 0 P 11
1,1 . . .

...
...

...
...

...
...

...
...

...
...

...
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(48)
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Subsequently∥∥∥∥ lim
k→∞

E{Pi,k|k}
∥∥∥∥ ≤ (∥∥Pi

∥∥+ ‖Wi‖
) ∞∑
t=0

μi(t)
t∑

c=0

‖Ac
i‖2 .

(54)

Similar to the proof in [40, Th. 1], by Cauchy’s root test, this
series is convergent if

lim
t→∞μi(t)

1/t
∥∥At

i

∥∥2/t < 1 (55)

and from Gelfand’s formula, we obtain

σ2
max(Ai) lim

t→∞μi(t)
1/t < 1. (56)

Hence, if (52) holds for all i ∈ N , limk→∞ E{Pi,k|k} in (54) is
bounded. Thus, 0 < ϕi < ∞ exists such that tr(E{Pi,k|k}) <
ϕi and the assertion follows. �

As in Example 1, finding an analytical expression for μi(t)
to evaluate (52) is not always possible. Despite this, Theorem 1
can be utilized for examining stability in practice by utilizing
the p-series convergence test as it will be shown in Section V-A.

IV. CHANNEL ACCESS OVER AN UNKNOWN GE CHANNEL

Implementing the TBCoIL according to (38) assumes com-
plete knowledge of the transition probabilities of the GE model.
However, this is a strong assumption and such information is not
known a priori in practice. This assumption can be relaxed by
adopting a Bayesian learning method, which maintains a prob-
ability distribution over the possible settings of each unknown
parameter. We first address how the new channel state observa-
tion can be incorporated for updating the prior distribution over
the unknown parameters. Then, we propose a heuristic posterior
sampling algorithm for computational tractability in practice and
exploit the learning outcome for providing channel access with
TBCoIL.

A. Bayesian Framework

In Bayesian approach, an initial prior distribution is assumed
over the unknown parameters, and the posterior distribution is
updated using the Bayes’ rule. The unknown channel parameters
are within the interval [0, 1] and they can be viewed as random
variables consisting of the number of successes in Bernoulli
trials with unknown probability of successp and q. Here, we drop
the subscripts for distinguishing each wireless link for ease of
exposition. Beta distribution is the conjugate prior for Bernoulli
distribution. Therefore, we assume that the prior distribution
of the unknown transition probabilities of the GE model, i.e.,
p and q, follow the Beta distribution. Furthermore, they are
independent which yields

P{p, q; Φ} = P{p;φ1, φ2}P{q;φ3, φ4} (57)

where

P(p; φ1, φ2) =
pφ1−1(1− p)φ2−1

B(φ1, φ2)
(58)

P(q; φ3, φ4) =
qφ3−1(1− q)φ4−1

B(φ3, φ4)
(59)

and B(·) denotes the Beta function. These prior distributions
are parameterized by Φ = [φ1 φ2 φ3 φ4] ∈ Z

4
≥0, which we will

refer to as posterior count. This choice of prior distribution
highly facilitates the posterior update. More specifically, after
new observations are made, the posterior update can easily be
done by updating the posterior counts (φ1, φ2) for p and (φ3, φ4)
for q.

Example 2: Consider that the channel state is G and Φ =
[1, 2, 2, 3]. Then, we observe that the channel stays G (G to G
transition with probability 1− p) for the first three time steps and
then transitions to B (G to B with probability p). The updated
posterior count is then simply calculated as Φ = [1 + 1, 2 +
3, 2, 3].

Let ok ∈ {G,B,Z} denote the observation at k, where ok =
Z represents no transmission attempt k. More specifically, if the
sensor transmits at k, the actual channel state ck ∈ {G,B} is
observed and ok = ck. Otherwise, ok = Z which corresponds
to not observing the actual channel state. We denote the channel
state history and observation history up to k by ck and ok, respec-
tively. Then, the joint probability distribution of the channel state
at k and the transition probabilities p and q given the observation
history ok−1 is given by

P{ck, p, q|ok−1} = P{ck, ok−1|p, q}P{p, q}/P{ok−1}
=

∑
ck−1

P{ck, ok−1|p, q}P{p, q}/P{ok−1}.

(60)

Multiple state histories can lead to the same posterior count.
Consider the scenario in which there are a, b, c, and d number of
G toB,G toG,B toG, andB toB state transitions, respectively.
Regardless of the order in which the state transitions occur, we
have

P{ck|p, q}P{p, q} = P{ck|p, q} = pa(1− p)bqc(1− q)d

(61)

where we used the fact that P{p, q} = 1. Let C(ok−1) denote all
possible state histories based on the observation history ok−1,
which is given by

C(ok−1) = {ck−1 : cκ = oκ ∀κ ∈ {k′ : ok′ 
= Z}}. (62)

Let the total number of state histories that lead to the same
posterior count Φ be denoted by Ψ(Φ, C(ok−1), ck), which we
will refer to as the appearance count. The posterior distribution
can be fully described by the appearance count associated with
each posterior count and channel state, up to the normalization
term P{ok−1}. More specifically, by moving the normalization
term to the left side of the equation, we can rewrite (60) as

P{ck, p, q|ok−1}P{ok−1} =
∑

sk−1∈C(ok−1)

P{ck|p, q}

=
∑
Φ

Ψ(Φ, C(ok−1), ck)p
φ1−1(1−p)φ2−1qφ3−1(1−q)φ4−1.

(63)
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When a new observation is obtained at k, the posterior at time
k + 1 is updated recursively as follows:

P{ck+1, p, q|ok} =
∑
ck

P{ck+1, p, q, ck|ok−1, ok}

=
∑
ck

P{ck+1, p, q, ck, ok|ok−1}/P{ok|ok−1}

=
∑
ck

P{ck, p, q|ok−1}P{ck+1, ok|ck, p, q, ok−1}/P{ok|ok−1}

=
∑
ck

P{ck, p, q|ok−1}P{ok−1|ck+1, ok, ck, p, q}

· P{ck+1, ok|ck, p, q}/(P{ok−1|ck, p, q}P{ok|ok−1})
=

∑
ck

P{ck, p, q|ok−1}P{ck+1, ok|ck, p, q}/P{ok|ok−1}.

(64)

As a result of (64), the update has a simple form for each
posterior count. Furthermore, the number of posterior counts
remain unchanged whenever the channel state is observed, i.e.,
ok ∈ {G,B}. Otherwise, this number grows by a factor of less
than or equal to two.

Example 3: Assume that ok = G which implies that ck = G.
The posterior for ck+1 = G is given by

P{G, p, q|ok} = P{G, p, q|ok−1}P{G|ck, p, q}/P{ok|ok−1}
=

∑
Φ

Ψ(Φ, C(ok−1), G)pφ1−1(1− p)φ2−1qφ3−1

.(1− q)φ4−1.(1− p)/P{ok}
=

∑
Φ′

Ψ(Φ′, C(ok−1), G)pφ
′
1−1(1− p)φ

′
2−1qφ

′
3−1

.(1− q)φ
′
4−1/P{ok} (65)

where Φ′ = [φ1 φ2 + 1 φ3 φ4] and it can readily be used as the
prior for the next time step. If ok = Z, the same posterior update
is given by iterating over both possibilities for the channel state
at k, i.e.,

P{G, p, q|ok}
=

∑
ck∈{G,B}

P{ck, p, q|ok−1}P{G|ck, p, q}/P{ok|ok−1} (66)

which can increase the number of posterior counts. Fig. 4 illus-
trates how the posterior counts and their respective appearance
counts are updated with respect to the obtained observation.

B. Online Learning Through the TBCoIL

The aforementioned method allows for incorporating the un-
certainty in the transition probabilities in the decision making
process. Due to the lack of a priori knowledge of the underlying
channel parameters, the belief for implementing the setup in
(38) cannot be directly evaluated as per (27). Nonetheless, in
principle, the belief can be inferred from the joint distribution
of the channel state and its parameters in the aforementioned

Fig. 4. Graphical representation of the update procedure when the
channel state is not observed at k and it is G at k + 1. The contents of
each rectangle are the channel state, posterior count, and appearance
count, respectively. Note that since ok = Z, the number of possible
posterior counts increases.

framework. In practice, however, this method is computationally
infeasible since whenever the sensor does not transmit over a
link, the number of posteriors for that link grows and inevitably
goes to infinity over time.

To circumvent the curse of dimensionality, we propose a
heuristic method by combining the idea of approximate belief
monitoring [54] and the posterior sampling algorithm proposed
in [55]. In essence, after each update, onlyK posterior counts are
kept, which are drawn randomly with respect to the respective
appearance counts. Algorithm 1 presents how at any time k,
sensor i evaluates its belief for channel j which is denoted
by bLi,j,k. This belief is incorporated in TBCoIL for providing
channel access as

τi,j,k =
λ

CoILi,kbLi,j,k
. (67)

We define ζG � {Φ,Ψ, P} as the posterior count Φ with ap-
pearance count Ψ for being in state G, which has the probability
P . In case of successful transmission at k − 1, the posterior
for computation of belief at k is obtained by considering the
possible state transition from ζG, which could be to G, denoted
by ζG2G, or to B, denoted by ζG2B . The transition probabilities
depend on p, which is the mean of the beta distribution associ-
ated with the posterior count, i.e., p = φ1/(φ1 + φ2). Similarly,
ζB � {Φ,Ψ, P} denotes the parameters corresponding to B
state, which can transition to G or B, i.e., ζB2G and ζB2B ,
respectively, with q = φ3/(φ3 + φ4). The updated posteriors
are formed in Line 9, where ∪ denotes merging the identical
posterior counts by summing the respective appearance count
andP . Then,K number of posterior counts are chosen randomly
such that the probability of a posterior count being selected is
proportional to the associated appearance count. Finally, P s are
normalized for the remaining posterior counts and the learned
belief is determined by summing the probability of all the
posteriors of being in G, as in Line 13.

Remark 2: Typically, the initial probability distribution over
the unknown parameters is assumed to be uniform and, thus,
Φ = [1, 1, 1, 1] when initiating. To ensure that implementing
(67) guarantees collision-free channel access even in homoge-
neous WNCSs, the initial posterior count can be set to Φ =
[1 + ε1, 1 + ε2, 1 + ε3, 1 + ε4] where ε1, ε2, ε3, ε4 ∼ U(−α, α)
is chosen randomly by subsystems for each link. This ensures
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Algorithm 1: Posterior Sampling of Sensor i for Channel j
at k.

that bLi,j,k is Lebesgue measure zero and by choosing α � 1 the
impact of the biased priors becomes negligible.

Remark 3: When the idea of approximate belief monitoring is
applied for a single agent interacting with an unknown environ-
ment, accurate convergence is guaranteed since all uncertainty
is represented explicitly [41], [56]. Proving the convergence of
Algorithm 1 is, however, a challenging open problem. In addition
to the unknown channel parameters, the decisions and, thus,
observations are determined by the outcome of implementing
the TBCoIL, which is highly influenced by the time-varying
CoIL. Although more unstable subsystems observe the channel
states more frequently, all subsystems eventually make sufficient
observations due to the exponential growth of CoIL. Therefore,
convergence can be conjectured which is confirmed by the
simulations in Section V.

V. NUMERICAL RESULTS

In this section, we first present a method for examining the
stability of the system in Example 1. Next, the effect of channel
access decisions on the performance of the learning algorithm
is demonstrated. Finally, we examine the performance of the
proposed timer-setups for known and unknown GE channel
parameters. The following results are obtained for Q = I2 and

Fig. 5. Convergence analysis of the left-hand side (69) by element-
wise comparison with the p-series (β = 100, p = 2) given failure rates
p1 = 0.25 and p2 = 0.35, and recovery rates q1 = 0.80 and q2 = 0.70
for Subsystem 1 and Subsystem 2, respectively.

R = 0.01I2 as the weighting matrices in (9) and B = C = I2
in (1).

A. Stability Evaluation

This section presents a numerical approach for examining
the stability of two identical subsystems sharing a channel pre-
sented in Example 1. Although the discussed Markov chain has
countably-infinite state space, we first assume that the maximal
interval between two successful transmissions is finite. This will
enable us to determine the stationary distribution analytically
and conjecture the convergence of the infinite series in (54),
and consequently, whether the condition in (52) holds. To this
end, we consider the truncated chain with a finite state space
with 0 ≤ l ≤ l̄ and 0 ≤ m ≤ m̄. This corresponds to assuming
a maximal interval of l̄ for successful transmission of Subsystem
1 and m̄ for Subsystem 2. Let P̂ denote the transition probability
matrix of the new chain, which is obtained by truncating P in
(48). Since P̂ is row stochastic, irreducible, and aperiodic, the
stationary distribution can be obtained by [57]

π = 1T(P̂ − I +D)−1 (68)

where I ,D, and1 are the identity matrix, all-one-matrix, and the
all-one column vector of appropriate dimensions. To examine
whether the series on the right-hand side of (54) is convergent,
we utilize the p-series convergence test. Hence, if p > 1 and
β < ∞ exist such that

lim
T→∞

T∑
t=0

μi(t) ‖Ai‖2t ≤ lim
T→∞

T∑
t=0

β

tp
(69)

then (55) holds, which guarantees stability. By using the nu-
merical values obtained from (68) for a finite horizon, one
can examine the behavior of (69) and conjecture whether the
condition in Theorem 1 holds.

Fig. 5 illustrates the values of μi(t)‖Ai‖2t and β/tp as
a function of t given that p = 2 and β = 100 with the sys-
tem matrix Ai = 1.2I2. Furthermore, the GE transition prob-
abilities for Subsystem 1 and Subsystem 2 are assumed to
be p1 = 0.25, q1 = 0.80, and p2 = 0.35, q2 = 0.70, respec-
tively. As the results indicate, μi(t)‖Ai‖2t monotonically de-
creases as t increases for t ≥ 2 for both subsystems. There-
fore, since the convergent series limT→∞

∑T
t=0

β
tp upperbounds

limT→∞
∑T

t=0 μi(t)‖Ai‖2t, stability is preserved. When the
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Fig. 6. Convergence analysis of the left-hand side (69) by element-
wise comparison with the p-series (β = 100, p = 2) given that p1 = 0.25,
q1 = 0.20, p2 = 0.35, q2 = 0.10.

Fig. 7. Accuracy of the learned belief for two identical subsystems
sharing a single channel.

recovery rates are reduced to q1 = 0.20 and q1 = 0.10, however,
μi(t)‖Ai‖2t becomes an increasing function of t, as depicted
in Fig. 6. This indicates that the left-hand side of (69) is not
necessarily bounded and, thus, stability of the system cannot be
guaranteed.

B. Unknown GE Model Parameters

To demonstrate the impact of the dynamics of subsystems on
the outcome of the learning algorithm, we first consider the setup
in the previous section, where two identical subsystems with
A = 1.2I2 compete for transmitting over one channel. Fig. 7
illustrates how their learned belief evolves over time compared
with the actual belief (7) when the setup in (67) is utilized. Due
to the identical dynamics and, consequently, identical growth
rate for CoIL, both subsystems share the channel fairly, and both
learn the belief with high accuracy. However, when the dynamics
of Subsystem 1 change to A = 1.05I2, Subsystem 2 is expected
to transmit more frequently due to its larger eigenvalue, i.e.,
faster increase of CoIL. Consequently, Subsystem 2 observes
the channel states more frequently, leading to higher accuracy
of its learned belief, as depicted in Fig. 8.

C. Performance Evaluation

To evaluate the performance of the proposed setups for solv-
ing Problem 3, we consider WNCSs with N ∈ {8, 16, 24, 32}
identical subsystems with A = 1.2I2 and M ∈ {6, 12, 18, 24}
channels. The channel parameters are chosen randomly while

Fig. 8. Accuracy of the learned belief for two different subsystems
sharing a single channel. Subsystem 1 (top) is less unstable (A1 =
1.05I2) than Subsystem 2 (bottom) with system matrix A2 = 1.2I2.

Fig. 9. Reduction in the average quadratic cost (9) achieved by using
timer-setups with the known belief bi,j,k (38), learned belief bLi,j,k (67),

learned belief proposed in [1] denoted by bL,old
i,j,k

, stationary belief bi,j,∞
and UCB-V [58] as proposed in [37]. The number of available channels
is M = N/2. A setup where the channels are selected randomly by uti-
lizing CoILi,k as the local measure in (21) is chosen as the benchmark.

satisfying 0.2≤pi,j , qi,j≤0.5 for all i and j. As the benchmark,
we consider a scenario in which a central coordinator prioritizes
subsystems with respect to CoIL only and assigns a random
channel to each of the M subsystems with the largest CoIL. As
expected, with a priori knowledge of the transition probabilities
of the GE model, the setup in (38) with the known belief bi,j,k
significantly reduces the incurred cost, as depicted in Fig. 9.
This is in sharp contrast with adopting the stationary belief
bi,j,∞ (8), which leads to the worst performance. Without any
prior knowledge of the channel parameters, utilizing the learned
belief from Algorithm 1 in setup (67) results in up to 25% lower
cost. This setup outperforms the performance of the algorithm
proposed in [1], which is represented by bi,j,∞. To demonstrate
the significance of tailoring a learning method for the GE channel
model, we compare the results with the timer setup proposed
in [37] where UCB-V algorithm [58] is adopted for providing
channel access over unknown i.i.d. channels. For smaller net-
works, this model mismatch leads to a considerable increase in
cost. As the size of the WNCS grows, the number of unobserved
channel states increases, which leads to more exploration of
the learning method rather than exploitation. Nevertheless, even
in such settings, Algorithm 1 leads to better performance in
terms of reducing the cost (9). The same trend can be observed
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Fig. 10. Reduction in the average quadratic cost (9) achieved by using
timer-setups with the known belief bi,j,k (38), learned belief bLi,j,k (67),

learned belief proposed in [1] denoted by bL,old
i,j,k

, stationary belief bi,j,∞
and UCB-V [58] as proposed in [37]. The number of available channels
is M = N/4. A setup where the channels are selected randomly by uti-
lizing CoILi,k as the local measure in (21) is chosen as the benchmark.

in heterogeneous WNCSs as illustrated in Fig. 10, where the
dynamics of half the subsystems are changed to A = 1.05I2.

VI. CONCLUSION

A. Conclusion

We presented a novel method for providing distributed chan-
nel access in WNCSs with correlated packet dropouts. We
formulated the optimal channel access problem for minimizing
the infinite-horizon LGQ cost as an MDP despite the partial
observability of the channel state variations. We then adopted
the concept of CoIL for circumventing the computational com-
plexity of the MDP and showed that its computation requires
no information exchange between subsystems. Based on this,
we proposed a timer setup for providing distributed channel
access by TBCoIL and derived the conditions under which
implementing this mechanism ensures mean square stability of
the system. We further investigated the scenario in which the un-
derlying channel parameters are not known a priori and adopted a
Bayesian framework for incorporating the information obtained
by channel state observations in estimating the channel quality.
We then proposed a computationally efficient heuristic algo-
rithm, which allows for control-aware exploration/exploitation
via TBCoIL. The simulations showed that this setup leads to
significant improvement compared with allocating the resources
with respect to control performance only.

B. Future Directions

Interesting future research directions include considering the
scenario in which the channel model varies over time and devis-
ing learning methods, which are able to detect this variation and
adapt accordingly. Another challenging open question is how
can the stability framework be modified such that it is applicable
to WNCSs containing both stable and unstable subsystems.
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