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ABSTRACT Optimal control of general nonlinear systems is a central challenge in automation. Enabled
by powerful function approximators, data-driven approaches to control have recently successfully tackled
challenging applications. However, such methods often obscure the structure of dynamics and control behind
black-box over-parameterized representations, thus limiting our ability to understand closed-loop behavior.
This article adopts a hybrid-system view of nonlinear modeling and control that lends an explicit hierarchical
structure to the problem and breaks down complex dynamics into simpler localized units. We consider a
sequence modeling paradigm that captures the temporal structure of the data and derive an expectation-
maximization (EM) algorithm that automatically decomposes nonlinear dynamics into stochastic piecewise
affine models with nonlinear transition boundaries. Furthermore, we show that these time-series models
naturally admit a closed-loop extension that we use to extract local polynomial feedback controllers from
nonlinear experts via behavioral cloning. Finally, we introduce a novel hybrid relative entropy policy search
(Hb-REPS) technique that incorporates the hierarchical nature of hybrid models and optimizes a set of time-
invariant piecewise feedback controllers derived from a piecewise polynomial approximation of a global
state-value function.

INDEX TERMS Bayesian inference, behavioral cloning, expectation-maximization, hidden Markov models,
hybrid models, piecewise feedback control, reinforcement learning, system identification.

I. INTRODUCTION
The class of nonlinear dynamical systems governs a vast range
of real-world applications and underpins the most challeng-
ing problems in classical control, and reinforcement learning
(RL) [1], [2]. Recent developments in learning-for-control
have pushed towards deploying more complex and highly
sophisticated representations, e.g., (deep) neural networks and
Gaussian processes, to capture the structure of both dynamics
and controllers. This trend led to unprecedented success in the
domain of RL [3] and can be observed in both approximate
optimal control [4], [5], [6], and approximate value and policy
iteration algorithms [7], [8], [9].

However, before the latest revival of neural networks,
research has focused on different paradigms for solving
complex control tasks. One interesting concept relied on de-
composing nonlinear structures of dynamics and control into

simpler piecewise (affine) components, each responsible for
an area of the state-action space. Instances of this abstraction
can be found in the control literature under the labels of hy-
brid systems or switched models [10], [11], [12], [13], while
in the machine and reinforcement learning communities, the
terminology of switching dynamical systems and hybrid state-
space models is more widely used [14], [15], [16], [17].

While the hybrid-state paradigm is a natural choice for
studying jump processes, it also provides a surrogate piece-
wise approximation of general nonlinear dynamical behavior.
Despite being less flexible than generic black-box approxima-
tors, hybrid models can regularize functional complexity and
contribute to improved interpretability by imposing a struc-
tured representation.

Adopting this perspective in this article, we present tech-
niques for data-driven automatic system identification and
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closed-loop control of general nonlinear systems using piece-
wise polynomial hybrid surrogate models. More concretely,
we focus on dynamic Bayesian graphical models as hy-
brid representations due to their favorable properties. These
models have an inherent time-recurrent structure that cap-
tures correlations over extended horizons and carry over the
advantages of well-established recursive Bayesian inference
techniques for dynamical time series data.

In prior work [18], we presented a maximum likelihood
approach for hierarchical piecewise system identification and
behavioral cloning. Here, we robustify that approach by in-
troducing suitable priors over all parameters. However, the
central contribution of this article is the introduction of an infi-
nite horizon reinforcement learning framework that integrates
the structured representation of stochastic hybrid models.
The resulting algorithm interactively synthesizes nonlinear
feedback controllers and value functions via a hierarchical
piecewise polynomial architecture.

This article is structured as follows. In Section II, we start
by reviewing and comparing prominent paradigms of sys-
tem modeling and optimal control of hybrid systems. Using
that context in Section III, we highlight the advantages of
our contributions in comparison with the literature. In Sec-
tion IV, we cast the control problem as an infinite horizon
Markov decision process and extended it to accommodate a
hybrid structure. Next, in Section V, we introduce our notation
of stochastic switching models in the form of hybrid dy-
namic Bayesian networks, as previously established in [18]. In
Section VI, we recap our approach from [18] and improve it
to derive a maximum a posteriori expectation-maximization
(EM) algorithm for inferring the parameters of probabilistic
hybrid models from data. This inference method is helpful
for automatically decomposing nonlinear open-loop dynam-
ics into switching affine regimes with arbitrary boundaries
and deconstructing state-of-the-art nonlinear expert con-
trollers into piecewise polynomial policies. Furthermore, in
Section VII, we formulate hybrid optimal control as a
stochastic optimization problem and derive a trust-region re-
inforcement learning algorithm that incorporates an explicit
hierarchical model of the nonlinear dynamics. We use this
approach to iteratively learn piecewise approximations of
the global nonlinear value function and stationary feedback
controller. Finally, in Section VIII, we empirically evaluate
our approaches on examples of stochastic nonlinear systems,
including results from [18] that contribute to the overall
picture.

Our empirical evaluation indicates that hybrid models can
provide an alternative to generic black-box representations
for system identification, behavioral cloning, and learning-
based control. Hybrid models are able to reach comparable
performance and deliver simpler, easily identifiable switching
patterns of dynamics and control while requiring a fraction of
the number of parameters of other functional forms. However,
the results also reveal certain drawbacks, mainly in poor scala-
bility and increased algorithmic complexity. We address these
issues in a final outlook in Section IX.

II. RELATED WORK
This section reviews work related to the modeling and control
of hybrid systems and highlights connections and parallels
between approaches stemming from the control and machine
and reinforcement learning literature.

Hybrid systems have been extensively studied in the con-
trol community and are widely used in real-world applica-
tions [19], [20]. For research on hybrid system identification,
we refer to survey work in [21] and [22]. There, the au-
thors focus on piecewise affine (PWA) systems and introduce
taxonomies of different representations and procedures com-
monly used for identifying sub-regimes of dynamics, ranging
from algebraic approaches [23] to mixed-integer optimiza-
tion [24], and Bayesian methods [25]. Furthermore, iden-
tification techniques for piecewise nonlinear systems have
been developed based on sparse optimization [26] and kernel
methods [27]. Finally, it is worth noting that the majority
of literature considers deterministic regime-switching events
with exceptions in [28], [29].

Research in the area of optimal control for hybrid systems
stretches back to the seminal work in [30], which highlights
the possibility of general nonlinear control by considering
piecewise affine systems. In [31], an overview of control
approaches for piecewise affine switching dynamics is pre-
sented. The authors categorize the literature by distinguishing
between externally and internally forced switching mecha-
nisms. The bulk of optimal control approaches in this area
focuses on (nonlinear) model predictive control (MPC) [32].
Here we highlight the influential work in [33], which formu-
lates the optimal control problem as a mixed-integer quadratic
program (MIQP). This approach was later extended in [34]
and [35] to solve a multi-parametric MIQP and arrive at
time-variant piecewise affine state-feedback controllers and
piecewise quadratic value functions with polyhedral parti-
tions. Recently, more efficient formulations of hybrid control
have been proposed [36], which leverage modern techniques
from mixed-integer and disjunctive programming to tackle
large-scale problems.

Hybrid representations also play a central role in data-
driven, general-purpose process modeling and state estima-
tion [37], [38], where different classes of stochastic hybrid
systems serve as powerful generative models for complex
dynamical behaviors [39], [40], [41]. The dominant paradigm
in this domain has been that of probabilistic graphical models
(PGM), more specifically, hybrid dynamic Bayesian networks
(HDBN) for temporal modeling [42], [43]. One crucial contri-
bution of recent Bayesian interpretations of switching systems
is rooted in the Bayesian nonparametric (BNP) view [44],
[45], [46], [47]. This perspective theoretically allows for an
infinite number of components, thus dramatically increasing
the expressiveness of such models. Given the limited scope
of this review section, we highlight only recent contributions
with high impacts, such as [48] and [17], which successfully
develop Markov chain Monte Carlo (MCMC) and stochastic
variational inference (SVI) techniques for system identifica-
tion. More recently, the rise of variational auto-encoders [49]
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has enabled a new and powerful view of inference tech-
niques [50] for hybrid systems. A distinct drawback of such
approaches is their reliance on end-to-end differentiability
and the need to relax discrete variables in order to perform
inference.

In the domain of learning-for-control, the notion of switch-
ing systems is directly related to the paradigm of model-free
hierarchical reinforcement learning (HRL) [51], [52], which
combines simple representations to build complex policies.
Here it is useful to differentiate between two concepts of
hierarchical learning, namely temporal [53], and state ab-
stractions [54]. In their seminal work [55], [56], the authors
build on the framework of semi-Markov decision processes
(SMDP) [57] to learn activation/termination conditions of
temporally extended actions (options) for solving discrete
environments. Additionally, pioneering work in optimizing hi-
erarchical control structures with temporally extended actions
is developed in [58] and [59]. Recent work has focused on
formulations of the SMDP framework that facilitate simulta-
neous discovery and learning of options [60], [61], [62], [63],
[64].

However, the concept of state abstraction - partitioning
state-action spaces into sub-regions, each governed by local
dynamics and control - carries the most apparent parallels to
the classical view of hybrid systems. In [65], a proof of con-
vergence for RL in tabular environments with state abstraction
is presented, while [66] does a comprehensive study of dif-
ferent abstraction schemes and gives a formal definition of
the problem. Furthermore, recent work has shown promising
results in solving complex tasks by combining local policies,
albeit while leveraging a complex neural network architecture
as an upper-level policy [67].

Switching systems serve as a powerful tool in behav-
ioral cloning. For example, [68] combines hidden Markov
models (HMMs) with Gaussian mixture regression to rep-
resent trajectory distributions. In contrast, [62] uses a semi-
hidden Markov model (HSMM) to learn hierarchical policies,
and [69] introduces switching density networks for system
identification and behavioral cloning. Finally, a Bayesian
framework for the hierarchical policy decomposition is pre-
sented in [70], albeit while considering known transition
dynamics.

III. CONTRIBUTION
In light of the motivation and reviewed literature from
Section I and II, we establish here the overall contribution
of our methodology and highlight the main differences that
distinguish it from related approaches.

As previously stated, this work strives to cast the problem
of nonlinear optimal control into a data-driven hierarchi-
cal learning framework. Our aim is to introduce explicit
structure and adopt hybrid surrogate models to avoid the
opaqueness of recently popularized black-box representa-
tions. While this paradigm has been established before, our
realization differs from previous attempts in two central
aspects:

� System Modeling: This work leverages probabilistic
hybrid dynamic networks as hierarchical representa-
tions of nonlinear dynamics. Contrary to a piecewise
autoregressive exogenous systems (PWARX), HDBNs
straightforwardly accounts for noise in both discrete
and continuous dynamics. They also incorporate nonlin-
ear transition boundaries, thus minimizing partitioning
redundancy. Furthermore, HDBNs admit efficient infer-
ence methods in data-driven applications. Finally, by
pursuing an abstraction over states instead of time, we
circumvent the need to infer termination policies of the
SMDP framework.

� Control Synthesis: We propose a hybrid policy search
approach that formulates a non-convex infinite hori-
zon objective and optimizes a piecewise polynomial
approximation of the value function with nonlinear par-
titioning. This approximation is used to derive stationary
switching feedback controllers. In contrast, trajectory
optimization and model predictive control techniques
for hybrid models are often cast as sequential convex
programs that assume polyhedral partitions and optimize
a fixed horizon objective, yielding time-variant value
functions and controls.

IV. PROBLEM STATEMENT
Consider the discrete-time optimal control problem of a
stochastic nonlinear dynamical system to be defined as an
infinite horizon Markov decision processes (MDP). An MDP
is defined over a state space X ⊆ Rd and an action space
U ⊆ Rm. The probability of a state transition from state x
to state x ′ by applying action u is governed by the Marko-
vian time-independent density function p(x ′|x,u). The reward
r(x,u) is a function of the state x and action u. The state-
dependent policy π (u|x), from which the actions are drawn,
is a density determining the probability of an action u given
a state x. The general objective in an average-reward infinite
horizon optimal control problem is to maximize the average of
rewards V π (x) = limT →∞ 1

T E
[∑T

t=1 r
]
, where V π denotes

as the state-value function under the policy π , starting from
an initial state distribution μ1(x).

Given the context of this work and our choice to model
the system with hybrid models, we introduce to the MDP
formulation a new hidden discrete variable z, an indicator of
the currently active local regime. The resulting transition dy-
namics can then be expressed by a factorized density function
p(x ′, z ′|x,u, z) = p(z ′|z, x,u)p(x ′|x,u, z ′), which we depict as
a graphical model in Fig. 2 and discuss in further detail in the
upcoming section. In the same spirit of simplification through
hierarchical modeling, we employ a mixture of switching
polynomial controllers π (u|x, z), associated with a piecewise
polynomial value function V π (x, z).

V. HYBRID DYNAMIC BAYESIAN NETWORKS
In this section, we focus on the modeling assumptions for
the stochastic switching transition dynamics p(x ′′, z ′|x,u, z),
see Section IV. We choose recurrent autoregressive hidden
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Markov models (rARHMMs) as a representation, which is
a special case of recurrent switching linear dynamical sys-
tems (rSLDS) [17], also known as augmented SLDS [71]. In
contrast to rSLDS, an rARHMM lacks an observation model
and directly describes the internal state up to an additive
noise process. We extend rARHMMs to support exogenous
and endogenous inputs in order to simulate the open- and
closed-loop behaviors of driven dynamics. Fig. 2 depicts the
corresponding graphical model, which closely resembles the
graph of a PWARX.

An rARHMM with K regions models the trajectory of
a dynamical system as follows. The initial continuous state
x1 ∈ Rd and continuous action u1 ∈ Rm are drawn from a
pair of Gaussian and conditional Gaussian distributions,1 re-
spectively. The initial discrete state z1 is a random vector
modeled by a categorical density parameterized by ϕ

z1 ∼ Cat(ϕ), x1 ∼ N(μz1 ,�z1 ),

u1 ∼ N(Kz1φ(x1),�z1 ).

The transition of the continuous state xt+1 and actions ut are
modeled by affine-Gaussian dynamics

xt+1 = Azt+1 xt + Bzt+1 ut + czt+1 + λt , λt ∼ N(0,�zt+1 ),

ut = Kztφ(xt ) + δt , δt ∼ N(0,�zt ),

where (A,B, c,K,�,�,�) are matrices and vectors of ap-
propriate dimensions with respect to x and u. φ(x) are
polynomial state features of arbitrary degree.

The discrete transition probability p(zt+1|zt , xt ,ut ) is gov-
erned by K categorical distributions parameterized by a
state-action dependent multi-class logit link function f [72]

χi j = p(zt+1 = j|zt = i, xt ,ut ) ∝exp
(

f (xt ,ut ;ωi j )
)
, (1)

where f may have any type of features in (x,u)2. The vectors
ωi j parameterize the discrete transition probabilities for all
transition combinations i → j ∀i, j ∈ [1, K]. Fig. 1 depicts
realizations of different logit link functions leading to various
state space partitioning.

The remainder of this article focuses on using these hybrid
models in three scenarios:
� An open-loop setting that treats the control u as an

exogenous input is used for automatically identifying
nonlinear systems via decomposition into continuous
and discrete switching dynamics.

� A closed-loop setting that assumes the control u to orig-
inate from a nonlinear controller. We show that this
setting can simultaneously decompose dynamics and
control in a behavioral cloning scenario.

� A reinforcement learning setting where we develop a
model-based hybrid policy search algorithm to learn
switching controllers for general nonlinear systems.

1We parameterize all Gaussian distributions by their precision matrices
instead of the more common definition with covariances.

2We abuse notation slightly by sometimes using z to refer to the discrete
state index instead of treating it as a one-hot vector.

FIGURE 1. A hybrid system with K = 3 piecewise affine regimes. The top
row depicts the mean unforced continuous transition dynamics in the
phase space. The bottom row shows the distinct activation regions of the
three dynamics regime across the phase space. We illustrate examples of
affine (left), quadratic (middle), and third-order polynomial (right)
switching boundaries. Figure reproduced from [18].

VI. BAYESIAN INFERENCE OF HYBRID MODELS
In this section, we sketch the outline of an expectation-
maximization/Baum-Welch algorithm [73], [74], [75] for
inferring the parameters of an rARHMM given time-series
observations. The resulting algorithm can be used two-fold.
First, it can be applied to automatically identify hybrid models
and approximate the open-loop dynamics of nonlinear sys-
tems given state-action observations. Second, it can clone the
closed-loop behavior of a nonlinear controller and decompose
it into a set of local experts.

Our developed approach is related in some aspects to the
Baum-Welch algorithms proposed in [76] and [62]. However,
we introduce suitable priors over all parameters and derive
a maximum a posteriori (MAP) technique with a stochastic
maximization step and hyperparameter optimization. In our
experience, the priors significantly regularize the sensitivity
of EM with respect to the initial point, making it less prone to
getting stuck in bad local minima.

Moreover, a good prior specification is crucial in small data
regimes since a vague prior may dominate the predictive pos-
terior and effectively cause under-fitting. We implement a hy-
perparameter optimization scheme that elevates this concern
by optimizing the prior parameters via empirical Bayes [77],
thus attenuating the prior influence and improving the predic-
tive performance significantly.

A. MAXIMUM A POSTERIORI OPTIMIZATION
Consider again the rARHMM in Fig. 2 where the continu-
ous state x and action u are observed variables, while the
K-region indicators z are hidden. To infer the model pa-
rameters, we assume a dataset of N state-action trajectories
D = {Dn}N

n=1 = {Xn,Un}N
n=1, each of length T , where (Xn,

Un,Zn) represent the time concatenation of an entire trajec-
tory (xn

1:T , un
1:T , zn

1:T ).
The objective corresponding to system identification

and behavioral cloning can be cast as a maximization
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FIGURE 2. Graphical model of rARHMMs extended to support hybrid
controls. In rARHMMs, the discrete state explicitly depends on the
continuous state and action as highlighted in red. Figure reproduced
from [18].

problem of the log-posterior probability of the observa-
tions {Xn,Un}N

n=1, with respect to the free parameter set
θ = {ϕ,μk,�k,Ak,Bk, ck,�k,Kk,�k,ωik}K

i,k=1

θMAP := arg max
θ

log
N∏

n=1

∑
zn

p(Dn,Zn|θ)p(θ|h), (2)

where p(Dn,Zn|θ) is the complete-data likelihood of a single
trajectory and factorizes according to

p(.|θ) = p(zn
1|ϕ)p(xn

1|μzn
1
,�zn

1
)p(un

1|xn
1,Kzn

1
,�zn

1
)

×
T∏

t=2

p(xn
t |xn

t−1,un
t−1,Azn

t
,Bzn

t
, czn

t
,�zn

t
)

×
T∏

t=2

p(zn
t |zn

t−1, xn
t−1,un

t−1,ω)

×
T∏

t=2

p(un
t |xn

t ,Kzn
t
,�zn

t
),

(3)

and p(θ|h) is the factorized parameter prior

p(θ|h) = p(ϕ)
K∏

k=1

p(μk|�k )p(�k )

×
K∏

k=1

p(Ak|�k )p(Bk|�k )p(ck|�k )p(�k )

×
K∏

k=1

p(Kk|�k )p(�k )
K∏

i=1

K∏
k=1

p(ωik ).

We choose all priors to be conjugate or semi-conjugate
with respect to their likelihoods. Therefore, we place a
normal-Wishart (NW) prior on the initial state distribution
(μk,�k ) ∼ NW(0, κ0,
0, ν0), and a matrix-normal-Wishart
(MNW) on the affine transition dynamics (Ak,Bk, ck,�k ) ∼
MNW(0,R0,�0, ρ0). The initial discrete state takes a Dirich-
let prior ϕ ∼ Dir(τ0), while the logit link function param-
eters are governed by a non-conjugate zero-mean Gaussian
prior with diagonal precision ωik ∼ N(0, αI). Finally, we

place a separate matrix-normal-Wishart prior on the con-
ditional action likelihood (Kk,�k ) ∼ MNW(0,S0,0, ε0).
The quantities (κ0,
0, ν0,R0,�0, ρ0, τ0, α,S0,0, ε0) are
hyperparameters aggregated into the hyperparameter set h.

The choice of priors is not restricted to these distributions.
Depending on modeling assumptions, one can assume dynam-
ics with diagonal noise matrices and pair them with gamma
distribution priors. Moreover, if the system is known to have
a state-independent noise process, the K Wishart and gamma
priors can be tied across components, leading to a more struc-
tured representation.

B. BAUM-WELCH EXPECTATION-MAXIMIZATION
On closer examination of (2) and (3), we observe that the
optimization problem is non-convex with multiple local op-
tima since the complete-data likelihood

∏N
n=1 p(Dn,Zn|θ)

can follow complex multi-modal densities. Another technical
difficulty is the summation over all possible trajectories of
the hidden variables Zn, which is of computational complex-
ity O(NKT ) and is intractable in most cases. Expectation-
maximization algorithms overcome the latter problem by
introducing a variational posterior distribution over the hidden
variables q(Zn) and deriving a lower bound on the complete
log-probability function

log
N∏

n=1

∑
zn

p(Dn,Zn, θ|h)

≥
N∑

n=1

∑
zn

q(Zn) log
p(Dn,Zn, θ|h)

q(Zn)
. (4)

We find a point estimate θMAP by following a modified
scheme of EM, alternating between an expectation step (E-
step), in which the lower bound in (4) is maximized with
respect to the variational distributions q(Zn) given a parameter
estimate θ̂, a maximization step (M-step), that updates θ given
(q̂(Zn), ĥ), and finally, an empirical Bayes step (EB-step) that
updates h given (q̂(Zn), θ̂). A sketch of the overall iterative
procedure is presented in Algorithm 1.

1) EXACT EXPECTATION STEP
Maximizing the lower bound with respect to q(Zn) is deter-
mined by reformulating (4)

L=
N∑

n=1

∑
zn

q(Zn) log
p(Dn,Zn, θ|h)

q(Zn)

=
N∑

n=1

log p(Dn, θ|h) +
N∑

n=1

∑
zn

q(Zn) log
p(Zn|Dn, θ)

q(Zn)

=
N∑

n=1

log p(Dn, θ|h)−
N∑

n=1

KL(q(Zn) || p(Zn|Dn, θ)).

This form of the lower bound implies that the optimal
variational distribution q̂(Zn) minimizes the Kullback-Leibler
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divergence (KL) [78], meaning

q̂(Zn) = p(Zn|Dn, θ) = p(zn
1:T |xn

1:T ,un
1:T , θ). (5)

This update tightens the bound if the posterior model q̂(Zn)
belongs to the same family of the true posterior [15]. Notice
that the E-step is independent of the prior p(θ). Moreover,
(5) indicates that the E-step reduces to the computation of
the smoothed marginals p(zn

t |xn
1:T ,un

1:T , θ̂) under the current
parameter estimate θ̂. Following [73] and [72], we derive
a two-filter algorithm, which enables closed-form and exact
inference by splitting the smoothed marginals into a forward
and backward message3

γn
t (k)= p(zn

t =k|xn
1:T ,un

1:T )

∝ p(zn
t =k|xn

1:t ,un
1:t )p(xn

t+1:T ,un
t+1:T |zn

t =k, xn
t ,un

t )

= αn
t (k)βn

t (k),

where αn
t (k) = p(zn

t =k|xn
1:t ,un

1:t ) is the message which com-
putes the filtered marginals via a forward recursion

αn
t (k) ∝ p(xn

t |xn
t−1,un

t−1, zn
t =k)p(un

t |xn
t , zn

t =k)

×
K∑

j=1

p(zn
t = k|zn

t−1 = j, xn
t−1,un

t−1)αn
t−1( j),

and βn
t (k) = p(xn

t+1:T |zn
t = k, xn

t ,un
t ) is the backward mes-

sage that performs smoothing by computing the conditional
likelihood of future evidence

βn
t (k)=

K∑
j=1

βn
t+1( j)p(zn

t+1 = j|zn
t =k, xn

t ,un
t )

×p(xn
t+1|xn

t ,un
t , zn

t+1 = j)p(un
t+1|xn

t+1, zn
t+1 = j).

Additionally, by combining both forward and backward
messages, we can compute the two-slice smoothed marginals
p(zn

t , zn
t+1|xn

1:T ,un
1:T ) which will be useful during the maxi-

mization and empirical Bayes steps

ξn
t,t+1(i, j) = p(zn

t = i, zn
t+1 = j|xn

1:T ,un
1:T )

∝ p(xn
t+1|xn

t ,un
t , zn

t+1 = j)p(un
t+1|xn

t+1, zn
t+1 = j)

× αn
t (i)p(zn

t+1 = j|zn
t = i, xn

t ,un
t )βn

t+1( j).

2) STOCHASTIC MAXIMIZATION STEP
After performing the E-step and computing the smoothed pos-
teriors, we are able to evaluate the lower bound and maximize
it with respect to θ given (q̂(Zn), ĥ).

By plugging (3) and (5) into (4), leveraging conditional
independence, and disregarding terms independent of θ,
we arrive at the expected complete log-probability function
Q(θ, γ, ξ, ĥ)

Q =
N∑

n=1

∑
zn

q̂(Zn) log p(Dn,Zn, θ|ĥ)

3We briefly drop the dependency on θ̂ for an uncluttered notation while
deriving the forward-backward recursions.

Algorithm 1: Expectation-Maximization for System
Identification and Behavioral Cloning.

= log p(θ|ĥ)+
K∑

k=1

N∑
n=1

γ n
1

[
logϕk + log N(xn

1|μk,�k )
]

+
K∑

k=1

N∑
n=1

T∑
t=2

γ n
t log N(xn

t |Akxn
t−1+ Bkun

t−1+ ck,�k )

+
K∑

k=1

N∑
n=1

T∑
t=1

γ n
t log N(un

t |Kkφ(xn
t−1),�k )

+
K∑

i=1

K∑
j=1

N∑
n=1

T∑
t=2

ξn
t−1,t logχi j (xn

t−1,un
t−1,ωi j ).

The function Q is non-convex in ω when a nonlinear logit link
function f (.,ω) is chosen as an embedding for the transition
probability χ , see (1). In that case, stochastic optimization is
recommended [79] as batched noisy gradient estimates allow
the algorithm to escape shallow local minima and reduce the
computational cost that comes with evaluating the gradients
for all data instances.

Consequently, when implementing the M-step, we apply
stochastic optimization on the transition parameters ω. We use
a stochastic gradient ascent direction with an adaptive learning
rate ε and batch size M [79]

ω(l+1) = ωl + ε

M

M∑
m=1

∇ωQ(m) |ω=ωl ,

∇ωQ(m) = ∇ω

[
log p(ω|α)

+
K∑

i=1

K∑
j=1

ξ (m) logχi j (x(m),u(m),ωi j )

]
.
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For the parameters with conjugate priors, we derive closed-
form optimality conditions. Effectively, we derive the poste-
rior distribution via Bayes’ rule and take the mode of each
posterior density for a MAP estimate update.

By considering only relevant terms, we write the MAP of
the initial gating parameter ϕ as

max
ϕ

log Dir(ϕ|τ̂0) +
K∑

k=1

N∑
n=1

γ n
1 logϕk,

while the estimate of the initial state parameters (μk,�k ) can
be decoupled for each k as follows

max
(μ,�)k

log NW(μk,�k|(0, κ̂0, 
̂0, ν̂0)k )

+
N∑

n=1

γ n
1 log N(xn

1|μk,�k ).

Analogously, the MAP of the dynamics parameter
(Ak,Bk, ck,�k ) is also decoupled to k optimizations

max
(A,B,c,�)k

log MNW(Ak,Bk, ck,�k|(0, R̂0, �̂0, ν̂0)k )

+
N∑

n=1

T∑
t=2

γ n
t log N(xn

t |Akxn
t−1+ Bkun

t−1+ ck,�k ),

and, finally, to learn closed-loop behavior, we can infer the
controller parameters (Kk,�k )

max
(K,�)k

log MNW(Kk,�k|(0, Ŝ0, ̂0, ε̂0)k )

+
N∑

n=1

T∑
t=1

γ n
t log N(un

t |Kkφ(xn
t ),�k ).

Due to space constraints, we will refrain from stating the
explicit solution for these optimization problems. Instead, we
provide the general outline of how to compute these posteriors
and their modes based on the unified notation for exponential
family distributions in Appendix A and B.

3) APPROXIMATE EMPIRICAL BAYES
Inference techniques that leverage data-independent assump-
tions run the risk of prior miss-specification. In our MAP
approach, the priors are weakly informative and carry little
information. Their main purpose is to regularize greedy up-
dates that might lead to premature convergence. However,
when there is little data, the priors, especially those on the
precision matrices, may dominate the posterior probability,
leading to over-regularization and under-fitting of the ob-
jective. Empirical Bayes approaches remedy this issue by
integrating out the parameters θ and optimizing the marginal
likelihood with respect to the hyperparameters h [77]. In our
setting, marginalizing all hidden quantities does not admit a
closed-form formula. An approximate approach to empirical
Bayes is to interleave the E- and M-steps with hyperparameter
updates that optimize the lower bound given an estimate of

parameters θ̂ and a step size �

h(l+1) = h(l ) + �∇hQ |h=hl ,

where the gradient of Q with respect to h reduces to

∇hQ = ∇h log p(θ̂|h).

VII. REINFORCEMENT LEARNING VIA HYBRID MODELS
The last sections focused on the system modeling aspect and
how to use hybrid surrogate models to approximate nonlinear
dynamics. Now we turn our attention to the problem of using
these models to synthesize structured controllers for general
nonlinear dynamical systems. One possible approach is to use
the learned hybrid models and apply the classical hybrid con-
trol methods, which we have reviewed Section II. However,
as discussed earlier, these methods suffer from several draw-
backs. On the one hand, they rely a polyhedral partitioning
of the space. This limitation is severe because it often leads
to an explosion in the number of partitions. On the other
hand, these methods are often focused on computationally ex-
pensive trajectory-centric model predictive control. This class
of controllers is disadvantageous in applications that require
fast reactive feedback signals with broad coverage over the
state-action space.

In this section, we address these points and present an
infinite horizon stochastic optimization technique that incor-
porates the structure of hybrid models. This approach can deal
with rARHMMs with arbitrary non-polyhedral partitioning
and synthesizes stationary piecewise polynomial controllers.
Our algorithm extends the step-based formulation of relative
entropy policy search (REPS) [80], [81], [82] by explicitly
accounting for the discrete-continuous mixture state variables
(x, z). Our approach, hybrid REPS (Hb-REPS), leverages the
state-action-dependent nonlinear switches p(z ′|z, x,u) as a
task-independent upper-level coordinator to a mixture of K
lower-level policies π (u|x, z). While the proposed approach
shares many features with [62], our formulation relies on a
state-abstraction representation of hybrid models and embeds
the hierarchical model structure into the optimization problem
in order to learn a hierarchy over the global value function.
In contrast, [62] operates in the framework of semi-Markov
decision processes and optimizes a mixture over termination
and feedback policies without considering the existence of
a hierarchical structure in the space of dynamics and value
functions. For more details on differences between state- and
time-abstractions, refer to Section II.

A. INFINITE-HORIZON STOCHASTIC OPTIMAL CONTROL
In the REPS framework, an optimal control problem is
presented as an iterative trust-region optimization for a dis-
counted average-reward objective under a stationary state-
action distribution π (u|x, z)μ(x, z), (6a). The trust-region is
formulated as a KL [78], (6c). Its purpose is to regularize the
search direction and limit information loss between iterations.
The REPS formulation explicitly incorporates a dynamics
consistency constraint, (6b), that describes the evolution of
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the stochastic state of the system. The following optimization
problem is solved during a single iteration of hybrid REPS

max
π,μ

J =
∑

z

∫∫
r(x,u)π (u|x, z)μ(x, z)dxdu, (6a)

s.t. μ(x ′, z ′) = (1 − ϑ )μ1(x ′, z ′) (6b)

+ ϑ
∑

z

∫∫
π (u|x, z)μ(x, z)p(x ′, z ′|x,u, z)dudx,

KL(π (u|x, z)μ(x, z) || q(x,u, z)) ≤ ε, (6c)∑
z

∫∫
π (u|x, z)μ(x, z)dxdu = 1, (6d)

where μ(x, z) is the stationary mixture distribution, q(x,u, z)
is the trust-region reference distribution, and the constraint in
(6d) guarantees the normalization of the state-action distribu-
tion. The factor 1 − ϑ , ϑ ∈ [0, 1), represents the probability
of an infinite process to reset to an initial distribution μ1(x, z).
The notion of resetting is necessary to ensure ergodicity
of the closed-loop Markov process and allows the interpre-
tation of ϑ as a discount factor and regularization of the
MDP [82], [83].

B. OPTIMALITY CONDITIONS AND DUAL OPTIMIZATION
To solve the trust-region optimization in (6a)–(6d), we start
by constructing the Lagrangian of the primal [84]

L =
∑

z

∫∫
r(x,u)p(x,u, z)dxdu

+
∑

z ′

∫
V (x ′, z ′)

⎡
⎣−

∫
p(x ′, z ′,u ′)du ′

+ (1 − ϑ )
∑

z

∫∫
p(x,u, z)μ1(x ′, z ′)dxdu

+ ϑ
∑

z

∫∫
p(x,u, z)p(x ′, z ′|x,u, z)dxdu

⎤
⎦dx ′

+ λ

[
1 −

∑
z

∫∫
p(x,u, z)dudx

]

+ η

[
ε −

∑
z

∫∫
p(x,u, z) log

p(x,u, z)

q(x,u, z)
dxdu

]
,

where we use p(x,u, z) = μ(x, z)π (u|x, z) for convenience
and leverage the following identities

μ(x, z) =
∫

p(x,u, z)du,

μ1(x ′, z ′) =
∑

z

∫∫
p(x,u, z)p1(x ′, z ′|x,u, z)dxdu

=
∑

z

∫∫
p(x,u, z)μ1(x ′, z ′)dxdu.

The second identity implies that the resetting is only depen-
dent on the parameter ϑ and independent of the state and
actions (x,u, z) to satisfy the ergodicity property.

The parameters η and λ are the Lagrangian variables as-
sociated with (6c) and (6d), while V (x, z) is the state-value
function, which appears naturally in REPS as the Lagrangian
function associated with (6b). Next, we take the partial deriva-
tive of L with respect to p(x,u, z)

∂L
∂ p

= r(x,u) − λ+ (1 − ϑ )
∑

z ′

∫
V (x ′, z ′)μ1(x ′, z ′)dx ′

+ ϑ
∑

z ′

∫
V (x ′, z ′)p(x ′, z ′|x,u, z)dx ′

− V (x, z) − η log
p∗(x,u, z)

q(x,u, z)
− η,

and set it to zero to get the optimal point

p∗(x,u, z) = q(x,u, z) exp

[
A(x,u, z,V ) − λ− η

η

]
, (7)

where A(x,u, z,V ) is the advantage function given as

A(.) = r(x,u) + (1 − ϑ )
∑

z ′

∫
V (x ′, z ′)μ1(x ′, z ′)dx ′

+ ϑ
∑

z ′

∫
V (x ′, z ′)p(x ′, z ′|x,u, z)dx ′− V (x, z). (8)

The optimal point p∗(x,u, z) = μ∗(x, z)π∗(u|x, z) has to
satisfy the constraint in (6d), which in turn enables us to find
the Lagrangian variable λ∗

1=
∑

z

∫∫
p∗(x,u, z)dxdu

1=
∑

z

∫∫
q(x,u, z) exp

[
A(x,u, z,V ) − λ∗ − η

η

]
dxdu

λ∗ =−η+η log
∑

z

∫∫
q(x,u, z) exp

[
A(x,u, z,V )

η

]
dxdu.

By substituting λ∗ back into p∗(x,u, z) in (7), we retrieve the
normalized density softmax form

p∗(x,u, z) = q(x,u, z) exp [A(x,u, z,V )/η]∑
z

∫∫
q(x,u, z) exp [A(x,u, z,V )/η] dxdu

.

Now by plugging the solutions p∗ and λ∗ back into the La-
grangian, we arrive at the dual function G as a function of the
remaining Lagrangian variables η and V

G=ηε + η log
∑

z

∫∫
q(x,u, z)exp

[
A(x,u, z,V )

η

]
dxdu,

where q(x,u, z) = q(x,u)q(z|x,u) and q(z|x,u) is the pos-
terior over z given x and u. In Section VI, we derived a
forward-backward algorithm for inferring this density, allow-
ing us to compute the expectation over z. The expectations
over x and u are analytically intractable. Therefore, we ap-
proximate them given samples from the reference distribution
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q(x,u). The multipliers η and V are then obtained by numer-
ically minimizing the dual G(η,V )

arg min
η,V

G(η,V ), s.t. η ≥ 0,

that acts as the upper bound on the primal objective.

C. MODELING DYNAMICS AND STATE-VALUE FUNCTION
Up to this point, the derivation of Hb-REPS has been
generic. We have made no assumptions on initial distributions
μ1(x, z), the dynamics p(x ′, z ′|x,u, z), or the value function
V (x, z). Now, we introduce the piecewise affine-Gaussian
dynamics and logistic switching described in Section V and
assume these representations to be available in parametric
form as a result of a separate learning process. Furthermore,
we model the state-value function with piecewise n-th degree
polynomial functions V (x, z) = τ

z ψz(x), where ψz(x) is the
state-feature vector which contains polynomial features of the
state x, and τz is the parameter vector assigned to the different
regions.

Under these assumptions, we can use the available joint
density μ1(x, z) and p(x ′|x,u, z) to compute the necessary
expectations in (8)

Ex1,z1

[
V (x ′, z ′)

]=∑
z ′

∫
V (x ′, z ′)μ1(x ′, z ′)dx ′,

Ex ′,z ′

[
V (x ′, z ′)

]=∑
z ′

∫
V (x ′, z ′)p(x ′, z ′|x,u, z)dx ′.

This computation allows our approach to capture the stochas-
ticity of the dynamics and delivers an estimate of the advan-
tage function A(x,u, z,V ) instead of the temporal difference
(TD) error in the general REPS framework [80]. Ultimately,
this leads to better estimates of the expected discounted future
returns captured by V .

Practically, these integrals can be either naively approx-
imated by applying Monte Carlo integration [85] or, more
efficiently, by recognizing the structure of the integrand
V (x ′, z ′) and using Gauss-Hermite cubature rules for exact
integration over polynomial functions [86].

D. MAXIMUM-A-POSTERIORI POLICY IMPROVEMENT
A significant advantage of our model-based reinforcement
learning approach becomes evident when considering the pol-
icy improvement step in the REPS framework. The policy
update is incorporated into the optimality condition of the sta-
tionary state-action distribution p(x,u, z) = π (u|x, z)μ(x, z)
in (7). As a consequence, updating the mixture policies
π (u|x, z) requires the computation of state probabilities
μ(x, z), which in turn require knowledge of the dynamics
model. This issue is circumvented in other model-free real-
izations of REPS by introducing a crude approximation to
enable a model-free policy update nonetheless. For example,
in [87], the authors postulate that the new state distribution
μ(x, z) is usually close enough to the old distribution q(x, z),
thus allowing the ratio q(x, z)/μ(x, z) to be ignored when

a weighted maximum-likelihood fit of the actions u is per-
formed to update π .

While the assumption of closeness may be practical and
empowers many successful variants of REPS, it is crucial to
be aware of its technical ramifications, as it undermines the
primary motivation of a relative entropy bound on the state-
action distribution in (6c). This aspect is unique in the REPS
framework when compared to other state-of-the-art approxi-
mate policy iteration algorithms [7], [9], [88], that optimize a
similar objective, albeit with a relaxed bound that only limits
the change of the action distribution π .

In contrast, our algorithm uses the surrogate hybrid dy-
namics and updates the policy π (u|x, z) with the correct
weighting. The optimality condition in (7) is satisfied by
computing a weighted maximum a posteriori estimate of the
parameters θ of the state-action distribution p(x,u, z|θ), thus
implicitly updating π (u|x, z). This procedure is equivalent to
a modified Baum-Welch expectation-maximization algorithm
that learns the parameters of a closed-loop rARHMM, as de-
rived in Section VI. The difference is that the EM objective in
(2) has to be augmented with the importance weights from (7)

arg max
θ

log
N∏

n=1

∑
zn

wn p(Xn,Un,Zn|θ)p(θ),

where (Xn,Un) are state-action trajectories collected via inter-
action with the environment and wn are the associated weights
resulting from (7)

wn = exp
[
A(Xn,Un,Zn,V )/η

]
.

This augmentation leads to weighted M- and EB-steps while
the E-step is not altered.

Note that during the policy improvement step, we can ei-
ther assume an a priori estimate of the open-loop dynamics
p(x ′, z ′|x,u, z) and only update the control parameters corre-
sponding to the conditional π (u|x, z), or we can iteratively
update p(x ′, z ′|x,u, z) as more data becomes available. A
compact sketch of the overall optimization process is available
in Algorithm 2.

VIII. EMPIRICAL EVALUATION
In this section, we benchmark different aspects of our ap-
proach to system modeling and control synthesis via hybrid
models. In the following,
� we assess the predictive performance of rARHMMs at

open-loop system identification of nonlinear systems and
validate our choice of hybrid surrogate models as a suit-
able representation.

� we test the ability of rARHMMs to approximate and
decompose expert nonlinear controllers in a closed-loop
behavioral cloning scenario.

� we deploy rARHMMs in the proposed hierarchical RL
algorithm Hb-REPS to solve the infinite horizon stochas-
tic control objective and optimize piecewise polynomial
controllers and value functions.

VOLUME 2, 2023 163



ABDULSAMAD AND PETERS: MODEL-BASED REINFORCEMENT LEARNING VIA STOCHASTIC HYBRID MODELS

Algorithm 2: Model-Based Relative Entropy Policy
Search via Hybrid Models.

A. PIECEWISE OPEN-LOOP SYSTEM IDENTIFICATION
We start by empirically benchmarking the open-loop learned
rARHMMs and their ability to approximate nonlinear dy-
namics. We compare to popular black-box models in a
long-horizon and limited-data setting.

This evaluation focuses on rARHMMs with exogenous in-
puts. We learn the dynamics of three simulated deterministic
systems; a bouncing ball, an actuation-constrained pendu-
lum, and a cart-pole system. We compare the predictive time
forecasting accuracy of rARHMMs to classical non-recurrent
autoregressive hidden Markov models (ARHMMs) 4 [16],
feed-forward neural nets (FNNs), Gaussian processs (GPs) ,5

long-short-term memory networks (LSTMs) [89], and re-
current neural networks (RNNs). During the evaluation, we
collected segregated training and test datasets. The training
dataset is randomly split into 24 groups, each used to train
different instances of all models. These instances are then
tested on the test dataset. During evaluation, we sweep the
test trajectories stepwise and predict the given horizon.

All neural models have two hidden layers, which we
test for different layer sizes, S ∈ {16, 32, 64, 128, 256, 512}
for FNNs, S ∈ {16, 32, 64, 128, 256} for RNNs, and S ∈
{16, 32, 64, 128} for LSTMs. In the case of (r)ARHMMs, we
vary the number of components K , dependent on the task.
As a metric, we evaluate the forecast NMSE for a range of
horizons averaged over the 24 data splits. We report the result
corresponding to the best choice of S and K . Finally, in
Table 1, we qualitatively compare the complexity of all rep-
resentations in terms of their total number of parameters.

4ARHMMs closely resemble rARHMMs. However, the transitions proba-
bility in 1 does not depend on the continuous state or action.

5With an RBF kernel and hyperparameter optimization.

1) BOUNCING BALL
This example is a canonical instance of a dual-regime hybrid
system due to the hard velocity switch at the moment of im-
pact. We simulate the dynamics with a frequency of 20 Hz and
collect 25 training trajectories with different initial heights
and velocities, each 30 s long. This dataset is split 24 folds
with ten trajectories, 10 × 150 data points, in each subset.
The test dataset consists of 5 trajectories, each 30 s long. We
evaluate the NMSE for horizons h = {1, 20, 40, 60, 80} time
steps. We did not evaluate a GP model in this setting due to the
long prediction horizons that led to a very high computational
burden. The (r)ARHMMs are tested for K = 2. The logit link
function of an rARHMM is parameterized by a neural net with
one hidden layer containing 16 neurons. The results in Fig. 3
show that the rARHMM approximates the dynamics well and
outperforms both ARHMMs and the neural models.

2) PENDULUM AND CART-POLE
These systems are classical benchmarks from the nonlinear
control literature. Here we consider two different observa-
tion types, one in the wrapped polar space, where the angle
space θ ∈ [−π, π ] includes a sharp discontinuity, and a sec-
ond model with smooth observations parameterized with the
Cartesian trigonometric features {cos(θ ), sin(θ )}. Both dy-
namics are simulated with a frequency of 100 Hz. We collect
25 training trajectories starting from different initial condi-
tions and apply random uniform explorative actions. Each
trajectory is 2.5 s long. The 24 splits consist of 10 trajectories
each, 10 × 250 data points. The test dataset consists of 5
trajectories, each 2.5 s long. Forecasting accuracy is evalu-
ated for horizons h = {1, 5, 10, 15, 20, 25}. The (r)ARHMMs
are tested for K = {3, 5, 7, 9} on both tasks. The logit link
function of the rARHMM is parameterized by a neural net
with one hidden layer containing 24 neurons. As shown in
Fig. 3, the forecast evaluation provides empirical evidence for
the representation power of rARHMMs in both smooth and
discontinuous state spaces. FNNs and GPs perform well in
the smooth Cartesian observation space and struggle in the
discontinuous space, similar to RNNs and LSTMs. Moreover,
in Table 1, it is clear that rARHMMs reach comparable pre-
dictive performance to state-of-the-art models with a fraction
of the parametric complexity.

B. PIECEWISE CLOSED-LOOP BEHAVIORAL CLONING
We want to analyze the closed-loop rARHMM with endoge-
nous inputs as a behavioral cloning framework. The task is
to reproduce the closed-loop behavior of expert policies on
challenging nonlinear systems. For this purpose, we train two
feedback experts on the pendulum and cart-pole. The two
environments are simulated at 50 Hz and are influenced by
static Gaussian noise with a standard deviation σ = 1 × 10−2.
The experts are two-layer neural network policies with 4545
parameters (pendulum) and 17537 parameters (cart-pole), op-
timized with the SAC algorithm [9].
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TABLE 1. System identification: Qualitative comparison of model complexity for the best-performing representations in Fig. 3. The values reflect the total
number of parameters of each model. The values in parentheses represent the hidden layer sizes S of the neural models and the number of discrete
components K for the (r)ARHMM, respectively.

FIGURE 3. System identification: The h-step normalized mean square error (NMSE) of rARHMMs compared to other models. Evaluation is averaged over
24 data splits. Benchmarking on three dynamical systems, a bouncing ball, a pendulum, and a cart-pole. rARHMMs exhibit the most consistent
approximation capabilities. Figure reproduced from [18].

For cloning, we construct two 5-regime rARHMMs with
piecewise polynomial policies of the third order. The hybrid
controllers have a total number of parameters of 100 (pendu-
lum) and 280 (cart-pole). Learning is realized on a dataset of
25 expert trajectories, each 5 s long, for each environment and
using the EM technique from Section VI. The decomposed
controllers complete the task of swinging up and stabilizing
both systems with over 95% success rate. Fig. 4 shows the
phase portraits of the unforced dynamics and closed-loop
control identified during cloning. Fig. 5 depicts sampled tra-
jectories of the hybrid policies highlighting the switching
behavior.

C. NONLINEAR CONTROL SYNTHESIS VIA HYBRID
MODELS
Finally, we evaluate the performance of the hybrid pol-
icy search algorithm Hb-REPS on two nonlinear stochastic
dynamical systems: an actuation-constrained pendulum
swing-up and a cart-pole stabilization task. We make no claim
to the absolute sample efficiency of our RL approach when
compared to state-of-the-art RL algorithms. Instead, we aim to

FIGURE 4. Behavioral cloning: The identified unforced dynamics are on
the left (blue). The learned model qualitatively captures the phase portrait.
On the right (red) are the closed-loop dynamics. The learned stationary
hybrid policy with five regions successfully imitates a global nonlinear soft
actor-critic (SAC) controller to stabilize the system around the origin.
Figure reproduced from [18].

provide empirical support for the premise that structured rep-
resentations that rely on compact piecewise parametric forms
can provide an alternative to black-box function approxima-
tors with comparable overall performance.
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FIGURE 5. Behavioral cloning: Sample trajectories from the learned hybrid policies on the pendulum (left) and cart-pole (right). Both hybrid controllers
are able to consistently solve the tasks while relying on simple local representations of the feedback controllers. The colors indicate the active dynamics
and control regimes over time. Figure reproduced from [18].

Therefore, we compare the performance of Hb-REPS to
two baselines. The first is a vanilla version of REPS that
does not maintain any hierarchical structure and uses non-
linear function approximators with random Fourier features
(RFFs) [90] to represent both policy and value function. The
second baseline assumes a hierarchical policy structure and a
nonlinear value function with Fourier features. This baseline
is somewhat akin to what is implemented in [62], albeit with a
hierarchy based on state abstraction rather than time. We will
refer to this algorithm as hierarchical REPS (Hi-REPS). We
assume an offline learning phase in which the hybrid models
are learned from pre-collected data.

1) PENDULUM SWING-UP
In this experiment, the actuation-constrained pendulum is
simulated at 50 Hz and perturbed by Gaussian noise with a
standard deviation σ = 1 × 10−2. The REPS agent relies on
a policy and value function with 50 and 75 Fourier basis
functions, respectively. Hi-REPS assumes a similar form of
the value function but with a piecewise third-order polynomial
policy over five partitions. Hb-REPS represents both policy
and value function with piecewise third-order polynomials
over five partitions. Empirical results in Fig. 7 (left half) fea-
ture comparable learning performance of all algorithms over
ten random seeds. Every iteration involves 5000 interactions
with the environment. We provide a phase portrait of the
closed-loop behavior for a qualitative assessment of the final
stationary hybrid policy.

2) CART-POLE STABILIZATION
This evaluation features a cart-pole constrained by an elastic
wall modeled by a spring. The dynamics are linearized around
the upright position. The environment is simulated at 100 Hz
and perturbed by Gaussian noise with a standard deviation
σ = 1 × 10−4. The REPS policy and value function both
use 25 random Fourier basis functions. Hi-REPS adopts the

FIGURE 6. A cart-pole system with an elastic wall constraint: The cart-pole
dynamics are linearized around the upright position, and a spring system
models the wall. The phase portrait of the unforced angular dynamics is
depicted on the left (blue). The aim is to stabilize the pole.

same value function structure with a two-partition piecewise
affine policy. Hb-REPS also assumes a two-partition piece-
wise affine policy and second-order value function. Fig. 7
(right half) depicts comparable learning performance over ten
random seeds. Every iteration involves 2500 interactions with
the environment.

IX. DISCUSSION
We presented a general framework for data-driven nonlinear
system identification and stochastic control based on the struc-
tured representation of hybrid surrogate models. To introduce
the hybrid structure, we proposed replacing commonly used
piecewise affine auto-regressive models with probabilistic hy-
brid dynamic Bayesian networks, as they offer a range of
advantages in data-driven scenarios. Furthermore, we pre-
sented a novel reinforcement learning algorithm that leverages
the learned hybrid models to synthesize piecewise polynomial
feedback controllers for nonlinear systems.

Our hybrid-model-infused reinforcement learning approach
is able to reach comparable performance on control tasks with
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FIGURE 7. Reinforcement learning: REPS, Hi-REPS, and Hb-REPS evaluated on the pendulum swing-up (left) and cart-pole stabilization (right) tasks. By
inspecting the learning curves, mean reward with two standard deviations, we conclude that all algorithms perform equally well in terms of the transient
and final performance. However, Hb-REPS relies on simpler piecewise polynomial models of the policy and value function, while Hi-REPS and REPS use
nonlinear Fourier basis functions. The phase portraits depict the closed-loop behavior achieved by Hb-REPS.

a significant reduction in the complexity of functional rep-
resentation. Furthermore, in contrast to deterministic hybrid
model predictive control, our approach solves the infinite-
horizon stochastic optimal control problem by approximating
the global value function and lifts the requirement for polyhe-
dral partitioning.

While initial empirical results are encouraging, the appli-
cation of this work is limited to low-dimensional dynamical
systems. Although a viable alternative to expensive mixed-
integer optimization, the inference techniques used in this
article still present a bottleneck in the face of scalability to
higher dimensions. While our MAP approach significantly
improves the quality of expectation-maximization solutions,
it nevertheless struggles in more challenging environments.

A possible course of action is to investigate Bayesian non-
parametric extensions of hybrid dynamic Bayesian networks
based on non-conjugate variational inference. Fully Bayesian
methods tend to improve learning in large structured mod-
els significantly. Another potential avenue of research is to
improve the hybrid reinforcement learning framework by con-
sidering the control-as-inference paradigm. Such approaches
may offer ways of integrating the Bayesian structure of the
models into the control optimization and constructing an
uncertainty-aware approach that is better equipped to deal
with the exploration-exploitation dilemma.

APPENDIX A
EXPONENTIAL FAMILY
Our work focuses on random variables with probability den-
sity functions belonging to the exponential family. The unified
minimal parameterization of this class of distributions lends
itself for convenient and efficient posterior computation when
paired with conjugate priors.

We assume the natural form for a probability density of a
random variable x

f (x|η) = h(x) exp [η · t(x) − a(η)] ,

where h(x) is the base measure, η are the natural parameters,
t(x) are the sufficient statistics and a(η) is the log-partition

function, or log-normalizer. Following the same notation, a
conjugate prior g(η|λ) to the likelihood f (x|η) has the form

g(η|λ) = h(η) exp [λ · t(η) − a(λ)] ,

with prior sufficient statistics t(η) = [η, −a(η)] and hyper-
parameters λ = [α, β]. By applying Bayes’ rule, we can
directly infer the posterior q(η|x)

q(η|x) ∝ f (x|η)g(η|λ)

∝ exp
[
ρ(x,λ) · t(η) − a(ρ)

]
,

where the posterior natural parameters ρ(x,λ) are a function
of the likelihood sufficient statistics t(x) and prior hyperpa-
rameters [α, β]

ρ(x,λ) = [α + t(x), β + 1] .

The structure of the resulting posterior reveals a simple recipe
for data-driven inference. By moving into the natural space,
the posterior parameters are computed by combining the prior
hyperparameters with the likelihood sufficient statistics and
log-partition function. By definition, every exponential family
distribution has a minimal natural parameterization that leads
to a unique decomposition of these quantities [91].

APPENDIX B
CONJUGATE POSTERIORS
We present an outline of all M-step updates. We use an
adapted form of the exponential natural parameterization, as
it offers a clear methodology for deriving and implementing
such updates for all relevant distributions.

A. CATEGORICAL WITH DIRICHLET PRIOR
A weighted categorical likelihood over a one-hot random vari-
able z with size K has the form

p(Z|ϕ) =
N∏

n=1

Cat(zn|ϕ)wn
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∝ exp

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

logϕ1
...

logϕK

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
∑N

n=1 wn,1
...∑N

n=1 wn,K

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ ,

where wnk are the importance weights for each category K .
The conjugate prior is a Dirichlet p(ϕ) distribution

p(ϕ) = Dir(ϕ|τ0)

∝ exp

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
τ0,1 − 1

...

τ0,K − 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

logϕ1
...

logϕK

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ ,

The posterior q(ϕ) is likewise a Dirichlet distribution

q(ϕ) = Dir(ϕ|τ)

∝ exp

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
τ0,1 − 1 +∑N

n=1 wn,1
...

τ0,K − 1 +∑N
n=1 wn,K

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

logϕ1
...

logϕK

⎤
⎥⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ .

The maximization step requires computing the mode cate-
gorical weights. For a Dirichlet distribution the mode weights
are ϕ̂ = (τ − 1)/(

∑K
k=1 τk − K ) with τk > 1. The parameter

vector τ is given by

τk = τ0,k +
N∑

n=1

wn,k ∀k ∈ [1, K].

A. GAUSSIAN WITH NORMAL-WISHART PRIOR
A weighted Gaussian likelihood over a random variable x ∈
Rd has the following precision-based parameterization

p(X|μ,�) =
N∏

n=1

N(xn|μ,�)wn

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

�μ

μ�μ

�

log |�|

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

∑N
n=1 wnxn

− 1
2

∑N
n=1 wn

− 1
2

∑N
n=1 wnxnx

n

1
2

∑N
n=1 wn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

where wn are the importance weights. The conjugate prior
p(μ,�) is a normal-Wishart distribution with zero mean

p(μ,�) = N(μ|0, κ0�) W(�|
0, ν0)

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

0

− 1
2κ0

− 1
2
−1

0

1
2 (ν0 − d )

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

�μ

μ�μ

�

log |�|

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

The resulting posterior q(μ,�) is also a normal-Wishart

q(μ,�)=N(μ|m, κ�) W(�|
, ν)

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

∑N
n=1 wnxn

− 1
2

(
κ0 +∑N

n=1 wn
)

− 1
2

(

−1

0 +∑N
n=1 wnxnx

n

)
1
2

(
ν0 − d +∑N

n=1 wn
)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

�μ

μ�μ

�

log |�|

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

The vector and matrix modes of a normal-Wishart distribution
are μ̂ = m and �̂ = (ν − d )
, respectively. The posterior
parameters needed to determine the modes are

κ = κ0 +
N∑

n=1

wn,m = 1/κ
N∑

n=1

wnxn,

ν = ν0 +
N∑

n=1

wn,
 =
(


−1
0 +

N∑
n=1

wnxnx
n − κ m m

)−1

.

A. LINEAR-GAUSSIAN WITH MATRIX-NORMAL-WISHART
PRIOR
A weighted linear-Gaussian likelihood takes a random vari-
able x ∈ Rd and returns a random variable y ∈ Rm according
to a linear mapping A : Rd → Rm

p(Y|X,A,V) =
N∏

n=1

N(yn|xn,A,V)wn

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

VA

AVA

V

log |V|

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

YWX

− 1
2 XWX

− 1
2 YWY

1
2

∑N
n=1 wn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

where wn are the weights and W = diag(wn) is the diagonal
weight matrix. The data matrices X and Y are of size d ×
N and m × N , respectively. The conjugate prior p(A,V) is a
matrix-normal-Wishart with zero mean

p(A,V) = N(A|0,V,K0) W(V|
0, ν0)

∝ exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

0

− 1
2 K0

− 1
2
−1

0

1
2 (ν0 − m − 1 + d )

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

VA

AVA

V

log |V|

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.

The posterior q(μ,�) is matrix-normal-Wishart

q(A,V) = N(A|M,V,K) W(V|
, ν)

∝exp

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

YWX

− 1
2 (K0 + XWX)

− 1
2 (
−1

0 + YWY)

1
2

(
ν0 − m − 1 + d +∑N

n=1 wn
)

⎤
⎥⎥⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎢⎣

VA

AVA

V

log |V|

⎤
⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
.
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The mode mapping and precision of a matrix-normal-Wishart
are Â = M and �̂ = (ν − m)
, respectively. The standard
posterior parameters are

K = K0 + XWX,M = YWXK−1,

ν = ν0 +
N∑

n=1

wn,
 = (

−1

0 + YWY − M K M)−1
.
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