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Improved Bounds for Discrete Voronoi Games∗

Mark de Berg† Geert van Wordragen‡

December 14, 2023

Abstract

In the planar one-round discrete Voronoi game, two players P and Q
compete over a set V of n voters represented by points in R2. First, P
places a set P of k points, then Q places a set Q of ℓ points, and then
each voter v ∈ V is won by the player who has placed a point closest
to v. It is well known that if k = ℓ = 1, then P can always win n/3
voters and that this is worst-case optimal. We study the setting where
k > 1 and ℓ = 1. We present lower bounds on the number of voters that
P can always win, which improve the existing bounds for all k ⩾ 4. As a
by-product, we obtain improved bounds on small ε-nets for convex ranges
for even numbers of points in general position.

1 Introduction

In the discrete Voronoi game, two players compete over a set V of n voters
in Rd. First, player P places a set P of k points, then player Q places a set Q
of ℓ points disjoint from the points in P , and then each voter v ∈ V is won by
the player who has placed a point closest to v. In other words, each player wins
the voters located in its Voronoi cells in the Voronoi diagram Vor(P ∪ Q). In
case of ties, that is, when a voter v lies on the boundary between a Voronoi cell
owned by P and a Voronoi cell owned by Q, then v is won by player P. Note
that P first places all their k points and then Q places their ℓ points—hence,
this is a one-round Voronoi game—and that k and ℓ need not be equal. The
one-round discrete Voronoi game was introduced by Banik et al. [4].

There is also a version of the Voronoi game where the players compete over
a continuous region [1, 9, 12]. For this version a multiple-round variant, where
k = ℓ and the players place points alternatingly, has been studied as well. We
will confine our discussion to the discrete one-round game.

∗MdB is supported by the Dutch Research Council (NWO) through Gravitation grant
NETWORKS-024.002.003.

†Department of Mathematics and Computer Science, TU Eindhoven, Eindhoven, the
Netherlands, M.T.d.Berg@tue.nl

‡Department of Computer Science, Aalto University, Espoo, Finland,
Geert.vanWordragen@aalto.fi

1



The discrete one-round Voronoi game for k = ℓ = 1 is closely related to the
concept of plurality points in spatial voting theory [14]. In this theory, there
is a d-dimensional policy space, and voters are modelled as points indicating
their preferred policies. A plurality point is then a proposed policy that would
win at least ⌈n/2⌉ voters against any competing policy. Phrased in terms of
Voronoi games, this means that P can place a single point that wins at least
⌈n/2⌉ voters against any single point placed by Q. The discrete Voronoi game
with k > 1 and ℓ = 1 can be thought of as an election where a coalition of k
parties is colluding against a single other party.

Another way to interpret Voronoi games is as a competitive facility-location
problem, where two companies want to place facilities so as to attract as many
customers as possible, where each customer will visit the nearest facility. Com-
petitive facility location has not only been studied in a (discrete and continuous)
spatial setting, but also in a graph-theoretic setting; see e.g. [3, 13, 16].

Previous work. The one-round discrete Voronoi game leads to interesting
algorithmic as well as combinatorial problems.

The algorithmic problem is to compute an optimal set of locations for the
players. More precisely, for player P the goal is to compute, given a set V of
n voters, a set P of k points that wins a maximum number of voters under
the assumption that player Q responds optimally. For player Q the goal is to
compute, given a voter set V and a set P of points placed by P, a setQ of ℓ points
that wins as many voters from V as possible. These problems were studied in R1

by Banik et al. [4] for the case k = ℓ. They showed that an optimal set for P
can be computed in O(nk−λk) time, for some 0 < λk < 1, and that an optimal
set for Q can be computed in O(n) if the voters are given in sorted order. The
former result was improved by De Berg et al. [7], who presented an algorithm
with O(k4n) running time. They also showed that in R2 the problem for P is
ΣP

2 -hard. The problem for P in the special case k = ℓ = 1, is equivalent to
finding the so-called Tukey median of V . This can be done in O(nd−1+n log n)
time, as shown by Chan [10].

The combinatorial problem is to prove worst-case bounds on the number
of voters that player P can win, assuming player Q responds optimally. Tight
bounds are only known for k = ℓ = 1, where Chawla et al. [11] showed the
following: for any set V of n voters in Rd, player P can win at least ⌈n/(d+ 1)⌉
voters and at most ⌈n/2⌉ voters, and these bounds are tight. Situations where
P can win ⌈n/2⌉ voters are particularly interesting, as these correspond to the
existence of a plurality point in voting theory. The bounds just mentioned imply
that a plurality point does not always exist. In fact, a plurality point only exists
for certain very symmetric point sets, as shown by Wu et al. [17]. De Berg et al.
[6] showed how to test in O(n log n) time if a voter set admits a plurality point.

The combinatorial problem for k > 1 and ℓ = 1 was studied by Banik et al. [5].
Here player P will never be able to win more than

(
1− 1

2k

)
n voters, because
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k = 1 k = 2 k = 3 k = 4 k = 5 arbitrary k reference
1/3 3/7 7/15 15/31 21/41 1− 42

k Banik et al. [5]

1/2 11/21 1− 20 5
8

k this paper

Table 1: Lower bounds on the fraction of voters that P can win on any voter
set in R2, when P has k points and Q has a single point. The stated fraction of

our method for arbitrary k is for n→∞; the precise bound is
(
1− 20 5

8

k

)
n− 6.

player Q can always win at least half of the voters of the most crowded Voronoi
cell in Vor(P ). Banik et al. [5] present two methods to derive lower bounds on
the number of voters that P can always win. Below we discuss their results
in R2, but we note that they generalize their methods to R3.

The first method uses a (weak) ε-net for convex ranges on the voter set V ,
that is, a point set N such that any convex range R containing at least εn voters,
will also contain a point from N . Now, if |Q| = 1 then the voters won by Q
lie in a single Voronoi cell in Vor(P ∪ Q). Since Voronoi cells are convex, this
means that if we set P := N then P wins at least (1− ε)n voters. Banik et al.
use the ε-net construction for convex ranges by Mustafa and Ray [15]. There is
no closed-form expression for the size of their ε-net, but the method can give a
(4/7)-net of size 2, for instance, and an (8/15)-net of size 3. The smallest size for
which they obtain an ε-net for some ε ⩽ 1/2, which corresponds to P winning at
least half the voters, is k = 5. Banik et al. show that the ε-net of Mustafa and
Ray can be constructed in O(kn log4 n) time. The second method of Banik et al.
uses an ε-net for disks, instead of convex sets. This is possible because one can
show that a point q ∈ Q that wins α voters, must have a disk around it that
covers at least ⌊α/6⌋ voters without containing a point from P . Banik et al.
then present a (7/k)-net for disks of size k, which can be constructed in O(n2)
time. This gives a method that ensures P wins at least

(
1− 42

k

)
n voters, which

is better than the first method when k ⩾ 137.

Our results. We study the combinatorial question—how many voters can
player P win from any voter set V of size n, under optimal play from Q—in the
planar setting, for k > 1 and ℓ = 1. We obtain the following results, where we
assume that V is in general position—no three voters are collinear—and that n
is even.

In Section 2 we present an improvement1 over the ε-net bounds by Mustafa
and Ray [15] for convex ranges. This improves the results of Banik et al. [5] on
the fraction of voters that P can win when k ⩾ 4 and k is relatively small. We
do not have a closed-form expression for the size of our ε-net as function of ε.
Theorem 2 gives a recurrence on these sizes, and Table 1 shows how our bounds
compare to those of Banik et al. for k = 4, 5 (which follow from the bounds of

1Our definition of ε-net is slightly weaker than usual, since a range missing the ε-net may
contain up to ⌈εn⌉ points, instead of ⌊εn⌋ points.
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Figure 1: Lower bounds on the fraction of voters that P can win as a function
of k (the number of points of P) when Q has a single point, for the L2-metric.
The red and green graphs do not intersect, so for large k the quadtree method
gives the best solution.

Mustafa and Ray [15]). It is particularly interesting that our bounds improve
the smallest k for which P can win at least half the voters, from k = 5 to k = 4.

In Section 3 we present a new strategy for player P. Unlike the strategies
by Banik et al., it is not based on ε-nets. Instead, it uses a quadtree-based
approach. By combining this approach with several other ideas and using our
ε-net method as a subroutine, we are able to show that there is a set P of

k points that guarantees that P wins at least
(
1− 20 5

8

k

)
n − 6 voters, which

significantly improves the
(
1− 42

k

)
n bound of Banik et al. Fig. 1 show the

bounds obtained by the various methods in a graphical way.

We also study the discrete one-round Voronoi game in the L1-metric, for
k > 1 and ℓ = 1. When k = 1, player P can win at least half the voters by
placing a point on a multi-dimensional median, that is, a point whose x- and
y-coordinate are medians among the x- and y-coordinates of the voter set V [6].
The case k > 1 and ℓ = 1 has, as far as we know, not been studied so far. We
first observe that for the L1-metric, an ε-nets for axis-parallel rectangles can be
used to obtain a good set of points for player P. Using known results [2] this
implies the results for 2 ⩽ k ⩽ 5 in Table 1.

2 Better ε-nets for convex ranges

Below we present a new method to construct an ε-net for convex ranges in the
plane, which improves the results of Mustafa and Ray [15]. As mentioned in the
introduction, this implies improved bounds on the number of voters P can win
with k points when Q has a single point, for relatively small values of k.

Let L be a set of three concurrent lines and consider the six wedges defined
by the lines. Bukh [8] proved that for any continuous measure there is a choice of
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L where each of the wedges has equal measure. Instead of a measure, we have V ,
a point set in general position in the plane, thus we need a generalisation where
the wedges contain some specified number of points. In our generalisation, the
weight of a wedge is given by the number of points from V assigned to it. If a
point v ∈ V lies in the interior of a wedge then we assign v to that wedge, and
if v lies on the boundary of two or more wedges we assign v to one of them.
(This assignment is not arbitrary, but we will do it is such a way as to obtain
the desired number of points in each wedge.) We call this a wedge assignment.

Theorem 1. Let V be a set of n points in general position in the plane, where
n ⩾ 8 is even. For any given α, β, γ ∈ N such that 2α+2β+2γ = n, we can find
a set of three concurrent lines that partitions the plane into six wedges such that
there is a wedge assignment resulting in wedges whose weights are α, β, γ, α, β, γ
in counterclockwise order.

Proof. (Sketch.) Let ℓ(θ) be the directed line making an angle θ with the pos-
itive x-axis and that has exactly weight n/2 on either side of it, for a suitable
assignment of points to the half-planes on either side of ℓ(θ). Consider the line
ℓ(θ) for θ = 0. For some point z = (x, 0) ∈ ℓ(θ), consider the rays ρ1, . . . , ρ4
emanating from z, such that the six wedges defined by these rays and ℓ(0) have
the desired number of voters; see Fig. 2. By varying θ and the point z, we can
ensure that the rays ρ1, . . . , ρ4 line up in such a way that, together with ℓ(θ),
they form three concurrent lines.

We also need the following easy-to-prove observation.

Observation 1. Let L be a set of three lines intersecting in a common point p∗,
and consider the six closed wedges defined by L. Any convex set S not con-
taining p∗ intersects at most four wedges, and the wedges intersected by S are
consecutive in the clockwise order.

Notice that Observation 1 considers all closed wedges intersecting S. Thus,
when S touches the boundary between two wedges, then both of them are taken
into account. Hence, it will not be a problem that Theorem 1 could assign points
on the boundary between two wedges to either one of them.

We now have all the tools to prove our new bounds on ε-nets for convex
ranges. The guarantee they give is slightly weaker than usual: where ordinarily

ρ1ρ2

ρ3 ρ4

(x, 0)

`(0)

α

β

γ

γα

β

(ii)(i)

φ1 W1

W ′
3W2

W ′
2W3

W ′
1

Figure 2: Illustrations for the proofs of Theorem 1 and Theorem 2.
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placing an ε-net for n points means a range not intersecting the ε-net can
contain at most εn (and thus at most ⌊εn⌋) points, our ceiling-based ε-nets only
guarantee that such a range contains at most ⌈εn⌉ points.

Theorem 2. Let εk be the smallest value such that any finite point set in R2

admits a weak εk-net of size k for convex ranges. Then for any set V of n ⩾ 8
points in general position, with n even, and any r1, r2, s ∈ N0, we can make a
ceiling-based ε-net for V with

ε =
1

2

(
1

εr1
+

2

εr2

)−1

+
1

2
εs.

Proof. (Sketch.) Let µ := 1
2

(
1

εr1
+ 2

εr2

)−1

. We apply Theorem 1 with β = γ =⌈
µ
εr2

n
⌉
and α = n

2 − 2β, which means α ⩽
⌊

µ
εr1

n
⌋
, giving us a set L of three

concurrent lines. To show that there exists a weak ceiling-based (εr1+2r2+3s+1)-
net N for V , number the wedges defined by L as W1,W

′
3,W2,W

′
1,W3,W

′
2 in

clockwise order, as in Fig. 2(ii). Let Vi ⊂ V and V ′
i ⊂ V be the subsets of

points assigned to Wi and W ′
i , respectively. We can assume without loss of

generality that |V1| = |V ′
1 | = α, and |V2| = |V ′

2 | = β, and |V3| = |V ′
3 | = γ. We

add the following points to our net N : (i) the common intersection of the lines
in L, denoted by p∗; (ii) an εr1-net for V1, an εr2-net for V2, and an εr2-net
for V3; (iii) for each of the three collections of three consecutive wedges—these
collections are indicated in red, green, and blue in Fig. 2(ii)—an εs-net. By
construction, the size of our net N is 1 + r1 + 2r2 + 3s. In the full paper we
show that N is a ceiling-based (µ+ 1

2εs)-net.

Note that ε0 = 1, since if the net is empty, a range can contain all n points
from V . Moreover, ε1 = 2/3, and ε2 = 4/7, and ε3 ⩽ 8/15 by the results of
Mustafa and Ray [15]. Using Theorem 2 we can then set up a recursion to obtain
ceiling-based ε-nets with k ⩾ 4 points, by finding the best choice of r1, r2, s such
that k = r1 + 2r2 + 3s+ 1. This gives ε4 ⩽ 1

2 , by setting r1, r2 = 0 and s = 1.
Hence, for even n, player P can always place four points to win at least as many
voters as player Q, as opposed to the five that were proven in earlier work. Note
that this also holds for n ⩽ 8, since then player P can simply pick four points
coinciding with four of the at most eight voters. A similar statement holds for
larger k when n ⩽ 8.

3 A quadtree-based strategy for player P
The algorithm. First, we construct a compressed quadtree T on the voter
set V . This gives a tree structure where each node ν is associated with a square
or a donut. We will refer to the square or donut associated to a quadtree node ν
as the cell of that node, and denote it by σ(ν). We assume that no voter in V
lies on the boundary of a cell σ(ν), which can be ensured by picking the square
corresponding to root(T ) suitably. Donut cells in a compressed quadtree do
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not contain voters, and their corresponding nodes are leaves in the compressed
quadtree. We denote the set of children of a node ν by C(ν). For a square
quadtree cell σ, we denote its four quadrants by ne(σ), se(σ), sw(σ), and
nw(σ).

We define the size of a square σ, denoted by size(σ), to be its edge length. Let
dist(σ1, σ2) denote the distance between the boundaries of two squares σ1, σ2.
The distance between two quadtree cells satisfies the following property. Note
that the property also holds when the cells are nested.

Observation 2. Let σ1 and σ2 be square cells corresponding to two nodes in T
such that σ1 and σ2 are intersected by a common horizontal (or vertical) line.
If dist(σ1, σ2) > 0 then dist(σ1, σ2) ⩾ min (size(σ1), size(σ2)).

The idea of our algorithm to generate the k points played by player P is as
follows. We pick a parameter m, which depends on k, and then we recursively
traverse the tree T to generate a set R of regions, each containing between
m+1 and 4m points. Each region R(ν) ∈ R will be a quadtree cell σ(ν) minus
the quadtree cells σ(µ) of certain nodes µ in the subtree rooted at ν. For each
region R ∈ R, we then generate a set of points that we put into P . The exact
procedure to generate the set R of regions is described by Algorithm 1, which
is called with ν = root(T ).

Algorithm 1 MakeRegions(ν,m)

Input: A node ν in T and a parameter m
Output: A pair (R, Vfree), where R is a set of regions containing at least m+1
and

at most 4m voters, and Vfree contains the voters in the subtree rooted
at ν

that are not yet covered by a region in R.

1: if ν is a leaf node then
2: Return (∅, {v}) if ν contains a voter v, and return (∅, ∅) otherwise
3: else
4: Recursively call MakeRegions(µ,m) for all children µ ∈ C(ν). Let R

be the union of the returned sets of regions, and let Vfree be the union
of the sets of returned free voters.

5: if |Vfree| ⩽ m then
6: Return (R, Vfree)
7: else
8: R(ν)← σ(ν) \

⋃
R∈R R ▷ Note that Vfree = R(ν) ∩ V .

9: Return (R∪ {R(ν)}, ∅)

We use the regions in R to place the points for player P, as follows. For
a region R := R(ν) in R, define σ(R) := σ(ν) to be the cell of the node ν for
which R was generated. For each R ∈ R, player P will place a grid of 3 × 3
points inside σ(R), plus four points outside σ(R), as shown in Fig. 3(i). (Some
points placed for R may coincide with points placed for some R′ ̸= R, but this
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(ii)(i) (iii)

σ(R)

σ(R)

se(R)

ne(R)

nw(R)

σ(B)

Figure 3: (i) The 13 points (in red) placed in P for a region R ∈ R. A block B
such that σ(B) is one of the quadrants of σ(R) is called a type-I block. (ii) A
region R (shown in green) and its blocks (that is, its child regions). The white
area is covered by regions that have been created earlier. Since sw(σ(R)) has
already been fully covered, sw(R) does not exist. (iii) The eight points placed
in P for a type-II block B ∈ B.

will only help to reduce the number of points placed by P.)
Note that each R ∈ R contains more than m voters and the regions in R

are disjoint. Hence, |R| < n/m and |P | < 13n/m. A compressed quadtree can
be constructed in O (n log n) time, and the rest of the construction takes O (n)
time. The following lemma summarizes the construction.

Lemma 1. The quadtree-based strategy described above places fewer than 13n/m
points for player P and runs in O (n log n) time.

An analysis of the number of voters player Q can win. To analyze the
number of voters that Q can win, it will be convenient to look at the “child
regions”of the regions in R, as defined next. Recall that for a region R := R(ν)
in R, we defined σ(R) := σ(ν). Let ne(R) := R∩ ne(σ(R)) be the part of R in
the ne-quadrant of σ(R). We call ne(R) a child region of R. The child regions
se(R), sw(R), and nw(R) are defined similarly; see Fig 3(ii) for an example.

Let B be the set of non-empty child regions of the regions in R. From now
on, we will refer to the child regions in B as blocks. Blocks are not necessarily
rectangles, and they can contains holes and even be disconnected. For a block
B ∈ B, we denote its parent region in R by pa(B), and we let σ(B) denote
the quadtree cell corresponding to B. For instance, if B = ne(pa(B)) then
σ(B) = ne(σ(pa(B))).

Note that at the end of Algorithm 1, the set Vfree need not be empty. Thus
the blocks in B may not cover all voters. Hence, we add a special root block B0

to B, with σ(B0) := σ(root(T )) and which consists of the part of σ(root(T ))
not covered by other blocks. Note that we do not add any points to P for B0.

Because we will later refine our strategy for player P, it will be convenient
to analyze the number of voters that Q can win in an abstract setting. Our
analysis requires the collection B of blocks and the set P of points played by P
to have the following properties.

8



(B.1) The blocks in B are generated in a bottom-up manner using the com-
pressed quadtree T . More precisely, there is a collection N(B) of nodes
in T that is in one-to-one correspondence with the blocks in B such that
the following holds:

Let B(ν) be the block corresponding to a node ν ∈ N(B). Then
B(ν) = σ(ν) \

⋃
µ B(µ), where the union is taken over all nodes

µ ∈ N(B) that are a descendant of ν.

We also require that the blocks in B together cover all voters.

(B.2) For each block B ∈ B, except possibly the root block B0, the point set P
includes the 13 points shown in Fig. 3(i) for the cell that is the parent of
σ(B), or it includes the eight points shown in Fig. 3(iii). In the former
case we call B a type-I block, in the latter case we call B a type-II block.
Note that in both cases P includes the four corners of σ(B).

Observe that (B.1) implies that the blocks B ∈ B are disjoint. Moreover, prop-
erty (B.2) implies the following. For a square σ, define plus(σ) to be the plus-
shaped region consisting of five equal-sized squares whose central square is σ.

Observation 3. Let q be a point played by player Q and let B ∈ B be a block.
If q wins a voter v that lies in σ(B), then q ∈ plus(σ(B)). Furthermore, if
q ∈ σ(B) then q can only win voters in plus(σ(B)).

It is easy to see that the sets B and P generated by the construction described
above have properties (B.1) and (B.2). We proceed to analyze the number of
blocks from which a point q played by Q can win voters, assuming the set B of
blocks has the properties stated above.

We will need the following observation. It follows from (B.1), which states
that a block B completely covers the part of σ(B) not covered by blocks that
have been created earlier in the bottom-up process.

Observation 4. If σ(B) ⊂ σ(B′) for two blocks B,B′ ∈ B then B′ ∩ σ(B) = ∅.
The following lemma states that the set P of points played by player P

includes all vertices of the blocks in B, except possibly the corners of the root
block B0.

Lemma 2. Let p be a vertex of a block B ∈ B. Then p ∈ P , except possibly
when p is a corner of σ(B0).

Proof. Property (B.1) states that the blocks in B are created in a bottom-up
order. We will prove the lemma by induction on this (partial) order.

Consider a block B ∈ B and let p be a vertex of B. Let s be a sufficiently
small square centered at p and let s1, s2, s3, s4 be its quadrants. There are two
cases; see Fig. 4.
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s1

s2s3

s4

p is a reflex vertex

one square (here σ1) is
contained in a region B′

added before B

p
s1

s2s3

s4

p is a convex vertex

left: p is a vertex of σ(B)
right: p is not a vertex of σ(B)

s1

s2s3

s4

σ(B) σ(B)

Figure 4: Illustration for the proof of Lemma 2.

If p is a reflex vertex ofB, thenB covers three of the four squares s1, s2, s3, s4.
The remaining square must already have been covered by a region B′ created
before B, by Observation 4. By induction, we may conclude that p ∈ P .

If p is a convex vertex, then exactly one of the four squares s1, s2, s3, s4, say
s1, is contained in B. If p is a corner of σ(B), then p ∈ P by property (B.2).
Otherwise, at least one square σi ̸= σ1, say σ2, is contained in σ(B). We can now
use the same argument as before: p is a vertex of a region B′ created before B,
and so p ∈ P by induction. Note that this not only holds when p lies on an edge
of σ(B), as in Fig. 4, but also when p lies in the interior of σ(B).

Now consider a point q played by player Q, and assume without loss of
generality that q ∈ σ(B0). We first show that q can win voters from at most
five blocks B ∈ B; later we will improve this to at most three blocks. We may
assume that the horizontal and vertical lines through q do not pass through
a vertex of any block B ∈ B. This is without loss of generality, because an
infinitesimal perturbation of q ensures this property, while such a perturbation
does not change which voters are won by q. (The latter is true because voters
at equal distance from q and P are won by player P.)

Define B(q) ∈ B to be the block containing q. We start by looking more
closely at which voters q might win from a block B ̸= B(q). Define V (B) :=
V ∩ B to be the voters lying in B. Let ρleft be the axis-aligned ray emanating
from q and going the left, and define ρup, ρright, ρdown similarly. Let e be the
first edge of B that is hit by ρright and define

Vright(B) := {v ∈ V (B) : v lies in the horizontal half-strip whose left edge is e}.

Define the sets Vup(B), Vdown(B), and Vleft(B) similarly. See Fig. 5(i), where
the voters from Vright(B) are shown in dark green, the voters from Vup(B) and
Vdown(B) are shown in orange and blue, respectively, and Vleft(B) = ∅. Because
P contains all vertices of B by Lemma 2, the only voters from V (B) that q can
possibly win are the voters in Vleft(B)∪Vup(B)∪Vright(B)∪Vdown(B). (In fact,
we could restrict these four sets even a bit more, but this is not needed for our
arguments.)
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LetBright ̸= B(q) be the first block in B hit by ρright, and defineBleft, Bup, Bdown

similarly for the rays ρleft, ρup, ρdown. The next lemma states that there is only
one block B ̸= B(q) for which q might be able to win voters in Vright(B),
namely Bright. Similarly, q can only when voters from Vleft(B) for B = Bleft,
and so on.

Lemma 3. If q wins voters from Vright(B), where B ̸= B(q), then B = Bright.

Proof. Suppose for a contradiction that q wins voters from Vright(B) for some
block B ̸∈ {B(q), Bright}. We distinguish two cases.

Case I: q ̸∈ σ(Bright).

Since the corners of σ(Bright) are in P by (B.2), the point q cannot win voters to
the right of σ(Bright). Hence, if q wins voters from Vright(B), then B must lie at
least partially inside σ(Bright). Now consider σ(B). We cannot have σ(Bright) ⊂
σ(B) by Observation 4. Hence, σ(B) ⊂ σ(Bright) and so Bright ∩ σ(B) = ∅. We
now have two subcases, illustrated in Fig. 5(ii).

• If the left edge of σ(B) is contained in the left edge of σ(Bright), then ρright
would hit B before Bright, contradicting the definition of Bright.

• On the other hand, if the left edge of σ(B) is not contained in the left edge
of σ(Bright), then dist(σ(Bright), σ(B)) ⩾ size(σ(B)) by Observation 2.
Since P contains the four corners of σ(B), this contradicts that q wins
voters from Vright(B).

Case II: q ∈ σ(Bright).

We cannot have σ(Bright) ⊂ σ(B(q)), otherwise B(q) ∩ σ(Bright) = ∅ by Ob-
servation 4, which contradicts q ∈ B(q). Hence, σ(B(q)) ⊂ σ(Bright) and
Bright ∩ σ(B(q)) = ∅.

Consider the square σ with the same size of σ(B(q)) and immediately to
the right of σ(B(q))); see the grey square in Fig. 5(ii). We must have σ ⊂
σ(Bright), otherwise the right edge of σ(B(q)) would be contained in the right
edge of σ(Bright) and so ρright would exit σ(Bright) before it can hit Bright. By
Observation 3, point q cannot win voters to the right of σ. Hence, B ∩ σ ̸= ∅.
Now consider the relative position of σ(B) and σ. There are two subcases.

σ(Bright) σ(Bright)

Two subcases for Case I
Left: q cannot hit Bright before B
Right: q cannot win voters in B

(i) (ii) σ(Bright)

Case II
q cannot win

voters behind σ

q σ(B) σ(B)

σ

σ(B(q))
e

Figure 5: (i) The sets of voters that q might be able to win in the green block B.
(ii) Illustration for the proof of Lemma 3.
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• If σ(B) ⊂ σ, then either the distance from q to B is at least size(σ(B)) by
Observation 2, contradicting that q wins voters from Vright(B); or σ(B)
lies immediately to the right of σ(B(q)), in which case ρright cannot hit
Bright before B.

• Otherwise, σ ⊂ σ(B). If σ(B) ⊂ σ(Bright), then Bright ∩ σ(B) = ∅ by Ob-
servation 4, contradicting (since σ ⊂ σ(B)) that ρright hits Bright before B.
Hence, σ(Bright) ⊂ σ(B). But then B ∩ σ(Bright) = ∅, which contradicts
that B ∩ σ ̸= ∅.

Lemma 3 implies that q can only win voters from the five blocks B(q), Bleft,
Bright, Bup, and Bdown. The next lemma shows that q cannot win voters from
all these blocks simultaneously.

Lemma 4. Point q can win voters from at most three of the blocks B(q), Bleft,
Bright, Bup, and Bdown.

Proof. First suppose that the size of σ(B(q)) is at most the size of any of the four
cells σ(Bleft), . . . , σ(Bdown) from which q wins voters. By Observation 4, this
implies that all four blocks Bleft, Bright, Bup, Bdown lie outside σ(B(q)). Then
it is easy to see that q can win voters from at most two of the four blocks
Bleft, Bright, Bup, Bdown, because all four corners of σ(B(q)) are in P by (B.2).
For instance, if q lies in the ne-quadrant of σ(B(q)), then q can only win voters
from Bright and Bup; the other cases are symmetrical.

Now suppose that σ(B(q)) is larger than σ(Bright), which we assume without
loss of generality to be a smallest cell from which q wins voters among the four
cells σ(Bleft), . . . , σ(Bdown). We have two cases.

Case I: q ̸∈ σ(pa(Bright)).

Note that σ(Bright) must either be the nw- or sw-quadrant of σ(pa(Bright)), be-
cause otherwise q ̸∈ plus(Bright) and q cannot win voters from Bright by Obser-
vation 3. Assume without loss of generality that σ(Bright) = nw(σ(pa(Bright))).
Then q must be located in the square of the same size as σ(Bright) and imme-
diately to its left. In fact, q must lie in the right half of this square. We now
define two blocks, σ and σ′ that play a crucial role in the proof. Their definition
depends on whether Bright is a type-I or a type-II block.

• If Bright is a type-I block, then we define σ′ := σ(Bright) and we define σ
to be the square of the same size as σ′ and immediately to its left. Note
that q ∈ σ, since q wins voters from σ(Bright). See Fig. 6(i).

• If Bright is a type-II block, then we define σ′ := nw(σ(Bright)) or σ′ =
sw(σ(Bright)) and we define σ to be the square of the same size as σ′

and immediately to its left. Whether we choose σ′ := nw(σ(Bright)) or
σ′ = sw(σ(Bright)) depends on the position of q: the choice is made
such that the square σ to the left of σ′ contains q. See Fig. 6(ii) for an
example. Since we will not use pa(pa(σ′)) in the proof, these two choices
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are symmetric as far as the proof is concerned—we only need to swap the
up- and down-direction.

We now continue with the proof of Case I. All statements referring to σ and σ′

will hold for both definitions just given.
Observe that σ(Bdown) ̸= σ, since otherwise σ(Bdown) ⊂ σ(B(q)), contra-

dicting by Observation 4 that q ∈ B(q). We will now consider three subcases.
In each subcase we argue that either we are done—we will have shown that q
wins voters from at most one of the blocks Bdown, Bleft, and Bup—or q cannot
win voters from Bdown. After discussing the three subcases, we then continue
the proof under the assumption that q does not win voters from Bdown.

• Subcase (i): σ(Bdown) = se(pa(σ)) and Bdown is a type-I block.
In the case all four corners of σ are in P . If q ∈ ne(σ) then q can only win
voters from Bup and if q ∈ se(σ) then q can only win voters from Bdown

(this is in addition to voters won from B(q) and Bright), and so we are
done.

• Subcase (ii): σ(Bdown) = se(pa(σ)) and Bdown is a type-II block.
If q ∈ se(σ) then q cannot win voters from Bup or Bleft, and so we are
done. Otherwise q cannot win voters from Bdown, as claimed.

• Subcase (iii): σ(Bdown) ̸= se(pa(σ)).
If Bdown ∩ pa(σ) ̸= ∅ then both Bdown and B(q) intersect pa(σ), and
both σ(Bdown) and σ(B(q)) contain pa(σ). But this is impossible due to
Observation 4. Hence, Bdown must lie below pa(σ). We claim that then q
cannot win voters from Bdown. The closest q can be to Bdown is when it
lies on the bottom line segment of σ. Hence, any voter in Bdown won by q
must be closer to that segment than to p3, and also than to p2. (See Fig. 6
for the locations of p2 and p3.) But this is clearly impossible. Hence, q
cannot win voters from Bdown.

Thus, in the remainder of the proof for Case I we can assume that q does not
win voters in Bdown. Hence, it suffices to show that q cannot win voters from

σ′ = σ(Bright)

σ

pa(σ)

(i)

p1

p2

p3

region where
q must lie σ(Bright)

σ

pa(σ)

(ii)

p1

p3

region where
q must lie

p2
σ′

Figure 6: Two cases for the definition of σ′ and σ, (i) when Bright is a type-I
block and (ii) when Bright is a type-II block. In the latter case σ′ and σ′ could
also lie in the bottom half of their parent regions, depending on where q lies.
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Bup and Bleft simultaneously. To this end, we assume q wins a voter vup from
Bup and a voter vleft from Bleft and then derive a contradiction.

Let eup be the first edge of Bup hit by ρup and let eleft be defined analogously;
see Fig. 7. Note that eup and eleft must lie outside pa(σ), otherwise we obtain
a contradiction with Observation 4.

Let ℓhor(q) be the horizontal line through q.

Claim. vleft must lie above ℓhor(q).

Proof of Claim. We need to show that the perpendicular bisector of q and
p2 will always intersect the left edge of pa(σ) above ℓhor(q). For the situation
in Fig. 6(i) this is relatively easy to see, since q lies relatively far to the left
compared to p2. For situation in Fig. 6(ii), it follows from the following argu-
ment. To win voters in Bright, the point q must lie inside the circle C through
p1, p2, p3. Now, suppose q actually lies on C and let α := ∠qzp2, where z is the
center of C. Thus the bisector of q and p3 has slope − tan(α/2). The result
then follows from the fact that 2 tan(α/2)− sinα > 0 for 0 < α < π/2.

For vup the situation is slightly different: q can, in fact, win voters to the right
of ℓvert(q), the vertical line through q. In that case, however, it cannot win vleft.

Claim. If q wins a voter from Bup right of ℓvert(q), then q cannot win a voter
from Bleft.

Proof of Claim. It follows from Observation 2 that eup must overlap with
the top edge of σ. Because the edges eup and eleft cannot intersect, one of them
must end when or before the two meet.

If eleft ends before meeting (the extension of) eup, then the top endpoint of
eup, which is in P by Lemma 2, prevents q from winning voters from Bleft.

So now assume that eup ends before meeting (the extension of) eleft. Then
the left endpoint of eup, which we denote by p4, is in P . Without loss of
generality, set p1 = (0, 1), p2 = (−1, 0) and p4 = (px, 1). Now, winning voters
from Bup means q must lie inside the circle Cup with center on eup that goes
through p1 and p4. Thus it has center c = (px

2 , 0). It must also lie in the circle
C through p1, p2, p3 so it can win voters from Bright. The line through the circle
centers makes an angle α := arctan px

2 with the line x = 0. The circles intersect
at p1, which lies on the line x = 0, so their other intersection point lies on the
line ℓ that makes an angle 2α with x = 0. If q is to win voters from both Bright

Bleft

Bup

p1
q

p2

eup

eleft

`hor

`vert

z
r

Figure 7: Definition of eleft and eup, and r and z.
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and Bup it must lie between ℓ and x = 0. Next we show that this implies that
q cannot win voters from Bleft.

We first show that if q = ℓ ∩ C, then p4 prevents q from winning voters
in Bleft. Because then p4 and q both lie on Cup, their perpendicular bisector
b(p4, q) is the angular bisector of ∠qcp4. Note that ∠qcp4 = 2α. Indeed, the
line through the circle centers makes a right-angled triangle together with y = 1
and x = 0, so the angle at c must be 1

2π − α. Hence, ∠qcp1 = π − 2α, and so
∠qcp4 = 2α. Thus, b(p4, q) makes an angle α with y = 1 and so it intersects the
line x = −2 at height y = 1− (2 + px

2 ) tanα which is 1− (2 + tanα) tanα. For
0 < 2α < π/2 this is below ℓhor(q) which lies at y = cos 2α. By the previous
Claim, this means that q cannot win voters from Bleft. Therefore, q cannot win
voters from Bleft.

To finish the proof, we must argue that q cannot win voters from Bleft either
when q ̸= ℓ ∩ C. It clear that moving q to the left helps to win voters in
Bleft, so we can assume that q ∈ C. Then it is not hard to see (by following the
calculations above) that the best position for q is ℓ∩C, for which we just showed
that q cannot win voters in Bleft. This finishes the proof of the claim.

We can now assume vleft lies above ℓvert(q) and vup lies to the left of ℓvert(q). We
will show that this leads to a contradiction. To this end, consider the rectangle r
whose bottom-right corner is q, whose top edge overlaps eup and whose left edge
overlaps with eleft; see Fig. 7. Then the left edge of r contains the top endpoint
of eleft and/or the top edge of r contains the left endpoint of eup. By Lemma 2,
we thus know that there is a point p4 ∈ P lying on the left or top edge of r.
Now assume without loss of generality that the top edge of r is at least as long
as its left edge, and let z ∈ eup be the point such that the qx − zx = zy − qy.
Now, if p4 lies on the left edge of r or to the left of z on the top edge, then p4
prevents q from winning vleft. On the other hand, if p4 lies to the right of z on
the top edge of r, then p4 prevents q from winning vup. So in both cases we
have a contradiction.

Case II: q ∈ σ(pa(Bright)).

Assume without loss of generality that σ(Bright) is one of the two northern
quadrants of pa(σ(Bright)). We cannot have q ∈ σ(Bright), since together with
size(σ(Bright)) < size(σ(B(q))) this contradicts that q ∈ B(q), by Observa-
tion 4. Hence, q ∈ nw(pa(σ(Bright))) and σ(Bright) = ne(pa(σ(Bright))).

If Bright is a type-I block then all corners of nw(pa(σ(Bright))) are in P ,
which (as we saw earlier) implies that q can win voters from at most three
blocks. If Bright is a type-II block, then we can follow the proof of Case I. (For
type-I blocks this is not true. The reason is that in the proof of the first Claim,
we use that Bleft does not lie immediately to the left of σ, which is not true
for type-I blocks in Case 2. Note that this still is true for type-II blocks in
Case 2.)

By construction, each block contains at most m < n/|R| voters, where R
is the set of regions created by Algorithm 1. Moreover, P places 13 points per
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region in R, and so k ⩽ 13|R| points in total. Finally, Lemma 4 states that Q
can win voters from at most three blocks. We can conclude the following.

Lemma 5. Let V be a set of n voters in R2. For any given k, the quadtree-based
strategy described above can guarantee that P wins at least

(
1− 39

k

)
n voters by

placing at most k points, against any single point placed by player Q.

A more refined strategy for player P. It can be shown that the analysis
presented above is tight. Hence, to get a better bound we need a better strategy.

Recall that each region R ∈ R contains between m + 1 and 4m voters.
Currently, we use the same 13 points for any R, regardless of the exact number
of voters it contains and how they are distributed over the child regions of R.
Our refined strategy takes this into account, and also incorporates the ε-nets
developed in the previous section, as follows. Let nR denote the number of
voters in a region R ∈ R. We consider two cases, with several subcases.

• Case A: m < nR ⩽ 16
11m. We place eight points in total for R, as in

Fig. 3(iii). We also add between two and six extra points, depending on
the subcase.

– If m < nR ⩽ 7
6m, we add two extra points, forming a 4

7 -net.

– If 7
6m < nR ⩽ 5

4m, we add three extra points, forming a 8
15 -net.

– If 5
4m < nR ⩽ 4

3m, we add four extra points, forming a 1
2 -net.

– If 4
3m < nR ⩽ 7

5m, we add five extra points, forming a 10
21 -net.

– If 7
5m < nR ⩽ 16

11m, we add six extra points, forming a 11
24 -net.

One can show that in each subcase above, playerQ wins at most ⌈2m/3⌉+1
voters from inside R, due to the (ceiling-based) ε-nets. For example, in the
first case Q wins at most (7m/6) · (4/7) = 2m/3 voters, in the second sub-
caseQ wins at most (5m/4)·(8/15) = 2m/3 voters, etcetera. Furthermore,
one easily verifies that in each subcase we have number of voters in R

number of points placed
> m/10.

• Case B: 16
11m < nR ⩽ 4m. We first place the same set of 13 points as in

our original strategy. We add two or four extra points, depending on the
subcase.

– If 16
11m < nR ⩽ 2m we add two extra points, as follows. Consider the

four child regions of R. Then we add a centerpoint—in other words,
a 2

3 -net of size 1—for the voters in the two child regions with the
largest number of voters.

– If 2m < nR ⩽ 4m we add four extra points, namely a centerpoint for
each of the four child regions of R.
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Note that in both subcases, Q wins at most 2m/3 voters from any child
region. For the child regions where we placed a centerpoint, this holds
because a child region contains at most m voters by construction. For
the two child regions where we did not place a centerpoint in the first
subcase, this holds because these child regions contains at most 2m/3
voters. Furthermore, in both subcases number of voters in R

number of points placed
> 16

165m.

Lemma 6. Let V be a set of n voters in R2. For any given k, the refined

quadtree-based strategy can guarantee that P wins at least
(
1− 20 5

8

k

)
n−6 voters

by placing at most k points, against any single point placed by player Q.

Proof. The proof for the original quadtree-based strategy was based on two
facts: First, player Q can win voters from at most three blocks B ∈ B; see
Lemma 4. Second, any block B ∈ B (which was a child region of some R ∈ R)
contains at most m voters.

In the refined strategy, we use a similar argument, but for a set Bnew of
blocks defined as follows. For the regions R ∈ R that fall into Case A, we
put R itself (instead of its child regions) as a type-II block into Bnew. For the
regions R ∈ R that fall into Case B, we put their child regions as type-I blocks
into Bnew. By Lemma 4, Q can win voters from at most three blocks in Bnew.
Moreover, our refined strategy ensures that Q wins at most ⌈2m/3⌉+ 1 voters
from any B ∈ Bnew. Thus Q wins at most 2m+ 6 voters in total.

Finally, for each R ∈ R we have number of voters in R

number of points placed
> 16

165m. Hence, m < 165
16kn

and so Q wins at most 165
8k n+ 6 =

20 5
8

k n+ 6 voters.

4 Conclusion

We studied the discrete one-round Voronoi game where player P can place k > 1
points and player Q can place a single point. We improved the existing bounds
on the number of voters player P can win. For small k this was done by proving
new bounds on ε-nets for convex ranges. For large k we used a quadtree-based
approach, which uses the ε-nets as a subroutine. The main open problem is:
Can player P always win at least half the voters in the L2-metric by placing
less than four points?

The discrete one-round Voronoi game can also be studied in the L1-metric,
instead of in the L2-metric as we did here. Our quadtree-based strategy also
works well in the version of the problem, as we show in the full version of our
paper.
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