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ABSTRACT
Programming is a complex task that requires the development of

many skills including knowledge of syntax, problem decomposition,

algorithm development, and debugging. Code-writing activities are

commonly used to help students develop these skills, but the dif-

ficulty of writing code from a blank page can overwhelm many

novices. Parsons problems offer a simpler alternative to writing

code by providing scrambled code blocks that must be placed in

the correct order to solve a problem. In the 16 years since their

introduction to the computing education community, an expansive

body of literature has emerged that documents a range of tools,

novel problem variations and makes numerous claims of benefits

to learners. In this work, we track the origins of Parsons problems,

outline their defining characteristics, and conduct a comprehensive

review of the literature to document the evidence of benefits to

learners and to identify gaps that require exploration. To facilitate

future work, we design empirical studies and develop associated

resources that are ready for deployment at a large scale. Collec-

tively, this review and the provided experimental resources will

serve as a focal point for researchers interested in advancing our

understanding of Parsons problems and their benefits to learners.
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1 INTRODUCTION
Programming requires mastering a number of distinct but prerequi-

site skills, which presents challenges for both learners and teachers.

Students must develop familiarity with language syntax and con-

structs, learn how to decompose problems and design algorithms,

identify and apply useful programming patterns, and develop an

ability to read and comprehend code at different levels of complex-

ity [144, 228]. Programming courses often expect students to learn

these skills from writing code [92], but the complexity of this task

can overwhelm novice students [124]. Computing educators and re-

searchers have thus spent significant effort exploring a wide range

of pedagogical approaches and activities to help students develop

these necessary skills [18].

One such activity, originally introduced by Dale Parsons and

Patricia Haden in 2006, aimed to provide an engaging puzzle-based

experience that allowed for the modelling of good code and that

facilitated immediate feedback [177]. So called “Parsons problems”
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presented the lines of code comprising a solution in a scrambled

order and tasked students with rearranging them into the correct or-

der. Compared to writing code into an initially blank editor, which

can often be overwhelming for novices, Parsons problems greatly

constrain the problem-solving space while at the same time expose

students to syntax and common code structures and patterns. Thus,

they offer a simpler, scaffolded alternative to more authentic code

writing tasks. Figure 1 shows an example of a typical Parsons prob-

lem in Python, created using the editor by Codio
1
which builds on

the popular js-parsons tool (introduced in [109]), where solving the

puzzle entails dragging and dropping the blocks into the correct

order and with the correct indentation. Line-based feedback, which

highlights code blocks currently with the wrong relative order or

indentation, is shown.

Since their initial introduction more than 16 years ago, Parsons

problems have been widely adopted, adapted and studied. In partic-

ular, researchers have explored many novel variations of Parsons

problems and have developed a wide variety of tools for their deliv-

ery [4, 11, 34, 82, 96, 106, 108, 109, 129, 225]. A large and growing

body of work now documents their use, efficacy, and limitations in

computing classrooms around the world. However, there have been

no large scale efforts to organise this literature and no large scale

attempts at replication to verify these claims. As their popularity

continues to grow, we see a pressing need for a comprehensive

review of research on Parsons problems to understand how they

have been studied in educational settings, what type of evidence

has been presented for their effectiveness, and what gaps exist. This

work will be of benefit to researchers, in helping them chart and

focus future research directions, as well as to educators who are

looking to adopt effective pedagogical approaches in the classroom.

Figure 1: Example Parsons problem code blocks for the classic
‘Rainfall’ problem, showing feedback on line ordering

1
https://codio.github.io/parsons-puzzle-ui/

In this report, we explore the origins and theoretical underpin-

nings of Parsons problems, including an interview with Dale Par-

sons, and we document their defining characteristics. This provides

a framework that serves to capture the many variations of Parsons

problems that have been proposed and deployed. We then conduct

a rigorous review of the literature, involving examination of more

than 1,000 articles from different sources, and explore the research

contexts and problem features that have been studied, the specific

questions that have driven the existing research, and the quality

and limitations of the evidence put forth in support of the bene-

fits to learners. Through this review, we identify and present the

main gaps that exist in the literature with respect to the contexts,

research themes, and evidence presented, and we publish a list of

research questions that require further exploration. As research

interest in Parsons problems and their many variations continues

to grow, our aim is that this review will serve as a blueprint for

future research efforts. To facilitate work that can address some of

these shortcomings, we have selected a subset of the open research

questions and designed materials and protocols for their investi-

gation which we have refined through small-scale pilot studies.

We propose a replicable study design, provide associated resources

that are ready for immediate use, and invite the broader computing

education community to make use of these experimental resources

to explore the efficacy of Parsons problems on a multi-institutional

and multi-national scale.

1.1 Report structure
In Section 2, we investigate the origins of Parsons problems and

explore their defining characteristics. We report the results of an

interview with Dale Parsons (the full transcript of which appears in

Appendix B), review background literature both within and outside

of computing, and examine several related theories that underpin

and help to explain their educational benefits. In Section 3, we de-

fine the research questions that drove our review of the literature,

and we carefully describe our approach to this review, including

validation of our chosen search terms and constructing our inclu-

sion and exclusion criteria. The results of the literature review are

then presented in Section 4, organised around our primary research

questions. We classify the contexts in which studies have been

conducted and the features and variations of Parsons problems that

have been investigated, thematically analyse the research ques-

tions explored by the reviewed literature, and critically analyse

the evidence that has been documented for the benefits of Parsons

problems. In Section 5, we identify gaps that emerged from the

literature review and highlight promising research directions. In

Section 6, we describe the experimental resources and protocols we

have developed and for which we invite community engagement.

These resources target important questions where further research

is needed at scale, including investigation of the effects of solving

Parsons problems with and without distractors, and exploring the

benefits and challenges of solving Parsons problems compared with

writing the equivalent code. To simplify the multi-institutional,

multi-national deployment of these experimental resources, we

leverage the open-source ebook, Runestone [63], which is a robust
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platform for delivery of Parsons problems and for running experi-

ments at scale. Finally, the report concludes with a discussion of

future directions in Section 7.

2 DEFINING PARSONS PROBLEMS
We begin this section by providing some historical context, initially

through a conversation with the eponymous author of the original

paper and then by considering similar kinds of rearrangement

tasks and their uses in education and beyond. We then propose

a taxonomy with respect to the typical characteristics of Parsons

problems which can be used to describe their many variations and

to differentiate them from other educational activities. Finally, we

highlight how our work differs from an earlier literature review

on the topic, and we outline several key learning theories that

commonly underpin Parsons-focused research.

2.1 Origins
The origin of Parsons problems, as they are now commonly named,

can be traced back to the 2006 paper [177] published by Dale Par-

sons and Patricia Haden fromOtago Polytechnic, New Zealand. The

paper, ‘Parson’s Programming Puzzles: A Fun and Effective Learn-
ing Tool for First Programming Courses’, was presented at the Aus-

tralasian Computing Education (ACE) conference, held that year

in Hobart, Australia. In this seminal work, Parsons and Haden ac-

knowledged the importance of practice for mastering programming

syntax and semantics, but they observed two problems with typical

drill exercises. The first was that such problems tend to be boring,

making it difficult for students to persist with practice. The second

was the challenge of isolating the essential aspects of syntactic

practice from the more conceptual problem solving elements of

programming tasks. They proposed the idea of Parsons problems to

help students memorise syntactic constructs while learning about

algorithms and logical flow, and also to be engaging so that students

are motivated to continue practicing. Overall, the design of these

puzzles as described by Parsons and Haden adhered to five princi-

ples: maximise engagement, constrain the logic, permit common

errors, model good code and provide immediate feedback.

Dale Parsons retired from Otago Polytechnic in 2021 after 30

years working as a lecturer in the School of Information Technology

(in 2006, this was the School of Information Technology and Elec-

trotechnology). To help us better understand the origins of Parsons

problems, from the design of the activities to the motivations for

publishing the work, Dale Parsons kindly agreed to be interviewed

for this research. We recorded a thirty minute interview with her

on 19th July, 2022.

We summarize below some of the main insights and highlights of

the interview, and attach the full interview transcript in Appendix B.

(1) The apostrophe – There was never supposed to be an apos-

trophe in the name ‘Parsons Programming Puzzles’. The

original title was just ‘Programming Puzzles’, but then very

late the night the paper was due, they changed the name to

‘Parson’s Programming Puzzles’ using search-and-replace.

This led to the accidental addition of an apostrophe to ‘Par-

son’s’ that was not supposed to be there, but due to the late

hour the mistake went unnoticed.

(2) Alliteration – Haden came up with the idea of adding “Par-

sons” to “Programming Puzzles” because she liked allitera-

tion.

(3) Partnership – Parsons created the puzzles to use in her course,
but Haden was the one that saw they would make a great

paper, and this was the start of a perfect partnership for

many years.

(4) Errors – Parsons created the puzzles based on common errors

she had observed students making every year in the hope

that the puzzles would help students recognize the errors.

(5) Motivation – The puzzles took off more with struggling stu-

dents; they always wanted more of them. They were also

motivating for students as students found them fun to do.

(6) Timing – Parsons would like to see Parsons Programming

Puzzles introduced early on for novices. She was primarily

using them post-lab and for assessments. She thought early

introduction would be good because it might be difficult for

a student to get a complete program written, but with the

puzzles, they could feel they had achieved something and

would feel better about their code.

(7) Impact – When Parsons and Haden presented the paper at

ACE back in 2006, they had no idea at the time that their

idea would gain such traction nor that others would build

upon it.

2.2 Earlier Examples of Arrangement Tasks
Parsons problems involve the rearrangement of blocks, and are

just one of many examples of arrangement-style tasks used in

computing and education contexts. One of the earliest examples of

arrangement tasks dates back to the concept of picture sequence

arrangement used as part of intelligence tests. Bowler wrote an

article in 1917 [26] discussing a picture arrangement test designed

to measure logical judgments that was tested on 500 school children

in Brussels by Dr. O. Decroly. This original test consisted of eleven

series of pictures taken from children’s books, where each series

tell a complete simple story when arranged in the right order. A

collection of pictures were given to the test subject (a child) in a

random order who would then attempt to arrange them in a way

that they tell a continuous story. The original goal was to find a

series of pictures that adapted to different ages. The purpose of such

tests was to approximately indicate the mental age of the test-taker.

The Picture Arrangement task was used in a series of intelligence

tests for US Army recruits in World War I [232]. David Wechsler,

who had administered psychological intelligence tests duringWorld

War I, borrowed the Picture Arrangement task (and others) to cre-

ate the Wechsler scales of intelligence [224] in 1939. The Wechsler

scales consisted of a collection of subtests, one of which was a

picture-sequencing task. The picture-sequencing task existed until

the Weschler-IV when it was dropped [13]. Since those original

picture sequencing tasks used in intelligence tests, the idea of se-

quencing items has been adapted to multiple disciplines including

Language Arts (storytelling), Mathematics (proofs), and Computer

Science (Parsons problems).

In the broader context of computing, striving for order has been

a prevalent objective. The research into sorting and searching al-

gorithms was fundamental to the evolution of computer science,
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where algorithms such as merge sort changed the field. Sorting

things was not just a task for the computer, but also for program-

mers. Whoever dropped a pile of punch cards would have to reorder

them painstakingly back into the precise order for the program

to run correctly. When working with punch cards, drafting pro-

grams on paper first was relatively common to verify the logic of

the program before the “holy implementation”. Ordering has been

prevalent also in early post-punch card programming languages

– as an example, the earliest versions of BASIC mandated the ex-

istence of line numbers, which programmers would then use to

maintain the flow of the program.

The importance of ordering has been present also in computing

education and teaching programming. Many of the working group

members have recollections of having to sort paper snippets of

code during their studies. Reaching out to a retired professor of one

of the working group members who used such tasks in the 1980s

to ask where the inspiration for creating paper-based code sorting

tasks came from, resulted in the retired instructor responding with:

I guess I was inspired by the early research in construct-
ing computer models of failed math problem-solving.
(The researchers wanted to model the lattice of com-
mon failed solution paths so you could give meaning-
ful coaching based on the student’s position in the lat-
tice.) It turns out that failure was mostly due to get-
ting some necessary step out of proper order and not
due to some conceptual failure. Right step at the wrong
time or wrong step at the right time. That is, someone
might have a perfectly good concept of “carry” when
discussing the addition of a column of numbers, but if
the student initiates the carry at the wrong place in the
sequence, the solution fails. It’s worse in CS, where one
out-of-order step can destroy your whole world. (Walter

Maner, personal communication, May 8, 2022)

Recollections from other working group members included hav-

ing Teaching Assistants (TAs) bring paper-based code fragments

into classes, as well as creating such fragments themselves. The

use of paper code fragments in teaching has been previously dis-

cussed in an article at least by Haatainen et al. [93], who used paper

fragments in support sessions for struggling students.

2.2.1 Outside CS. The idea of sequencing fragments of a solu-

tion are used in at least three other disciplines: Language Arts (in

reading), Foreign Language Acquisition, and Mathematics. Lan-

guage Arts adapts the original Picture Arrangement task by ask-

ing students to arrange pictures or story fragments into a tempo-

ral order [198]. There are also standardized assessments for this

skill [103]. Interestingly, a recent line of research uses program-

ming, specifically robots, to help teach sequencing to young stu-

dents [121, 122].

Duolingo
2
is a tool for learning a foreign language. One type

of puzzle it provides is to give a sentence in one language and

scrambled words in another language, possibly with distractor

words. The learner arranges selected words to form a sentence

with the same meaning. The original sentence could be in either

2
https://www.duolingo.com/

the language the learner already knows or the language the learner

is learning.

Within Mathematics, the task of sequencing items most com-

monly occurs with proofs, specifically proofs in discrete math.

There are two prominent tools that support students sequenc-

ing discrete math proof statements, MathsTiles [23–25] and Proof

Blocks [180, 181].

MathsTiles was created as part of the Intelligent Book project

and was originally a web-based homework tutor for discrete math-

ematics [23]. MathsTiles presents a block-based interface, similar

to block-based programming editors, of composable tiles each of

which can contain an arbitrary piece ofmathematics or logic written

by the teacher. Students then use the tiles to construct proofs in the

area of number theory that are analysed with the Isabelle/HOL the-

orem prover [24]. MathsTiles allow students to have many answer

fragments on the canvas at the same time and does not constrain

the order in which a proof is written. Billingsley and Robinson

[25] conducted a user study of MathsTiles where an introduction

to the system and six proof exercises was made publicly available,

and its use over three weeks in July 2006 was examined. A range

of users were asked to try the system, including undergraduate

students, postgraduate tutors of discrete mathematics, and other

interested parties. While 83 people accessed the website, only 19

people accessed the introductory material, and only three people

completed five of the six proofs (no one completed all six proofs).

In these limited findings, users were only successful if they were

provided a small instructor-procured subset of blocks.

Proof Blocks is implemented within PrairieLearn [213]. The orig-

inal paper [180] describes the tool and its implementation. Proof

Blocks is a tool which enables students to construct mathematical

proofs by dragging and dropping prewritten proof lines into the

correct order. Proof Blocks problems can be graded completely au-

tomatically. A key feature of Proof Blocks is in the specification

of the correct answer, which allows for specifying a dependency

graph of the lines of the proof, so that any correct arrangement

of the lines can receive full credit. The follow-on paper [181] de-

scribes the use of Proof Blocks as exam questions and provides

statistical evidence that Proof Blocks are easier than written proofs.

The results also indicate that Proof Blocks problems provide about

as much information about student knowledge as written proofs.

It should also be noted that WeBWorK, an open-source online

homework system for math and science courses [216] supported

by the Mathematical Association of America (MAA) and the US

National Science Foundation (NSF), contains a Draggable Proof

problem type that supports a JavaScript-enabled collection of drag

and drop statements that can be auto-graded.

2.3 Definition and Characteristics
Parsons problems are tasks where the user needs to construct a

solution by placing fragments into a correct order. In computer

science education, the fragments are typically source code lines

while the solution is a working computer program. The presentation

of a Parsons problem to students includes a problem statement that

specifies solution criteria, and a limited set of fragments that they

then need to arrange into a correct order. Initially, fragments are

typically presented in a separate area from a solution area. Students

https://webwork.maa.org/wiki/DraggableProofs
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Characteristic

Purpose and Use Parsons problems are utilized in instruction and have a pedagogical purpose. They are often used as a

part of a course. They can be used both to scaffold learning (more common) and for assessment (less

common).

Problem Statement Parsons problems feature a problem statement that is typically a description of a program that needs

to be reconstructed. There is always an objective for the students, and reaching the objective is often

verifiable. The problem statements are focused and have explicit goals (i.e. Parsons problems are not

open-ended).

Atomicity A limited number of fragments are provided. Each fragment typically represents a line but a fragment

could contain more than one line. Although less common, fragments can also be elements of a line.

Problem Space The problem space is constrained by limiting the number of available fragments and generally not

allowing their reuse. However, Parsons problems can also feature distractor fragments that should not

be used as well as possibilities for completing fragments (by e.g. providing values to variables or typing

into part of the fragment).

Constructing a Solution Parsons problems typically begin with an empty solution space into which the fragments are positioned

in order. However, some Parsons problems only use only a single area with the objective of reordering

the fragments within that area.

Correctness and Feedback Parsons problems typically have a correct solution specified by clear criteria. They can often be

automatically graded. Some systems require that the student solve the problem in a specified number

of moves to be considered correct or in a set number of attempts. Parsons problems that are used

for practice typically provide immediate feedback on the learner’s solution. There are two types of

feedback: execution-based or line-based. Execution-based feedback is provided by executing the code,

while line-based feedback is typically given by highlighting one or more fragments to indicate they are

wrong or in the wrong place.

Modality and User Interface Parsons problems are commonly worked on in an interactive drag-and-drop environment. This allows

the use of them both within a browser and a mobile environment. Fragments in Parsons problems also

often snap into place when moved, disallowing gaps between fragments. The fragments may feature

locations into which text can be input (e.g. variable values). Some environments execute constructed

programs in a text-based environment and show the output line by line, while other environments

feature graphical output (e.g. Turtle graphics).

Syntax When Parsons problems are related to a programming language, they commonly use the syntax

from that programming language. A program represented using Parsons problems can be syntactically

incorrect. The syntactically incorrect candidates solutions manifest primarily in two ways: (1) fragments

that are ordered so that the resulting syntax is incorrect, and (2) distractors that are syntactically

incorrect.

Scaffolding Parsons problems are a type of scaffolding for learning programming. Parsons problems can include

additional scaffolding as well. (e.g. In the Runestone ebook platform when students ask for help on a

Parsons problem the system can remove a distractor or combine fragments.)

Fit and Expected Time on Task From the instructional perspective, Parsons problems are intended to be helpful for student learning.

This is reflected in the design of the problems. The presented problems should be appropriate to the

current level of the learner; solving a problem typically requires from around a minute to less than 10

minutes depending on the number of fragments and complexity of the problem.

Table 1: Characteristics of Parsons Problems

then arrange the fragments into a correct order within the solution

area.

In Table 1, we present a set of characteristics that are often

present in Parsons problems. The characteristics can be used to

describe, if not define, typical examples of Parsons problems and

distinguish them from other approaches to programming, such as

(1) Block-based programming, and (2) Text-based programming.
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Block-based programming differs from Parsons problems in

terms of the problem statement, the problem space, and the user

interface. Typically block-based programming environments are

open ended, while Parsons problems are not. Parsons problems

typically also have a very limited set of available fragments, while

Block-based programming environments provide a broader range of

options to choose from. Finally, in Block-based programming, there

are usually visual cues in the interface to indicate and constrain

how certain blocks fit together (e.g. how a conditional statement

could be constructed).

Text-based programming differs from Parsons problems in terms

of atomicity, modality, and user interface, and expected time on task.

In text-based programming, one writes code character-by-character

(often supported by a programming environment), but there are

no larger fragments. While Parsons problems are typically fast to

complete, on the order of minutes (if not faster), completing a pro-

gram using text-based programming in introductory programming

courses may take hours or even days, depending on the complexity

of the problem statement.

The characteristics in Table 1 can be used to describe the space

of variations of Parsons problems. Parsons problems typically have

a stated objective, namely the problem statement, and a limited

problem space that facilitates construction towards that objective.

However, variants of Parsons problems can be defined to further

limit the problem space, thus providing additional scaffolding, or to

expand the problem space, often requiring the learner to navigate

through known difficulties.

For example, one highly-constrained variation of Parsons prob-

lems involves indentation, in which the lines of code are provided

in the correct order and a solution is constructed by moving blocks

horizontally to the correct level of indentation [175]. The problem

space is expanded by requiring blocks to be placed in the correct

order vertically as well as to be indented horizontally [109].

Another popular variation of Parsons problems increases the

problem space by adding distractor blocks, which are extra frag-

ments that are not needed in a correct solution. Distractors can

be shown visually paired with each correct fragment [34, 43, 69]

or randomly distributed among the correct fragments. This ‘visual

pairing’ of correct and distractor blocks is generally recommended,

as it can be overwhelming for students when a large number of dis-

tractors are randomly intermixed with correct options [43]. Parsons

and Haden hypothesized that distractors would help learners learn

to recognize common syntax and semantic errors. Distractors can

also be used to make a Parsons problem more difficult and harder

to game.

Faded Parsons problems [225] further expand the problem space

by providing some incomplete blocks where the student needs to

type missing code within the block to complete the solution. These

problems are a variation of the atomicity characteristic, where

blocks may have editable components. By limiting the amount

of code-writing within selected blocks, faded Parsons problems

provide one approach to scaffold a transition from block ordering

to code writing. In an alternative approach to support code writ-

ing, students may start with a code-writing problem while giving

them an option to fall back to a Parsons problem should they face

difficulty in constructing the solution [106].

Design-level Parsons Problems are a variation of the syntax

characteristic, where the blocks represent abstract steps at the

design level rather than low-level source code or pseudocode. Such

problems can be used to help students plan solutions at a high-level

before they begin implementation with code, or simply to develop

problem solving skills and gain familiarity with design strategies

[82, 83].

The characteristics in Table 1 can also be used as the basis for

formulating novel variations that could serve as the focus of fu-

ture study. For example, varying both the problem space and the

correctness and feedback characteristics, one could imagine style-

based Parsons problems that feature multiple distractor fragments

with poor code style (e.g. misleading variable names or indentation)

where students are tasked with identifying and using the fragments

that follow good style conventions.

2.4 Prior literature review on Parsons problems
Du, Luxton-Reilly, and Denny conducted a literature review on

research related to Parsons problems in 2020 [48], which to the best

of our knowledge is the only published peer-reviewed literature

review on the topic. They focused on three research questions

related to 1) motivations for the use of Parsons problems over other

types of learning activities, 2) the different features and variations

of Parsons problems that have appeared in the literature, and 3)

how Parsons problems have been used in computing education.

Their first research question related to why Parsons problems

are used, and they found four main motivations for using Parsons

problems. First, they found that one claimed advantage of Parsons

problems is to identify student difficulties. In traditional code writ-

ing exercises, it can be hard to separate student’s syntactic and

semantic issues. Other claimed benefits of Parsons problems are

learning from immediate feedback, improving student engagement

and reducing cognitive load.

There have been multiple variations of Parsons problems. In

their review, they found that the most commonly used features that

give rise to variations are related to scaffolding (e.g. whether code is

correctly formatted or whether students have to format it), distrac-

tors (e.g. no distractors, paired distractors, jumbled distractors), and

feedback (e.g. whether feedback is line-based or execution-based).

Other rarer variations they identified include, for example, faded

Parsons problems and Parsons problems where only part of the

code needs to be organized.

Lastly, Du et al. studied how Parsons problems have been used in

computing education. They identified two main use cases – paper-

based exams and as a tool for student learning (e.g. using Parsons

problems as regular practice exercises).

2.5 Related Theories
Experts have acquired extensive knowledge through thousands

of hours of practice which affects what they notice and how they

organize, represent, and interpret information in their environment

[66, 204]. This, in turn, affects their ability to identify patterns

and solve problems [89]. Thus, practice is crucial for learning, but

it must be the right kind of practice [65]. Practice must include

feedback and challenge the learner, but not be so difficult that

it overwhelms the learner [27]. Learning is optimized when the



Parsons Problems and Beyond ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

learner is kept in Vygotsky’s Zone of Proximal Development [219],

which means that they are given problems that they can not solve

independently but can solve with assistance. Writing code from

scratch often takes an unpredictable amount of time and learners

with no prior experience often need help and better feedback than

compiler errors or incorrect results [19, 187]. Parsons problems can

provide practice with immediate feedback and the difficulty of the

problem can be adapted to keep the learner in the Zone of Proximal

Development. Research on Parsons problems draws from theories

and work on cognitive load, worked examples, self-efficacy, as well

as metacognition and self-regulation.

2.5.1 Cognitive Load Theory. John Sweller developed cognitive

load theory in the late 1980s and has continued work on the theory

for decades [172, 173, 207, 211]. The theory describes three types of

memory: sensory memory, working memory, and long-term mem-

ory. Learning occurs when new information is processed in working

memory and then added to knowledge representations (schemas)

in long-term memory [27]. Working memory has a limited capacity

[159], and if that capacity is needed in its entirety to process new

information, it cannot be used to modify or build schemas which is

necessary for long-term retention of new information. Instructional

materials can be designed to maximize the cognitive load dedicated

to building schemas.

The amount of cognitive load a learner experiences is based on

three components: the difficulty of the material or task, the way

the instruction is designed, and strategies used for constructing

knowledge. The difficulty of the material or task depends on the

learner’s prior knowledge and the complexity of the task [49]. Par-

sons problems, as a type of code completion problem, should have

a lower cognitive load than a problem that requires the learner

to write the code from scratch, because they constrain the prob-

lem space [218]. Moreover, Parsons problems transform the task of

creating programs by removing the necessity of remembering the

programming language syntax, which further decreases cognitive

load
3
.

2.5.2 Worked Examples. One of the original goals for Parsons prob-
lems was to expose students to an expert’s solution to a problem

[177], which is also called a worked example [36]. The worked

example effect, in which learning is improved by studying worked

examples versus solving problems, is one of the most well known

effects predicted by Cognitive Load Theory [8, 208]. Research has

been conducted on worked examples in math [10, 37, 210, 214, 236],

physics [192, 194, 223] and computer programming [166, 179, 235].

Worked examples are particularly useful for initial cognitive skill

development, such as in learning to program [191]. However, stu-

dents do not always learn from worked examples [53], as learning

requires cognitive effort. The worked example effect decreases and

can even reverse as expertise increases [209]. This is called the

expertise reversal effect. Students learn best when worked exam-

ples are interleaved with practice problems that are similar to the

worked examples [215]. Another argument in favor of worked ex-

amples is that students prefer learning by studying examples versus

3
If the goal of instruction is to teach how to compose a working solution, learning

and remembering the programming language syntax can be considered extraneous to

learning. Few papers make an explicit distinction between the types of cognitive load

– intrinsic or extraneous – being measured or predicted [50].

learning by reading text [137]. Parsons problems have been used as

a type of interleaved practice after worked examples [60, 104, 105].

2.5.3 Self-Efficacy. Self-efficacy is the belief that you can succeed

in a specific situation or accomplish a task [9]. People eliminate

possible vocations from consideration if they do not believe that

they can succeed in those fields [9]. Students who encounter errors

while programming experience negative emotions that impact their

self-efficacy [124]. High self-efficacy improves persistence in a field,

while low self-efficacy increases the odds that students will fail

or change majors [52]. Negative experiences in courses tend to

affect women more than men [51, 154] which may be one reason

that women are more likely to leave majors than men, even if

they have better grades than the men who stay [120]. Students

from underrepresented groups tend to have less prior experience

in computing [21, 153, 154, 221], which makes them more at risk

for failure. One argument for using Parsons problems is to try to

improve student success on early programming tasks in order to

increase their self-efficacy, which could increase the diversity of

computing students in general.

2.5.4 Metacognition and Self-Regulation. Another motivation for

using Parsons problems could be for scaffolding novice program-

mer metacognition [186]. Metacognition is, simply put, thinking

about thinking. Self-regulation is a metacognitive skill that refers

to a learner’s ability to reflect on their own learning process, un-

derstand it, and change it if necessary. Setting goals, motivation,

process inspection, and evaluation are all key concepts. One com-

mon argument about learning programming is that it is so difficult

to master the cognitive skills (learning new syntax, thinking compu-

tationally, etc.) that metacognitive skills are often underdeveloped

or not present in the domain [140, 182, 184]. Although multiple

recent attempts have been made to increase metacognition with

novice programmers [45, 185], only a few papers focus on the ef-

fect of Parsons problems on novice programmer metacognition

[82, 83, 183].

3 SYSTEMATIC LITERATURE REVIEW
Reviews of the research literature in computing education are com-

mon. An excellent summary of reviews conducted over the past

20 years that categorize or evaluate computing education litera-

ture was recently provided by Heckman et al. [99]. A systematic

literature review is one type of review method that follows a proto-

col in which the search process is clearly documented so that its

rigor and completeness can be assessed. Although there are various

guidelines for conducting discipline-specific systematic literature

reviews, it is common for computing education researchers to adopt

(and often adapt) the process defined by Kitchenham and Charters

for software engineering researchers [125]. The primary reasons

they cite for conducting systematic reviews are to provide a com-

plete background on a topic to position new research activities, to

identify gaps in current research, and to summarize existing empir-

ical evidence for the benefits and limitations of some approach. All

of these reasons align with the goals of our work, and our literature

review is guided by their protocol.

At a high level, the three phases of the review process are plan-

ning, conducting, and reporting [125]. The planning phase involves
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defining research questions and developing a review protocol. The

conducting phase involves identifying research and extracting and

synthesizing data from selected studies. The reporting phase is pri-

marily focused on organizing the results for publication. We define

our research questions in Section 3.1 and our process for identifying

literature in Section 3.2. In subsequent sections, we describe our

selection processes (title and abstract scanning, and inclusion and

exclusion criteria) and our data extraction protocol. We present the

main findings of the review in Section 3.7

3.1 Research Questions
The goal of our review is to produce an up-to-date survey of the

literature on the use of Parsons problems in computing education

research. We state our overarching research question as follows:

• How have Parsons problems been investigated in the com-

puting education research literature?

We are particularly interested in documenting the range of con-

texts in which Parsons problems have been studied and the various

tools that have been developed to support the delivery of Parsons

problems to students. In particular, new tools continue to emerge

that support novel features of Parsons problems and we wish to

understand this variety. We also wish to explore the various motiva-

tions and interests of the computing education research community

related to the use of Parsons problems. Finally, we wish to cata-

logue the existing evidence to date for the benefits that Parsons

problems might offer to learners. We define the following three

research questions that we use to guide our literature review and

the extraction of data from primary studies:

• RQ1: In what contexts and with what types of features have

Parsons problems been studied?

• RQ2: What research questions have driven the existing liter-

ature on Parsons problems?

• RQ3: What evidence exists for the claimed benefits that Par-

sons problems offer, and for their limitations, and what is

the quality of that evidence?

3.2 Identification of Relevant Literature
To identify relevant literature, we conducted database searches

using three sources: (1) ACM Digital Library (Guide to Computing

Literature); (2) IEEE Xplore; and (3) Scopus. These three databases

are commonly used in reviews of the computing education literature

and there is evidence that they yield a greater proportion of relevant

results in this domain than other databases [144]. As described

later in Section 3.4, we combine these searches with a forward

snowballing phase (examining all articles that cite the seminal

Parsons and Haden paper [177]), to achieve a broad coverage of the

literature.

Kitchenham and Charters suggest several strategies for refining

search terms, including comparing the results of a given set of

search termswith lists of known primary studies and experimenting

with various combinations of search terms [125]. The first strategy

helps assess the completeness of the search, as known primary

studies should be included in the set of results if the search terms

are well chosen. The second strategy helps reduce the number of

articles returned that are not relevant and would need to be filtered

in an exclusion step. For each strategy, we now briefly describe the

approach we used for refining our search terms.

3.2.1 Validation set from existing review. To our knowledge, the

only published peer-reviewed literature review related to Parsons

problems is “A Review of Research on Parsons Problems” published

in 2020 by Du, Luxton-Reilly, and Denny [48] (see Section 2.4). Our

review brings this work up to date, widens the range of venues

searched, and increases the scope by including a focus on the em-

pirical evidence for the effectiveness of Parsons problems.

This prior work serves as a useful validation tool for our search.

The authors identified 34 primary studies from an initial set of

325 search results, however only a subset of these papers were

presented and identified as primary articles. In particular, 13 papers

were listed in the results as characterizing the different varieties of

Parsons problems and the contexts in which studies were conducted.

We use these 13 papers as a validation set for our search.

3.2.2 Exploring keywords. We explored around a dozen search

string variations, all of which included some combination of the

terms “parsons” and either “problems” or “puzzles”. We considered

several other terms that we felt had the potential to yield relevant

results, such as “code puzzles”. All such candidate terms were evalu-

ated systematically by running a search with and without the term,

and manually reviewing differences in the results. As an example,

including the term “code puzzles” resulted in 13 additional papers

when searching the ACM Digital Library, however none of these

13 papers were relevant to our topic and so we excluded the search

term.

Ultimately, we observed that the terms “parson” or “parson’s”

or “parsons”, combined with “problems” or “puzzles” or “program-

ming”, produced a good outcome. These terms returned 12 of the

13 papers in our validation set, missing only one paper which was

published in a venue not indexed by our databases (the Journal

of Information Technology Education). We resolve this omission

through a snowballing phase, outlined in Section 3.4.

We defined variations of the term “parsons” manually, as shown

above, rather than relying on the use of a wildcard character. This

follows guidance provided by Loksa et al. regarding keyword varia-

tions in systematic literature reviews, as the behaviour of wildcard

matches is not always intuitive [140]. Queries were refined for each

database appropriate to their functionality (a commonly required

step when searching digital databases [28]). To provide an example,

the final query used for the ACM Digital Library was as follows:

[All: "parson problems"] OR
[All: "parson puzzles"] OR
[All: "parson programming"] OR
[All: "parson's problems"] OR
[All: "parson's puzzles"] OR
[All: "parson's programming"] OR
[All: "parsons problems"] OR
[All: "parsons puzzles"] OR
[All: "parsons programming"]

In general, it can be challenging to formulate good search strings

for literature reviews, especially when there is a lack of standard

terminology and thus broad terms must be used which can result in

many irrelevant matches [32, 227]. In our specific case, we have the
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advantage that the term “Parsons” is a commonly accepted term

for the subject of our review, and would typically appear in the

full text or reference list of a paper (both of which are indexed in a

full text search using the ACM Digital Library). This is a point that

was also acknowledged by Du, Luxton-Reilly, and Denny in their

review on Parsons problems [48].

Our final search was conducted on the 10th of May, 2022. Table 2

summarizes the searched databases and the number of matching

results from each. After merging the three result sets, we removed

duplicates based on title and DOI. This led to the removal of 152

articles, leaving a total of 677 articles for further analysis.

Database Results

ACM Digital Library (Guide to Computing Literature) 197

IEEE Xplore 247

Scopus 385

Total results 829
Total results (duplicates removed) 677

Table 2: Database search results.

3.3 Title and Abstract Scanning
Identification of relevant articles was followed by a title and abstract

scanning phase, during which the researchers read the title and

abstract of each paper to identify articles that were clearly out of

scope. For each article, the potential exclusion was determined by

two researchers – if both researchers agreed on the exclusion of

an article, the article was removed. If either of the two researchers

considered that an article might be relevant, it was included for

further analysis.

We calculated a Cohen’s kappa coefficient between the raters,

which suggested an almost perfect agreement (kappa = 0.973). How-

ever, it should be noted that the high value is partly due to the fact

that in our process the second rater was not required to rate articles

that the first rater had marked as potentially being relevant, as such

articles were automatically included for further consideration after

the scanning phase. Disagreements occurred only when the second

rater of an article wished to consider it for inclusion after the first

rater had excluded it.

This approach follows the suggestion of Brereton et al. for erring

on the side of caution when filtering primary studies [28]. The

title and abstract scanning phase led to the removal of further 291

articles, leaving a total of 386 articles for application of our full

inclusion and exclusion criteria.

3.4 Forwarding snowballing
Snowballing is an alternative strategy to database searching for

identifying relevant literature and is based on citation information

[75]. We employed a forward snowballing strategy which involved

finding articles that cited existing work that was known to be

relevant. In our case, we used the original paper by Parsons and

Haden [177] as the seed paper and found all articles that have

subsequently cited it using the ‘Cited by’ feature of Google scholar.

The goal of this snowballing phase was to capture other relevant

literature that may not have been indexed by the databases we

used in our database search. In particular, this included the one

paper from our validation set that was not returned by our database

search (see Section 3.2.1) but which did cite the Parsons and Haden

paper.

A total of 306 papers were found by this snowballing step. We

initially removed 167 duplicate papers that already appeared in the

result set from our database search, and then performed a title and

abstract scan for relevance on the remaining papers. This resulted

in a total of 108 papers for manual review. Figure 2 provides a high-

level overview of the sources for our primary studies, the number of

papers removed as duplicates and during title and abstract scanning

and the final result set after manual application of our inclusion

and exclusion criteria.

ACM DL IEEE Xplore Scopus

search: parson* x problems/puzzles/programming

197 247 385

Duplicate removal (title, DOI)

677

Title and abstract scanning

386

Forward 
snowballing 
(Parsons and 
Haden, 2006)

Inclusion/exclusion criteria

141

139

108

306

Duplicate removal (title, DOI)

Title and abstract scanning

Figure 2: An overview of the search and snowball process
illustrating the number of papers resulting from each step.

3.5 Inclusion and Exclusion Criteria
Wemanually examined 494 articles that passed the title and abstract

scanning phase. For each of these articles, we determined whether

or not it was relevant to our literature review, and if so, we extracted

data from the paper through a structured form. Our overarching

research question was to explore how Parsons problems have been

investigated in the computing education literature, and so our key

inclusion criteria was that relevant articles must discuss Parsons
problems in a computing education context. This required a definition
for Parsons problems relevant to computing education, which we

constructed as follows (discussed more broadly in Section 2.3).

Parsons problems are a type of exercise used for learning
and assessing the ability to construct programs (‘pro-
grams’ = intentionally allowing broad interpretation,
e.g. ordering higher level plans, while limiting the scope
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to a programming context). Parsons problems feature
a limited set of fragments that the user needs to use to
produce a solution (‘limited’ = not open-ended, ‘use’ =
intentionally allowing variations where the fragments
are in a single area). There can be extra fragments that
are not needed for a solution, and the solution may re-
quire some text input e.g. entering variable values into
the fragments.

To determinewhether or not an article was relevant to our review,

we created three inclusion criteria and included papers that fulfilled

any one of these. The inclusion criteria were as follows:

IC1 Contains empirical results on the use of Parsons problems

and/or collects data from the use of Parsons problems

IC2 Describes a system/tool for presenting/delivering Parsons

problems

IC3 Describes the use of Parsons problems for teaching

We now give brief examples to illustrate these criteria. An ex-

emplar article that would fit IC1 is “Problem-Solving Efficiency

and Cognitive Load for Adaptive Parsons Problems vs. Writing the

Equivalent Code” by Haynes and Ericson [98]. In that article, the au-

thors studied the difference between completing adaptive Parsons

problems and writing the equivalent code. This article matches IC1

as the authors collected empirical data related to the use of Parsons

problems.

For IC2, a good exemplar paper that matches the criteria is “A

Mobile Learning Application for Parsons Problems with Automatic

Feedback” by Karavirta et al. [119] where the authors presented

a mobile application for practicing Parsons problems called Mo-

bileParsons as well as outlined improvements to the open source

Parsons problem library js-parsons [109]. This is a clear match for

IC2 as the article clearly describes the MobileParsons tool.

Finally, one exemplar that matches IC3 is the paper “Tasks That

Can Improve Novices’ Program Comprehension” by Shargabi et

al. [199]. In this work, instructors from 13 universities were asked

to rank a list of 14 commonly used instructional tasks for their

perceived effectiveness. Parsons problems were one of the task

types listed on the survey, and were rated as moderately effective

as a teaching activity for program comprehension, but this paper

did not present any empirical data on the use of Parsons problems

or describe a tool for their delivery.

When considering works to exclude, we omitted articles that

were not written in English (EC1) as we could not easily extract

data from such papers, and articles that were very short (EC2) as

these typically represent posters and abstracts and are generally

less rigorous or represent work in progress. As a quality control

measure we also required that articles be peer-reviewed (EC3),

which also meant that theses and dissertations were also excluded

(EC4). However, we acknowledge that it is common for articles from

monographs to be published in peer-reviewed venues in which case

we would still capture them. Finally, we excluded any paper that

was not relevant to our goal of understanding how Parsons prob-

lems have been investigated in the computing education literature.

We defined two separate exclusion criteria to differentiate between

papers that were completely unrelated to the topic of Parsons prob-

lems (EC6), and those which did make fleeting mention of Parsons

problems, but where the Parsons problems were not related to the

research questions or goals of the paper, and where there was no

relevant discussion of approaches or findings in the methods or

results (EC5).

To illustrate, one typical example of such a paper in the category

EC5 is the work by Oyelere et al., published in the Journal of Educa-

tion and Information Technologies, which described the design and

development of a mobile learning application called MobileEdu for

teaching computing in the Nigerian higher education context [171].

In this paper, the description of MobileEdu does not include any

use of Parsons problems, however the paper presents a review of

mobile learning applications that have been previously used in

computing education and cites work on the MobileParsons tool

which is a relevant work to our review [107].

The six exclusion criteria were defined as follows: (Fulfilling any

one of these criteria was sufficient for exclusion.)

EC1 Article is not written in English

EC2 Article length is less than or equal to 2 pages

EC3 Article is not peer-reviewed

EC4 Article is a thesis or a dissertation

EC5 Parsons problems are not related to the research questions/goals

of the paper, and there is no relevant discussion in the meth-

ods or results

EC6 Not related to Parsons problems

3.6 Data Extraction
For all papers that were selected for inclusion, we used a data ex-

traction process to extract and record information in a consistent

format. An initial data extraction form was defined and published

on Google forms. As recommended by the guidelines for this phase

that were suggested by Brereton et al. [28], this form was refined

through a process of iteration that actively involved seven mem-

bers of the research group performing the review. This refinement

process included a training phase in which all researchers extracted

data using the form for five practice articles (two of which were re-

viewed by all researchers, and three which were reviewed by pairs

of researchers). This training phase involved regular discussions

with the whole group and led to refinements such as the inclusion

of definitions for each field directly on the form.

In total, 25 fields were included on the data extraction form. In

addition to this main set of items, a brief four-item quality assess-

ment questionnaire was created to assess the quality of the state of

research into Parsons problems. We adapted these quality assess-

ment items from the more comprehensive list used by Ihantola et

al. [110]. Once the extraction sheet was finalized, the researchers

continued to meet weekly, over a period of approximately three

months, to track regular progress for the data extraction and to

resolve any issues; whenever a member of the team had concerns

or questions about an article or its extraction, it was marked for

discussion at one of the weekly meetings where it was discussed

with the group and resolved. The final extraction sheet, including

the quality assessment questionnaire, is outlined in Appendix A.We

have made our complete literature review dataset available as an

Open Science Framework (OSF) repository: https://bit.ly/3AyQLhv.

https://bit.ly/3AyQLhv
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3.7 Analyses
3.7.1 Contexts and Features. To answer Research Question RQ1, In
what contexts and with what types of features have Parsons problems
been studied?, we evaluated the quantitative questions in our extrac-

tion sheet (see Appendix A). For questions with predefined fields,

we computed frequencies of occurrence for each category in the

extraction sheet. For open-response answers (e.g. “What concepts

are being taught with Parsons problems?, or “other” in some ques-

tions,) we first cleaned the answers and then standardized before

computing frequencies for each category. We include in our report

categories with at least two occurrences.

Bibliometric data, such as year and venue of publication, were

extracted directly from the BibTEX entries that were recorded for

each paper.

3.7.2 Explored Research Questions. To answer Research Question

RQ2, What research questions have driven the existing literature
on Parsons problems?, two researchers worked together side-by-

side to identify research themes from all of the included Parsons

problems literature, identifying all key themes which occurred in

more than a single article. For articles that specifically identified

their research questions or hypotheses, these were used directly in

the thematic analysis. For articles that did not directly list research

questions or hypotheses, research themes were identified from

the key contributions as discussed in the abstract, discussion, and

summary sections of the respective articles.

3.7.3 Evidence. To answer Research Question RQ3, What evidence
exists for the claimed benefits that Parsons problems offer, and for their
limitations, and what is the quality of that evidence?, we examined

every paper that had been tagged with IC1 during our systematic

literature review. This tag had the description ‘Contains empirical
results on the use of Parsons problems and/or collects data from the use
of Parsons problems. Specifically, we looked at what type of evidence
the authors of these papers were attempting to present and then

examined the quality of that evidence. Many papers were tagged

with more than one type of evidence tag. After grouping papers by

evidence type (where a paper can appear in more than one list), we

examined the following characteristics about those papers based

on data collected during the systematic literature review
4
:

• Which (programming) languages were used?

• What was the size (n) of the study?

• How many Parsons problems were used in the study?

• What was the type of study (qualitative/quantitative)?

• Were there clear research questions?

• Was the methodology clear?

• Was there sufficient clarity to reproduce the study?

• Were there two or more groups? (i.e. at least one control and

one experimental)

• Did the study provide a clear measurement on the efficacy

of Parsons problems?

• How was the study delivered? (in-person, online, hybrid,

other)

4
These characteristics were also reported for all papers in RQ1

4 RESULTS OF THE LITERATURE REVIEW
4.1 Overview of Included Articles
As illustrated in Figure 2, a total of 386 papers passed the title and ab-

stract scanning step for the database search, and 108 papers passed

this step for the snowballed papers. Following manual examination

of these papers, 141 matched at least one of the inclusion criteria

(IC1 – IC3) and the remaining 353 were excluded. The full result

set of 141 included articles is provided in Appendix C. For each

paper examined, we recorded all matching inclusion criteria and

the first matching exclusion criteria. Table 3 provides a breakdown

of how the included and excluded papers were distributed across

these criteria.

The most frequently matched exclusion criteria was EC5, Parsons
problems are not related to the research questions/goals of the paper,
and there is no relevant discussion in the methods or results. Papers
that matched this criteria did include some mention of Parsons

problems but they were not the focus of the paper. As illustrated in

an earlier example, one of the common reasons for such classifica-

tions was papers citing and briefly discussing one or more relevant

articles on Parsons problems as part of their literature review or

background work, but with no further treatment.

Figure 3: Number of citations plotted against year of pub-
lication for included articles (publications with more than
100 citations annotated). Citations counts per Google Scholar
(9th July, 2022)

4.1.1 Publication trends and venues. Table 4 lists the twelve most

cited publications
5
that refer to Parsons problems. Interestingly,

only five of the articles [43, 62, 101, 165, 177] are specifically re-

search on Parsons problems (i.e. they mention Parsons problems

in the title), and seven others matched our inclusion criteria while

not solely focusing on exploring Parsons problems. (For example,

they might have used Parsons problems in teaching alongside other

5
According to Google Scholar.
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Inclusion criteria Exclusion criteria

IC/EC 1 2 3 12 13 23 123 1 2 3 4 5 6

# of matches 33 20 21 37 14 6 10 5 45 11 28 204 45

Total: 141 Total: 338

Table 3: Inclusion and exclusion criteria matched by articles found in the literature review.

Year Author Title Venue Citations

2015 Grover, Pea and Cooper Designing for deeper learning in a blended com-

puter science course for middle school students

Computer Science Education 320

2008 Lopez, Whalley, Robbins

and Lister

Relationships between reading, tracing and writing

skills in introductory programming

ICER 314

2006 Parsons and Haden Parson’s programming puzzles: A fun and effective

learning tool for first programming courses

ACE 307

2008 Denny, Luxton-Reilly and

Simon

Evaluating a new exam question: Parsons problems ACE 162

2015 Latulipe, Long and Semi-

nario

Structuring flipped classes with lightweight teams

and gamification

SIGCSE TS 125

2010 Schulte, Clear, Taherkhani,

Busjahn and Paterson

An introduction to program comprehension for

computer science educators

ITiCSE WG Reports 95

2017 Ericson, Margulieux and

Rick

Solving Parsons problems versus fixing and writing

code

Koli Calling 95

2016 Morrison, Margulieux, Eric-

son and Guzdial

Subgoals help students solve Parsons problems SIGCSE TS 80

2010 Lister, Clear, Simon, Bou-

vier, Carter, Eckerdal,

Jacková, Lopez, McCartney,

Robbins, Seppälä and

Thompson

Naturally occurring data as research instrument: an-

alyzing examination responses to study the novice

programmer

ITiCSE WG Reports 77

2012 Helminen, Ihantola, Kar-

avirta and Malmi

How do students solve Parsons programming prob-

lems?: an analysis of interaction traces

ICER 74

2016 Oyelere, Suhonen and Suti-

nen

M-Learning: A new paradigm of learning ICT in

Nigeria

Int. J. of Interactive Mobile Tech. 74

2018 Brown and Wilson Ten quick tips for teaching programming PLoS computational biology 72

Table 4: The 12 most cited publications (according to Google Scholar) that refer to Parsons problems

activities.) The twelve most cited papers included in the literature

review have been published in a variety of venues – interestingly,

the Australasian Computing Education conference has two highly

cited publications, attesting to the region of the origin of Parsons

problems.

The complete set of papers included in our literature review

were published in a very diverse set of venues. The majority of

those papers were published in conferences (75.9%) or journals

(19.2%). Workshops (5.0%) published the remainder of the papers.

The ACM Conference on International Computing Education Re-

search (ICER) was the leading publication venue with 9.9% of the

included papers, closely followed by the ACM SIGCSE Technical

Symposium (SIGCSE TS – 9.2%), the ACM conference on Inno-

vation and Technology in Computer Science Education (ITiCSE

– 7.1%), the Koli Calling International Conference on Computing

Education Research (6.4%) and the ACMCHI Conference on Human

Factors in Computing Systems (5.7%). Computer Science Education

(CSE) was the leading journal publication venue (4.2%), with ACM

Transactions on Computing Education (TOCE) and the Journal of

Computing Science in Colleges (JoCSiC) contributing with two

papers each (see Table 5). The remainder of our dataset (35.21%)

was spread over a number of publications with one included pa-

per each, a testimony to the impact of Parsons problems and their

widespread usage.

4.1.2 Citation trends. Figure 3 plots the year of publication for

every paper in our data set against the number of citations that

the paper has attracted. We compute the number of citations using

Google Scholar, and the figures were accurate as of 10th July, 2022.

As would be expected, this chart exhibits a general negative cor-

relation between publication year and number of citations, given

that more recent papers have less time in which to be visible and
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Year
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Parsons and
Haden (2006)

Lopez et al. (2008)
Denny et al. (2008)

Grover, Pea and
Cooper (2015)

27

 Latulipe et al.
 (2015)

Ihantola and Karavirta 
(2011)

Figure 4: The number of publications per year (2006 – 2021).
There were 6 publications in 2022 at the time of writing, but
they are not shown on this figure due to the timing of our
search.

Venue Papers

ICER 14

SIGCSE TS 13

ITiCSE 10

Koli Calling 9

CHI 8

CSE 6

Australasian Computing Education Conference (ACE) 6

American Society of Engineering

Education Conference

5

International Conference on Educational Data Mining 4

IEEE Symposium on Visual Languages and

Human-Centric Computing

4

International Conference on Computers in Education 4

JoCSiC 2

Workshop in Primary and Secondary

Computing Education

2

IEEE Frontiers in Education 2

ACM TOCE 2

Other venues 50

Table 5: Number of included papers by venue.

cited. Annotated on the figure are the five most cited papers (fur-

ther details of these papers appear in the first five rows of Table

4). In chronological order, the first of these is the original paper

by Parsons and Haden [177]. This was followed in early 2008 by

Denny et al. which described the first use of Parsons problems

as an exam question and presented several novel variants of such

problems [43]. Later the same year, Lopez et al. also presented data

from the use of Parsons problems on a pen-and-paper exam, which

they used to explore the relationship between the skills of code

comprehension and code writing [142]. Seven years later, early in

2015, Latulipe et al. explored the use of in-class teamwork to make

learning more social and effective, making use of Parsons problems

as hands-on activities, although they did not provide empirical data

on use of these [136]. Again, later that same year, Grover et al.

described the design of an introductory computer science course

for middle school students where the quiz questions provided to

students included Parsons problems in the form of Scratch blocks

that were jumbled [91].

Figure 4 plots the number of papers in our data set that were

published each year (Note that the year 2022 is excluded from the

plot because the 2022 data was only partial at the time of this article).

Highly cited papers prior to 2022 are indicated. The plot shows a

marked upward trend in the number of publications on Parsons

problems with a notable spike occurring after 2014. This spike may

be accounted for by the emergence of online ebooks with Parsons

problems. A review of the citations from the articles published in

2015 reveals references to the js-parsons implementation [108] and

studies that use it (e.g. [101]).

In general, the emergence of Parsons problems and their use in

the computing education research literature parallels the broader

adoption and use of interactive online learning materials. In 2013,

an ITiCSE working group explored the use and creation of interac-

tive computer science ebooks [126], and an ITiCSE 2014 working

group focused on interoperatibility of learning content, including

increasing adoption of tools for teaching computing [30]. Both

working groups discussed Parsons problems as examples of content

that computer science ebooks could and do feature. The 2013 work-

ing group considered the possibility of having Parsons problems

(from the technical viewpoint) either as independent components

or as a part of other types of components that are included in

the materials [126], while the 2014 working group referred to Par-

sons problems as a type of problem-solving support tool and more

broadly discussed the possibilities of creating online learning ma-

terials that could include resources from various other learning

platforms and resource repositories [30]. These working groups

influenced and have been influenced by the developments of open

online ebooks and ebook platforms for teaching computing, in-

cluding the OpenDSA project [197] and the Runestone Academy

project [158].

4.1.3 Quality assessment. Figure 5 shows the classification distri-

bution for the four quality assessment items. We adapted these four

items from the larger set of 15 items used in the review of edu-

cational data mining and learning analytics literature by Ihantola

et al. [110], and our results mirror the results of this prior study,

where the clarity of findings and the analysis of threats to validity

were the most and least met criteria respectively. In our data set,

the most frequently achieved quality criteria was “Are the results

presented with sufficient detail?” and the least achieved criteria

was the explicit presence of “threats to validity / limitations”. Our

results suggest that authors frequently do not consider and com-

municate limitations of their work or alternative explanations for

their findings.
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Figure 5: Quality assessment of included papers

4.2 RQ1: In what contexts and with what types
of features have Parsons problems been
studied?

4.2.1 Study contexts. We investigated the types of papers related to

Parsons problems by classifying them as lab-based, i.e. a study con-

ducted in a controlled environment such as a research lab; classroom-
based, i.e. a study conducted in “the wild,” such as in a classroom;

a system paper, which describes a system used to present Parsons

problems or a system that uses Parsons data with an educational

purpose; or an experience report, where the author reflects on their

personal experience, but does not involve collection and analysis

of data from students or the system. Papers that do not fit in any

of those categories were classified as other. Some papers (e.g., pa-

pers presenting a tool to deliver Parsons problems and which also

evaluated its use and students’ performance solving tasks) could

be classified in multiple categories.

We found a larger number of classroom-based studies (36.4%)

compared to lab-based studies (25.3%). There was also a fair number

of system papers (22.8%), but slightly under half of the system

papers (8.6%) did not include an evaluation or report on the usage

of the system. Experience reports were less well represented in our

dataset (9.9%), and only 5.6% of the papers could not be classified

into any of the categories we included in the extraction form.

Not surprisingly, the vast majority (52.9%) of the included papers

conducted studies at the tertiary level in introductory programming

courses (CS1, CS2). Usage of Parsons problems at the tertiary level

in other courses (e.g., data structures, databases) was far less preva-

lent (9.8%). Studies at primary levels (9.2%) and secondary levels

(9.8%) are represented in similar numbers in our review. Life-long

learning contexts (e.g., MOOCs) represent 4.6% of our sample. We

could not ascertain the educational context in 9.2% of our papers

(i.e., it was not reported clearly), and 4.6% of the studies were not

associated with a specific educational level (e.g., they had no real

world evaluation). Only a few papers (9.2%) conducted studies at

multiple levels (e.g., both secondary and tertiary).

To understand the geographic distribution of this research, we

recorded the country in which the study was carried out. Figure

8 overlays this frequency data on a map of the world, illustrating

that the vast majority of studies have been conducted in the United

States. The remaining studies were distributed throughout Canada,

Australasia and parts of Asia and Europe. If a study sourced data

frommultiple countries, it was counted once for all countries where

data was gathered. Most studies were conducted in a campus-based

setting (36.2%). Blended or hybrid settings were used in 7.1% of

studies and 15.6% of the studies were conducted in an online setting.

Studies did not have a delivery setting in 25.5% of the papers in our

review, and in 15.6% of the papers it was unclear which delivery

setting was used.

We investigated if students received any marks/grades/credit

for participating in the Parsons activities described in the papers.

In 34% of the studies, students were graded when solving Parsons

problems and in 9.2% of the papers students were not graded. We

were unable to ascertain whether or not Parsons problems were

graded in 31.9% of the papers. In 24.8% of the papers there was no

intention to evaluate students’ performance when solving Parsons

problems.

In the majority of the studies (44.0%), Parsons problems were

part of regular instruction, were presented as a bonus activity (8.5%)

or as an extracurricular activity (9.9%). In 10.6% of the papers it was

unclear how Parsons problems were inserted in learning activities,

and in 27.0% of the studies they were not part of the instruction.

We investigated how extensive Parsons problems usage was

in the studies in our review. In 27.7% of the studies, five or more

problems were used, 8.5% of the studies used between two and four

problems, and 9.2% used only one Parson problem. It was unclear

how many problems were used in 34.8% of the studies and in 19.9%

of the studies there was no description of Parsons problems usage.

4.2.2 Study participants. We looked into the size of each study

by extracting the numbers of study participants. This data was

extracted either from the contextual description or from the study

description, depending on which numbers were available. The par-

ticipant counts were then categorized into bins of increasing sizes

starting from 1-20 and ending at 1001 or more. Figure 6 summa-

rizes the study participant numbers in the included articles.

Figure 6: Study participants in included articles

Out of the 141 articles, 35 either had an unclear number of par-

ticipants (i.e. not reported) or the number of participants was not

applicable (not relevant due to e.g. the article being a system paper).

Across the bins, the bin with the most papers was the 51 to 100
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participants bin, with 26 classified articles. The bin with the least

number of papers was the 1001 or more participants bin, with just

4 articles. Out of the articles with reported participant numbers,

there were on average 455 participants, while the median number

of participants was 102 – highlighting the fact that only a small

number of studies had a very large number of participants.

4.2.3 Programming languages and concepts. Table 6 shows the dis-
tribution of different programming languages that are reported in

the papers in our data set. Unsurprisingly, the three most common

languages are Python, C/C++ and Java, which are the most com-

monly taught introductory languages. Much less common were

papers that reported the use of Parsons problems with pseudocode,

representing around 3.6% of the complete list of languages across

the data set (some papers described tools that supported more than

one language). One such example is the work by Malik et al., who

present a tool to support their PAAM (Problem Analysis Algo-

rithmic Model) teaching approach, which aims to improve both

comprehension of problem statement requirements and problem

solving skills [150]. For the problem-solving aspect, their tool in-

cludes a Parsons-like interface where students solve pseudocode

problems. Students who used the PAAM approach throughout the

semester showed improved perceptions around the understanding

of problem statements and problem-solving strategies.

Language # Percentage

Python 49 29.17%

Java 32 19.05%

C/C++/C# 30 17.86%

Not PL Focused 19 11.31%

Other 14 8.33%

Unclear 7 4.17%

Pseudocode 6 3.57%

Looking Glass 5 2.98%

Scratch 3 1.79%

MATLAB 2 1.19%

JavaScript 1 0.60%

Table 6: Programming languages used

Identifying which concepts were used with Parsons problem was

difficult to ascertain in our review. A significant number of works

were unclear (30%) on what concepts were covered by Parsons prob-

lems related activities. – see Table 7. When concepts were explicitly

presented, it was usual to find a list of several concepts that were

covered by Parsons problems, and the majority of the papers (21.7%)

stated learning loops as an instructional goal. Conditionals (10.6%),

variables (6.7%), lists and arrays (8.2%), and functions (5.8%), typical

introductory programming concepts, were also mentioned by the

authors as instructional goals. More advanced topics such as recur-

sion (1.0%), and objects and classes (3.4%) were less prominent in

our review. Interestingly, concepts such as expressions, sequential

commands, and I/O, also typically part of CS1 courses, were less

often referred to as part of instructional goals (see Table 7).

4.2.4 Features of Parsons problems. In our review, we aimed to

investigate how different features described in the literature were

Concept # Percentage

Unclear 61 29.61%

Loops 45 21.84%

Conditionals 22 10.68%

Lists and Arrays 17 8.25%

Variables 14 6.80%

Functions 12 5.83%

Strings 8 3.88%

I/O 8 3.88%

Objects 7 3.40%

Sequential commands 6 2.91%

Expressions 4 1.94%

Recursion 2 0.97%

Table 7: Concepts targeted by Parsons problems

used. Particularly, we looked for features such as draggable code

lines with parts that need to be filled in (Faded Parsons) [225],

adaptive Parsons problems [59], usage of distractors (i.e. code lines

that are not needed in the final solution) [95], optional fragments

of code (i.e. similar code lines where you have to pick one or more

but not all from a set) [62]. We assumed that papers could have

used a combination of any of these features in their studies with

the basic (i.e. draggable code lines) type of Parsons problems.

Where the authors did not explicitly state which kind of features

were used, we attempted to extrapolate potentially used features

from images in the paper. Many authors were, however, unclear

on the kind of features present in Parsons problems related activi-

ties, so we could not ascertain which features were used in 34.6%

of the papers. Basic features were present in the majority of the

papers in which we could determine types of features used – 34.1%.

Distractors, another feature that can be “easily” added to Parsons

problems were used by 18.8%. As presented by Figure 7, features

that require specific implementations such as adaptive Parsons

were less common in our review.

NA
6.7%

Unclear
27.9%

Optional
2.4%

Distractors
18.8%

Basic
34.1%

Faded
4.3%

Adaptive
5.8%

Figure 7: Features used in Parsons problems

4.2.5 Tools for Parsons Problems. Parsons problems have been

delivered in a variety of modes and through a wide range of learning

platforms. This includes as pen and paper activities, stand-alone
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Figure 8: An overview of the countries where studies included in the literature review were conducted. Darker green indicates
more published work. The map projection was selected based on the ITiCSE’22 conference location Dublin, Ireland.

tools specifically for delivering novel variations of Parsons problems

and as embedded activity modules within online learning platforms.

The original implementation of Parsons problems described by

Parsons and Haden in 2006 [177] used an exercise-authoring plat-

form called Hot Potatoes developed at the University of Victoria

in Canada. This provided support for the creation of generic drag-

and-drop exercises which would present items in a random order

to be unscrambled. Of note, when describing future directions for

their work, Parsons and Haden described the need for an improved

user interface that supports color and animation, as well as a tool

that could collect more detailed analytics on student use. The fol-

lowing year, Garner described an evaluation of a tool called CORT,

a Visual Basic implementation for supporting ‘part-complete solu-

tions’ where missing statements (on the left) can be inserted into a

part-complete solution (on the right) and then moved around (up

or down) within that solution[84]. This 2007 paper does not cite

the Parsons and Haden paper but does cite two earlier studies by

Garner (including one from 2003) which pre-date the original work

on Parsons problems.

Arguably the most influential technology for delivering Parsons

problems has been js-parsons (originally stylized as JSParsons), an

open-source JavaScript widget developed by Ihantola and Karavirta

[109]. The original paper describing the js-parsons tool was also

the first to propose two-dimensional Parsons problems, inspired by

Python, which required individual lines to be indented correctly.

The ease with which problems could be created and embedded

using js-parsons led to its wide use in other platforms, including as

the core technology in the MobileParsons tool for mobile environ-

ments [119]. Other tools reported in the literature for delivering

Parsons problems include specialised software such as Kumar’s

Epplets [128] which provides line-based feedback. Block-based pro-

gramming environments such as Snap! and Scratch [145] have also

been extended to support Parsons problems.

Several special-purpose tools have been reported for delivering

novel variations of Parsons problems. For example, Weinman, Fox

and Hearst describe a Flask app that extends js-parsons for sup-

porting Faded Parsons problems [225], and Pustulka et al. present

a custom game-based learning tool called SQL Scrolls, built in

Node.js, where the Parsons problems represent SQL queries [189].

The Nester tool, described by Park et al., is novel in our data set in

that the lines of code that make up the problems are presented in

order, so do not require any vertical movement, but only need to

be properly indented [175]. The goal of these problems is to help

students develop fluency with hierarchical rules in languages such

as HTML, XML, and JSON. In their study, participants completed a

reasoning test first (given code, they were asked to identify various

elements like siblings and children). Strong negative correlations

were found between performance on this reasoning task and time

spent solving the Nester task and attempts to solve the Nester task.

Given the increasing popularity of Parsons problems as a peda-

gogical approach to teaching programming, several Smart Learning

Content (SLC) [30] providers introduced ways to present and eval-

uate Parsons problems within their platforms. Some works took

advantage of existing platforms designed for other purposes to

deliver Parsons problems. For example, Chirumamilla and Sindre
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[35] analysed the potential use of generic Learning Management

Systems (LMS) such as Moodle, Canvas, Inspera, and Blackboard

to present Parsons problems. Chirumamilla and Sindre show that,

while it is possible to use such generic LMS without adding any

specific Parsons tooling, creating and using Parsons problems on

them is cumbersome and time-consuming.

To ease the workload to introduce Parsons problems, several

works created or adapted specialized apparatus. Some SLC eBooks

such as Runestone Academy [63], PrairieLearn [226], ICSE Books

[41], and Isaac CS [220] integrated Parsons problems along with

other programming tasks and content for course delivery (see Table

8), in some cases making use of existing Parsons Technologies such

as js-parsons [118] or Epplets [11].

Category Tool Papers

SLC CS Circles [188]

SLC Crescendo [222]

SLC EvoParsons [11, 87]

SLC ICSE Books [41]

SLC Isaac CS [220]

SLC LMS (Moodle, Canvas, etc.) [35]

SLC MasteryGrids [193]

SLC PCEX [105]

SLC PILeT [6, 7]

SLC PrairieLearn [226]

SLC REVEL [41]

SLC Runestone [54, 56, 60, 63, 64, 176, 231]

SLC ViLLE [118]

PT BBE (Snap!, Scratch) [33, 145]

PT Epplets [127, 128]

PT Hot Potatotes [177]

PT js-parsons [101, 107, 109, 152, 202, 203]

NV Faded Parsons [225]

NV Nester [175]

NV SQL Scrolls [189]

MD Mobile Parsons [107, 119]

MD MobileEdu [169, 170]

MoP MCQ Bubble sheets [97]

MoP Paper strips [162]

Table 8: Tools for Parsons problems. Categories: Smart Learn-
ingContent (SLC), Parsons Technology (PT), Novel Variations
(NV), Mobile Delivery (MD), and Manual on Paper (MoP).

While the literature is replete with examples of digital tools for

delivering Parsons problems, paper-based delivery has continued

to be popular for use in exams. In 2008, the first paper that explored

the use of Parsons problems on exams was published. The paper,

‘Evaluating a New Exam Question: Parsons Problems’ by Denny,

Luxton-Reilly, and Simon [43], had students solve problems on

paper by writing in full each line that they selected from the set

of options. In 2021, Stephenson and Mangat describe the use of

special-purpose bubble sheets to enable efficient grading at a large

scale in paper-based exams [206]. Morin et al. also describe a novel,

tangible activity for groups of students where physical strips of

paper must be reordered [162].

Tags Tag Description Count

LP Learning Programming 134

RSPF Research Study Parsons-Focused 64

RSNPF Research Study but Not Parsons-Focused 56

SP Student Perception 29

SE Student Engagement 14

IP Instructor Perceptions 13

PSSP Problem Solving Solution Path 12

PSS Predicting Student Success 11

MD Mobile Device 11

CL Cognitive Load 10

UI User Interface 10

IS Interventive Scaffolding 8

KT Knowledge Transfer 8

NNN Novices vs Near-Novice Learning 6

PPSS Parsons to Teach Problem Solving Strategies 6

LG Learning via Gamification 5

EB Expert Behavior 4

EA Evolutionary Algorithms 4

GI Gender Identity 3

GPP Generating Parsons Problems 3

CSP Collaboratively Solving Problems 2

LR Literature Review 2

SAS Skill Acquisition Sequence 2

Table 9: An overview of the different research question
themes ordered by decreasing counts.

4.3 RQ2: What research questions have driven
the existing literature on Parsons problems?

Category analysis with category tagging was used to identify and

categorize research question themes in the literature. This was

done with two researchers who agreed on both the categories as

well as each paper’s tags. Altogether, 23 research themes were

identified with the theme occurring in more than a single article.

Each article was tagged with every research theme present in the

paper, resulting in each article being tagged with between one and

seven tags. These research themes are summarized in Table 9 where

they are listed in descending order of occurrence. (Note that the

themes identified in the RQ2 research questions are distinct from

the research evidence provided, which is discussed in Section 4.4).

For coherence and to facilitate understanding, the discussion on

research themes is primarily organized by the similarity of research

theme rather than alphabetically or strictly in decreasing order of

research theme frequency.

4.3.1 Articles directly related to learning to program. It should not

be surprising that the majority of papers studied learning program-

ming (LP) since that was the domain of the inaugural article [177].

Indeed, the vast majority (134 of the 141) of the existing articles

on Parsons problems relate to the learning of programming. As

discussed earlier, the seminal work by Parsons and Haden is only

the third most cited article in the literature. Their key research ques-

tion is whether they could create an effective tool to allow students

to focus on code writing by rearranging lines of code including
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distractors into a correct code order that solves a given problem.

They presented the first documented tool for Parsons problems

using exercises designed with the following in mind: maximize

the engagement, constrain the logic, permit common errors, model

good code, and provide immediate feedback. Their puzzles were

drag and drop style and sometimes had an activity chart to lay out

the flow in a UML style. They also studied students’ perceptions of

the activity, finding that the students found the puzzles useful both

for learning and in preparing for exams. Because of these research

questions, in addition to the LP tag, this article was also tagged as

a research study that was Parsons-focused (RSPF) and with student

perceptions (SP).

The most cited paper in the Parsons problem literature is by

Grover et al. who created and tested an introductory CS course at

the middle school level with a focus on computational thinking

and algorithmic problem solving [91]. Some of their quiz questions

were jumbled Scratch code questions where students must snap

the Scratch blocks together in the correct order. Hence Parsons

problems were utilized as a part of their research endeavor rather

than as a primary focus of their research questions. They studied

three issues: 1) the variation across learners in learning of algo-

rithmic flow of control constructs, 2) whether or not students had

learning gains in their depth of understanding of algorithmic con-

cepts that went deeper than tool-related syntax details. Here they

specifically focused on pedagogical strategies for knowledge trans-

fer from block-based to text-based programming, and 3) whether or

not there was any change in students’ perceptions of the discipline

of Computer Science. In addition to the LP tag, this article was also

tagged as a research paper that was not Parsons-focused (RSNPF),

knowledge transfer (KT), and students’ perceptions (SP). This work

is considered notable as the first online introductory middle school

curriculum that has been empirically shown to result in learning

gains.

The second most heavily cited paper in the Parsons problem

literature is by Lopez et al., which can be summarized by the title:

“Relationships between reading, tracing and writing skills in intro-

ductory programming” [142]. In particular, they utilize a classroom-

based study to understand whether the skills of code tracing or

code reading (as inferred by “explain in plain English” questions)

are associated with program writing ability and whether or not

student performance on an exam is consistent with a hierarchy of

programming-related skills. The study was not specifically focused

on Parsons problems, nor specifically on knowledge transfer, but

rather on the correlations between different programming skills.

For this reason, this paper was tagged with both LP and RSNPF

(research study that is not Parsons-focused).

All eight of the articles tagged with knowledge transfer (KT)

studied knowledge transfer during learning to program. Another

exemplary article from the KT category is “Precursor skills to writ-

ing code” [233]. In this work, the researchers study 1) whether or

not students who show proficiency in a given skill also possess pro-

ficiency in the skills that precede it in the sequence, and 2) whether

or not students who show a deficiency in, or lack, a given skill,

also lack the skills that follow it in the sequence. They obtained

results suggesting that code comprehension, code manipulation,

and code writing are phases that students should sequentially mas-

ter in the process of learning computer programming. This article

was tagged with learning programming (LP) research study that is

Parsons-focused (RSPF), knowledge transfer (KT), and skill acquisi-

tion sequence (SAS).

Only one other article from the LP literature specifically ex-

plored the skill acquisition sequence (SAS), which we mention here

in order to distinguish this category from the KT category. The

category was intended for those papers that look specifically into

the effect of the ordering of skill acquisition. Of course, these might

or might not specifically also research the transfer of knowledge

from one domain to another. In “Reevaluating the relationship be-

tween explaining, tracing, and writing skills in CS1 in a replication

study” [80], researchers looked into the sequencing of skill acqui-

sition and concluded that optimal order of instruction should be

studied directly rather than via any skills hierarchies, so this article

was tagged with LP, RSPF, and SAS, but not with KT.

Most of the problems in the LP category either use or study Par-

sons problems as a part of the content delivery. Some like [177] and

[217] use or study Parsons problems as in-class activities. Others

leverage Parsons problems via an interactive textbook [60, 101, 107]

as a part of the learning design. Still, others (such as [43, 134, 175])

utilize Parsons problems in the assessment of learning. Most of

this literature uses traditional Parsons problems. However, more

recently, some authors have utilized newer variants such as faded

Parsons problems [225].

4.3.2 Articles not directly related to learning to program. It is in-
teresting to see Parsons problems being applied outside of their

original domain even within the domain of computing. Some of

these articles are focused on a result that is only tangentially related

to the learning of programming. For example, some articles focus

on developing curricular materials in some unusual way rather than

more directly on the learning of programming [85, 87] or on the

development of an effective assessment instrument [134]. Other ar-

ticles focus on identifying patterns in the problem-solving solution

path (PSSP) taken as a learner attempts to solve a problem without

also specifically researching learning of programming (see for ex-

ample [148]). Still, others focus on the patterns in the solution path

taken by novices vs those taken by experts [109]. Some of these

articles do not specifically research the learning of programming

but instead study the user interface (UI) of different tools [87]. Of

course, manuscripts that are literature reviews generally do not

directly research learning programming [48, 195].

4.3.3 Research Study Parsons-Focused (RSPF). We tagged research

studies that were specifically focused on Parsons problems as RSPF.

These were distinguished by being research studies specifically

focused on the utilization and effect of using Parsons problems.

Other research studies that utilized Parsons problems, but did not

specifically study the effect of the usage then were tagged with

RSNPF. Slightly under half of the papers (64 out of 141) included in

the literature review were RSPF as opposed to, for example, utiliz-

ing Parsons problems in their research while studying something

else. An example of a research study that is Parsons-focused is

“Mnemonic variable names in Parsons puzzles” by Kumar [130],

where the author performed a controlled study comparing student

performance with Parsons problems with single-character vari-

able names and Parsons problems with mnemonic variable names.

Surprisingly, they found no statistically significant differences in
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student performance as measured by performance score of the

problem, steps or time taken, or time per step.

The three most common themes present in RSPF-papers were

learning programming (LP, 60 of 64), student perceptions (SP, 16

of 64), and problem solving solution paths (PSSP, 11 of 64). One

example of a RSPF-paper that researched both student perceptions

and the problem-solving solution path is “Estimating Learner’s

Perspective in Programming: Analysis of Operation Time Series

in Code Puzzles” by Ito et al. [114] where the authors analyzed

time series data from students’ solving a Parsons problem in an

attempt to identify struggling students. An example of a RSPF-paper

that researched student perceptions and also cognitive load (CL)

was "Problem-Solving Efficiency and Cognitive Load for Adaptive

Parsons Problems vs. Writing the Equivalent Code" by Haynes and

Ericson [98] which found that while most undergraduate students

reported that solving adaptive Parsons problem helped them learn,

30% would rather write the equivalent code. These researchers have

since revised the Runestone e-book system to give students the

choice to solve a Parsons problem or write the equivalent code.

There were a few themes that none of the RSPF-papers included.

None of the RSPF-papers studied gender identity (GI) or collabora-

tive problem solving (CSP). In addition, two categories of research

questions – “literature review” and “research study but not Parsons-

focused” were mutually exclusive with the RSPF tag.

4.3.4 Research on student or instructor identity, experience, or per-
ceptions. A proportion of the Parsons problems literature focuses

on cognitive load (CL), student engagement (SE), student percep-

tions (SP), and/or instructor perceptions (IP) as part of the research

questions. Many (29 of 141) of the existing articles study student

perceptions (SP), nearly all of which (28 of 29) are also studying LP.

For example, some researchers investigated themes such as novices’

perceptions of the value of differing instructional formats [94],

while others explored themes such as differences in student percep-

tions of collaborative activities across different student groups or

over time [22].

A smaller set of the literature (13 of 141) studied instructor per-

ceptions (IP). For example, Shuhidan et al. investigate instructor

perceptions of assessment and their perception of the correlation

between assessment and student performance [200]. Four of these

13 articles studied both SP and IP as part of their research focus.

Some of the literature focuses on student engagement (SE), namely

(14 of 141) articles, and all of these are also focused on LP. For ex-

ample, some researchers have explored how to use innovative ideas

like the use of hip hop music in teaching coding and how its use

affects student engagement [143]. Others proposed new techniques

to improve student engagement. Consider Hosseini et al., who focus

on how to better support students’ acquisition of programming

skills through worked examples and the effect of interactivity [104].

Al-Sakkaf et al. have used Parsons problems as part of work to

improve student engagement in program visualization using such

approaches as the social worked-examples technique [3].

A small proportion of the Parsons problems literature (10 of 141)

focuses on researching cognitive load (CL), namely the amount

of mental effort necessary to complete a code puzzle, and most of

these (7 of 10) are Parsons-focused research papers. For example,

Kelleher and Hnin utilize Parsons Problems heavily in the creation

of a model for predicting cognitive load [123].

Two different tags relate to identities of expertise. Six articles

compare novices to near-novices (NNN), all of which are in the do-

main of learning programming (LP). One example in this category is

“Representing and Evaluating Strategies for Solving Parsons Puzzles”

which develops a proof of concept representation for solution strate-

gies of students in data collected by a Parsons problem [131]. Four

of the articles report on expert behaviors (EB), all of these using a

control group for comparison. Some of these compare behaviors of

novice programmers versus more advanced programmers. Of these,

only “Investigating strategies used by novice and expert users to

solve Parsons problems in a mobile python tutor” utilizes a research

study that is Parsons-focused (RSPF), confirming that experts used

superior problem-solving strategies [67]. Another explored how

teachers and students engage with a course content in an e-book

differently [176].

A surprisingly small number of articles (3 of 141) explicitly ex-

plore gender identity issues as part of the research questions. For

example, “Speed and Studying: Gendered Pathways to Success” con-

sidered whether female students are more conscientious in starting

assignments earlier, completing their problem sets, or spending

more time studying [230]. Lai et al. research the intersection of

programming experience with gender as part of an assessment

instrument on computational thinking performance [134]. Becker

et al. study whether or not extra credit serving as a performance

differentiator applies to both women and men similarly [17].

4.3.5 Articles related to pedagogy. Several articles in the Parsons

problems body of literature have research questions focused on var-

ious aspects of pedagogy. Six articles explicitly study using Parsons

problems to teach problem-solving strategies (PPSS). This seemed

such an important use of Parsons problems that it earned its own

own tag. An exemplar in this category is an article that evaluates

the effectiveness of Parsons problems for block-based program-

ming, finding that Parsons problems save students nearly half of

total problem solving time [234]. Another exemplar in this cate-

gory is an article that looks at Parsons problems as a design-based

intervention as well as at how self-regulated learning strategies are

applied by students when interacting with Parsons problems [82].

Two articles have research questions related to collaboratively solv-

ing problems (CSP), including team-based learning [22] and using

teams during distance learning [146].

4.3.6 Articles using Parsons problems as scaffolding interventions.
Eight of the papers in our literature review include research ques-

tions that involve an intervention during the problem solving pro-

cess. The interventions include giving feedback, limiting feedback,

visualizing the solution path, and encouraging students to make

selections. This work was tagged with interventive scaffolding (IS).

One paper [119] studies how to provide meaningful feedback on

Parsons problems in a mobile application, with feedback disabled

for short periods of time when the frequency of feedback requests

gets high. In another study [82], the Parsons problems are not code

but rather made of goals and tasks. Students use the feedback from

these Parsons problems in the design process of problem solving.

One study [101] records a detailed trace of all the interaction in solv-

ing a Parsons problem that provides insights into students’ problem
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solving process. The same authors build on the interaction traces in

a follow-up paper [100], where they compare two types of feedback

from two groups of students, execution-based and line-based. With

the execution-based, feedback was requested less frequently. A tool

paper [105] focused on worked-out program examples and engages

students with challenge activities the students must initiate. The

challenge activities are similar to the worked-out examples and

could be Parsons problems.

A paper with block-based programming [234] provides a check

button with their Parsons problems only after student code has

been run a few times. If code is not correct, then it will highlight

misplaced code. One paper [202] extended previous feedback with

visualizations of program execution and observed more than half

of the students viewed the visualizations if they were available. In

another paper [72] Parsons problems were one of many activities

for students to choose from in a study using a tool that focused on

several coding skills. Their study showed their tool was effective

for learning such skills.

4.3.7 Research related to the problem solving solution path (PSSP).
There were twelve papers that were identified by the research theme

“problem solving solution path” (PSSP) that focuses on the steps

learners take in getting to a solution for a Parsons problem. One

paper looks at the common patterns students use when solving a

Parsons problem, such as a linear approach (moving the blocks in

the solution order), and identified difficulties students have such as

looping (returning to a previous state) [101]. Another paper took

all the student paths for solving a specific Parsons problem and

modelled them in state transition diagrams for use by instructors

and teaching assistants to see trends to help them with instruc-

tion [217]. The state transition diagram for correct answers was

reasonable, but the state transition diagram for wrong answers was

somewhat unwieldy.

One article focused on two approaches for helping students solve

Parsons problems [129], firstly, researching pairing distractors with

correct line of code instead of randomly showing them, and sec-

ondly, researching the timing of penalizing the student, namely

while solving a Parsons problem versus penalizing them after sub-

mitting a complete solution. Another paper has a component with

a process called Use-Modify-Create for scaffolding the learning

process [143]. Parsons problems are one part of that process. Eric-

son et al. explored adaptive Parsons problems, where the user can

ask for help while solving the problem, comparing the number of

extra steps taken to get to a Parsons problem solution, with the

time to solve the problem [61]. Other researchers analyze Parsons

problem solutions using a Markov Transition Matrix [133]. These

researchers only analyzed correct and complete solutions, and they

found several patterns such as 1) most students build the solution

in order, 2) most students discard distractors early and 3) most

students start with the variable declaration.

Another paper estimates the learner’s solution path by using logs

from users solving Parsons problems, estimating the learner’s per-

spective with a Markov model [114]. One paper investigates three

strategies for solving a Parson problem including 1) an approximate

linear representation of their linear behaviour 2) A BNF grammar

to represent their strategies and 3) a best-match parser [131]. Their

approach can be used for any programming language. Another

paper describes a tool called Epplets that gives feedback to stu-

dents as they solve Parsons problems [128]. Practicing with the

tool got students to solve Parsons problems faster. One paper uses

edit distances to analyze the solution paths of users solving Parson

problems to identify patterns [149]. Another paper analyzes the edit

distance between the student solution for a Parsons problem and

the correct solution, looking at each step the student takes [148].

Ihantola et al. observe experts in solving Parsons problems as they

use the jsParsons tool, finding that experts do not ask for much

feedback from the tool and do not solve the problems linearly [109].

4.3.8 Research on Parsons problems delivery. A subset of the Par-

sons problems research focuses on some specific aspect related to

the delivery of Parsons problems. Eleven focus on issues result-

ing from delivery on a mobile device (MD) and are tagged with

MD. Ten articles look at the user interface (UI) specifically, and

are tagged with UI. Four articles are tagged with both MD and UI

because they are focusing on UI on a mobile device. The article

[225] is an example of an article that focuses specifically on the

effect of the user interface on knowledge acquisition, but is not

utilizing a mobile technology. The work in [169] does not look at

the user interface, but expands a mobile learning system to include

a traditional African strategy board game with Parsons problems

in order to study student interaction, motivation, and engagement

during the process of learning to program. The work in [119] looks

specifically at how to adapt Parsons problems to mobile devices, so

has both the MD and UI research themes.

4.3.9 Research related to learning via gamification. There are five
papers that focus on research on learning via gamification. Four

of them built a computer game in which Parsons problems were

a game activity, and the last one creates a gamelike atmosphere

in class. The first paper [189] built an online game for students to

learn about databases and SQL that includes solving SQL Parsons

problems. The second paper [2] developed a gamified recommender

system to provide recommendations to motivate students as they

learn programming, with Parsons problems as puzzles in the system.

The third paper [47] created a three-part computer game for learn-

ing about stacks for a data structures course, with Parsons problems

to solve in the third part of the game. The fourth paper [169] has a

mobile app for a board game and another mobile app for Parsons

problems, and they are laying the framework to combine the two,

where a player would need to solve a Parsons problem on coding

when it is their turn to play. The fifth paper [136] is not a computer

game, but uses game tactics in a flipped CS1 course. Students in the

course work in teams and solve tasks with game-like elements such

as stamps, a leaderboard and question tokens. Parsons problems

are done as some of the activities.

4.3.10 Categories with very few papers. There were several cate-
gories that had only a few papers. We describe those categories and

corresponding papers here.

Two papers were categorized as a literature review (LR). One

of them was a literature review of Parsons problems focused on

three research questions. We describe that paper in more detail

in Section 2.4 [48]. The other was a literature review of insights

into learning issues such as effective learning tasks and teaching

methods [195].
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Four papers were categorized as evolutionary algorithms (EA)

and all of them looked at automatically generating Parsons prob-

lems (GPP) [11, 12, 85, 86].

There were five categories that had only one paper. 1) Only one

paper was categorized as at-risk students, and focused on identi-

fying potentially at-risk introductory programming students [17].

Their study used Parsons problems as one of many extra credit

opportunities. 2) One paper was categorized as meaningful variable

names, and focused on whether or not mneomonic variable names

made it easier to solve Parsons problems than single letter variable

names. They looked at time to solve and number of line movements,

finding no significant difference between using mnemonic variable

names versus single letter variable names [130]. 3) One paper was

categorized as novices creating curricular material, and was fo-

cused on novices trained to create curriculum material for K-12

students [33]. In particular, high school students in a summer in-

ternship program were able to create quality programming lessons

for non-computing courses. One result was that Parsons problems

were one of the easier types of lessons to create. 4) One paper was

categorized as using the process of notional machines. The paper

compared sketching out code tracing to no sketching when solving

different types of problems [38]. One of their findings was that very

few students (3%) sketched out code ordering problems (these are

Parsons problems), yet both those who sketched and those who did

not sketch all scored high in these types of problems (over 96%).

The researchers state that the small amount of sketching could

indicate that Parsons problems have low cognitive load. 5) One

paper was categorized as validation of an assessment instrument,

and presented a validated instrument to measure computational

thinking competency [134], of which Parsons problems are one of

the types of problems on the assessment.

4.3.11 Most common jointly reoccurring research themes. We stud-

ied which research themes tended to occur frequently together

by analyzing research themes that were jointly present. The most

common research themes were present jointly with Learning Pro-

gramming, which was also the most common theme as discussed

above. Out of the 134 articles that looked into Learning Program-

ming, 60 were Parsons-focused research studies (RSPF), 54 reported

on a research study that was not Parsons-focused (RSNPF), and 28

articles looked into Student Perceptions (SP). Out of the total of 29

articles that looked into Student Perceptions, almost all (28/29) were

also related to learning programming (LP), 16 presented a research

study that was Parsons-focused (RSPF), and 11 were related to not

Parsons-focused studies (RSNPF). The jointly occurring research

themes are summarized in Figure 9.

4.4 RQ3: What evidence exists for the claimed
benefits that Parsons problems offer, and for
their limitations, and what is the quality of
that evidence?

We examine the quantitative measurements presented in each paper,

to provide insight not only into what types of evidence exist but

also how strong that evidence is. This will provide researchers with

guidance as to areas where future work is needed. Table 10 shows

the types of evidence being presented in the papers in our data set.

Figure 10 illustrates the range of study sizes, by number of par-

ticipants, for each of the evidence types we have identified. Most

types of evidence presented still require large-scale replications to

verify their findings. Some types of evidence, such as using Parsons

to motivate student learning or using Parsons to understand errors

students make, have only been studied in relatively small popu-

lations. Curiously, most studies that use data on students solving

Parsons problems to feed into a machine learning algorithm have

relatively low sample sizes. These represent clear avenues of future

work.

Evidence type Frequency

learning gains 22

engagement 17

student analysis 15

code writing 11

speed 11

cognitive load 9

code tracing 7

predictive 7

student perceptions 7

motivation 6

none 6

parsons analysis 6

subgoals 4

errors 4

ease of grading 3

struggle parsons 3

feedback 2

help-seeking 2

hierarchies 2

misconceptions 2

patterns 2

benefit non-majors 1

computational thinking 1

Table 10: Type of evidence being presented in papers

Figure 11 visualizes the types of research evidence that typically

appear together in Parsons problems related papers. From the figure,

one can see that most commonly, only a single type of evidence is

presented.

Looking at co-occurring evidence, one interesting finding is that

evidence related to cognitive load is almost always accompanied

by some other type of evidence, although the type of that other

evidence in these papers is very varied – in fact, every other type of

evidence except for subgoals appeared at least once together with

cognitive load.

Looking at the percentages in the lower diagonal of Figure 11,

one can see that percentage-wise, the two most commonly jointly

appearing evidence types are codewriting and code tracing: 36.4% of

papers that had evidence related to code writing also had evidence

related to code tracing.

4.4.1 Learning Gains. We tagged 22 papers that presented evidence

on learning gains with Parsons problems [6, 20, 31, 40, 59, 61, 62, 68,
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LP RSPF RSNPF SP SE IP PSSP PSS MD CL UI IS KT NNN PPSS LG EB EA GI GPP CSP LR SAS

LP 134 60 54 28 14 13 10 11 11 10 9 8 8 6 6 5 3 3 2 3 2 1 2

RSPF 44.8% 64 0 16 2 5 11 5 7 7 7 7 3 3 5 1 2 4 0 3 0 0 2

RSNPF 40.3% 56 11 10 7 1 6 3 2 2 1 3 3 1 3 2 0 3 0 2 0 0

SP 20.9% 25.0% 19.6% 29 3 4 1 3 3 2 6 1 1 1 1 2 1 0 0 0 1 0 0

SE 10.4% 3.1% 17.9% 10.3% 14 1 1 1 1 0 0 0 0 1 2 3 0 0 0 0 0 0 0

IP 9.7% 7.8% 12.5% 13.8% 7.1% 13 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0

PSSP 7.5% 17.2% 1.8% 3.4% 7.1% 12 1 0 1 0 1 0 2 1 0 1 0 0 0 0 0 0

PSS 8.2% 7.8% 10.7% 10.3% 7.1% 8.3% 11 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

MD 8.2% 10.9% 5.4% 10.3% 7.1% 11 0 4 1 0 3 0 1 2 0 0 0 0 0 0

CL 7.5% 10.9% 3.6% 6.9% 8.3% 9.1% 10 0 0 1 0 0 0 0 0 0 0 0 0 0

UI 6.7% 10.9% 3.6% 20.7% 7.7% 9.1% 36.4% 10 1 0 1 0 0 1 0 0 0 0 0 0

IS 6.0% 10.9% 1.8% 3.4% 8.3% 9.1% 10.0% 8 0 0 2 0 0 0 0 0 0 0 0

KT 6.0% 4.7% 5.4% 3.4% 10.0% 8 0 0 0 0 0 0 0 0 0 1

NNN 4.5% 4.7% 5.4% 3.4% 7.1% 16.7% 27.3% 10.0% 6 0 0 2 0 0 0 0 0 0

PPSS 4.5% 7.8% 1.8% 3.4% 14.3% 7.7% 8.3% 25.0% 6 0 0 0 0 0 0 0 0

LG 3.7% 1.6% 5.4% 6.9% 21.4% 9.1% 5 0 0 0 0 0 0 0

EB 2.2% 3.1% 3.6% 3.4% 8.3% 18.2% 10.0% 33.3% 4 0 0 0 0 0 0

EA 2.2% 6.3% 4 0 3 0 0 0

GI 1.5% 5.4% 3 0 0 0 0

GPP 2.2% 4.7% 75.0% 3 0 0 0

CSP 1.5% 3.6% 3.4% 2 0 0

LR 0.7% 2 0

SAS 1.5% 3.1% 12.5% 2

Figure 9: Jointly occurring research themes in Parsons problems related papers. The upper diagonal shows the number of
papers that had a specific research theme pair co-occur. The lower diagonal shows how often the research theme on the left
co-occurred with the research theme at the top as a percentage. For example, considering LP and RSPF (the two most common
themes), 60 papers tagged with LP were also tagged with RSPF, leading to 60/134 = 44.8%. The empty cells in the lower diagonal
represent 0%. Please note that a paper could be tagged with multiple different research question themes.

70, 71, 81, 95, 96, 104, 105, 116, 117, 127, 147, 178, 231, 234]. Some

papers compared learning gains from solving different types of Par-

sons problems such as Parsons problems with self-explanation ver-

sus not [70, 71], with distractors versus without [95], and with moti-

vational support and without [127]. Other papers compared solving

Parsons problems to other types of practice including tutorials [96],

fixing textual code problems [62], writing textual code [59, 62], or as-

sembling blocks-based solutions [20, 234]. Many of the papers mea-

sured learning gains from systems that used Parsons problems along

with other types of practice and did not isolate the contribution from

solving Parsons problems [6, 40, 68, 81, 104, 105, 116, 117, 231]. Two

papers only included Parsons problems in the assessment [81, 178].

Research methods in this category were quantitative (20), qual-

itative (6), and both (5), with the vast majority presenting clear

research questions and a reproducible methodology. Most of the

studies (16) had two or more groups in their studies. However, only

half of the studies had clearly detailed threats to validity listed. The

studies range from 27 to 736 participants and mostly focused on

Python (9) and Java (8) with one or two studies in C++, Scratch,

VPL, and Looking Glass. A wide variety of types of Parsons prob-

lems are known to provide learning gains to students, including

basic, faded, adaptive, and with distractors. However, no studies

presented evidence of learning gains with mobile Parsons. Most of

the studies were on-campus (9), one was online, and the rest did not

mention delivery type. Overall, evidence in this category is high

quality.

4.4.2 Engagement. In total, 17 papers had evidence of student en-

gagement [11, 31, 60, 86, 88, 90, 94, 104, 111, 127, 129, 161, 176, 177,

222, 229, 231]. Parsons and Haden reported that 82% of their under-

graduate students found Parsons problems useful or very useful

for learning [177]. Morin and Kecskemety reported that 60% of

their undergraduate students were positive about Parsons prob-

lems for C++ and Matlab. Ericson, Guzdial, and Morrison found

that more students tried to solve Parsons problems in Python than

nearby multiple-choice questions in a free and interactive ebook

[60]. However, some learners have a strong negative reaction to

solving Parsons problems [98].
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Figure 10: Number of participants in studies by evidence type

Figure 11: Jointly occurring research evidence in Parsons problems related papers. The upper diagonal shows the number of
papers that had a specific research evidence pair co-occur. The lower diagonal shows how often the research evidence on the
left co-occurred with the research evidence at the top as a percentage. For example, considering learning gains and engagement
(the two most common types of evidence), 4 papers tagged with “learning gains” were also tagged with “engagement”, leading
to 4/21 = 19.0%. The empty cells in the lower diagonal represent 0%. Please note that a paper could be tagged with multiple
different types of research evidence, and that only papers tagged with IC1 (empirical papers) are included.

The most commonly used programming language was Python,

present in 7 papers, while the secondmost commonly used program-

ming language was Java, which was present in 4 papers. In practice,

when considering these programming languages, one could con-

sider that the languages themselves might influence engagement,

and thus comparisons between the languages would be beneficial.

In the majority of cases, engagement was studied quantitatively

(14 papers), while 3 of the papers used mixed methods applying

both quantitative and qualitative analysis. In general, the quality

of the work was reporting-wise good, where the vast majority of

the papers clearly reported the research process (14 papers) and

reported the results in sufficient detail (15 papers). At the same

time, only 6 articles explicitly discussed the limitations of the work.

When considering the study designs, almost half of the studies

were conducted in person (8 papers), while 5 of the studies were

conducted in an online environment. Of the 17 papers, only 6 papers

had two or more groups, allowing for a comparison that would

account for at least some of the possible confounding variables. The

most commonly studied Parsons problems type was basic Parsons

problems (10 papers), while 6 papers also included Parsons problems
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with distractors. Little work on adaptive Parsons problems or Faded

Parsons problems exists.

4.4.3 Student Analysis. A total of 15 papers looked into how stu-

dents used Parsons problems and into Parsons problems that ana-

lyzed students learning and adapted into it [11, 17, 67, 77, 86, 100,

129, 131–134, 148, 149, 193, 217].The most commonly used pro-

gramming language included variants from the C/C++/C# -family

(9 papers) and Java (7 papers). Here, the majority of the analyses are

quantitative, looking into e.g. numbers of steps that students take

or issues that students face. Similarly to studies on student engage-

ment, the reporting was mostly good: most papers appropriately

outlined the research process (10 papers) and sufficiently outlined

the research results (10 papers). Threats to validity were explicitly

reported rather scarcely (2 papers), although a few papers briefly

discussed some issues in the presented studies. A handful of papers

presented studies with more than a single population/group (5 pa-

pers), which could reflect that a deeper analysis of behavior is often

conducted in a single population in a single condition (e.g., a single

type of Parsons problem). Similar to the results on engagement,

the most commonly used Parsons problems were the basic Parsons

problems (in 9 papers) and Parsons problems with distractors (in

7 papers). Likewise, the majority of the studies were conducted in

person (7 studies), while for many of the studies the location for

data collection was not available or was unclear (5 papers).

4.4.4 Code Writing. There were 11 papers that presented evidence
on how Parsons problems impacted programming students’ code

writing abilities [43, 69, 73, 80, 81, 97, 98, 105, 138, 178, 201]. Most

presented clear research questions (7) and presented their research

in a clear (9) and reproducible (9) manner. However, only one study

explicitly listed clear threats to validity and only three used more

than one group. All studies in this group had a quantitative element

and three also contained qualitative methods. Python (6) and Java

(4) were the most popular languages in this category, with one study

each on C, C#, Perl, Pascal, and VPL. The number of participants

ranged from 62 to 612, with a majority of the studies with more

than 100 participants. Types of Parsons studied in this category are

basic (7), faded (2), adaptive (1), and with distractors (4), with no

studies on indentation or on mobile contexts. The delivery method

was mostly in-person (6) with one online and one hybrid method,

and the rest unclear.

4.4.5 Speed. A total of 11 papers provided evidence on problem-

solving efficacy in terms of speed and studied changes in it as

a consequence of using Parsons problems [59, 61, 62, 72, 90, 96,

98, 128, 165, 167, 234]. The papers provided evidence that solving

Parsons problems was significantly faster than completing a tutorial

[96], fixing code with errors [62], writing textual code [59, 62], or

assembling a blocks-based solution [234]. However, Haynes and

Ericson found that a Parsons problem with a solution that did not

match the common student solution was not significantly faster to

solve than writing the equivalent code [98].

The most commonly used programming languages were Java (2

papers), Python (5 papers), and variants from the C/C++/C#-family

(4 papers). In these papers, the research questions were almost

always explicitly defined (10 papers), the research process was clear

(11 papers), and the results were sufficiently outlined (10 papers).

Similar to the earlier categories, limitations of the study was more

rarely reported, where only 2 papers explicitly outlined threats

to validity or limitations of the study in a separate section of the

respective paper. Methodology-wise, the majority of the studies

had a quantitative aspect (9 papers), which is to be expected in

studies that seek to quantify changes in a metric such as problem-

solving speed. Out of the papers in this category, 7 had two or more

participant groups, and 6 compared two or more Parsons problem

types. Here, 4 papers included distractors and 4 included adaptive

parsons problems, while 6 articles featured basic parsons problems

– some of the Parsons problem types occurred jointly in the same

articles.

4.4.6 Cognitive Load. We categorized nine papers that presented

evidence that Parsons problems impacts programmers’ cognitive

load or that working on Parsons problems has a lower cognitive

load than writing code problems of similar difficulty [20, 38, 73, 95,

96, 123, 129, 161, 177]. Papers presenting this type of evidence have

clear research questions and methodologies and provide sufficient

details to reproduce their experiments. However, only two papers in

this category had explicit limitations and only four had more than

one group in their study. The number of participants ranges from

27 to 511. Studies were quantitative (7), qualitative (2), or mixed (2).

Languages used in these studies were Looking Glass (3), Python

(2), C++ (2), and one in each of MATLAB, Scratch, and Pascal. The

types of Parsons problems studied were basic (8), with distractors,

(6), faded (1), and adaptive (1). These studies were delivered in-

person (3) or online (2), with the rest unclear. The evidence that

Parsons problems can impact student cognitive load is extremely

high quality.

4.4.7 Code Tracing. A total of 7 papers investigated the effect of

Parsons problems on students’ code tracing ability [5, 38, 43, 57, 69,

80, 138], i.e., the ability to read code and mentally interpret and sim-

ulate how the program would work. Similarly to the earlier studies,

the most common programming languages were Python (4 papers)

and Java (2 papers), with a few studies using the C/C++/C#-family.

The studies were quantitative (7 papers), although 2 papers also

featured qualitative analyses. Of the 7 papers, 5 of them contrasted

two or more Parsons problem types with each other, although hav-

ing multiple groups of students (e.g., randomized controlled trial)

was rare (2 papers). When considering the reporting, 5 out of the

7 papers had clear research questions, provided a clear research

process, and outlined the results in sufficient detail. Similar to the

previous studies, it was relatively rare to explicitly outline the lim-

itations of the study or threats to validity, which was explicitly

discussed in its own part in 2 papers.

4.4.8 Predictive. We identified 7 papers with evidence of predicting

students’ performance using data from Parsons problems [76, 79,

112, 113, 123, 149, 193]. Interestingly, the majority of the papers

in this category were from the C/C++/C#-family (6 papers), while

more featured languages such as Python and Java were present in

only one of the papers. All 7 papers followed a quantitative analysis,

although one of them also had a qualitative component. None of the

papers had a research design with two or more groups of students,

and the papers also did not contrast between types of Parsons

problems. Out of the 7 papers, 6 featured basic Parsons problems,
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while faded, adaptive, and problems with distractors were present

in one paper.

In these studies, on average, the formulation of the study ob-

jectives could be improved, as only 3 of the 7 papers explicitly

outlined research questions. At the same time, 5 papers did clearly

outline the research process, and 6 papers reported the results with

sufficient detail. Limitations or threats to validity were explicitly

discussed in a separate section in 2 of the 7 papers, continuing the

trend observed in other evidence categories.

4.4.9 Students’ Perceptions. A total of 7 papers provided evidence

of students’ perceptions [43, 94, 100, 102, 118, 161, 168], i.e., consid-

ering how students felt about using Parsons problems. In contrast to

some of the previous categories where the analyses were primarily

quantitative, a large proportion of the students’ perceptions studies

included had a qualitative analysis (5 papers), often accompanied

by quantitative analysis (6 papers). Here, 5 of the papers reported

results from an in-person study, 1 from an online study, and 1 from

a hybrid study. The types of Parsons problems used were unclear

in 3 of the studies, while 4 of the studies used basic Parsons prob-

lems and Parsons problems with distractors. When considering the

number of Parsons problems, in 3 papers the number of Parsons

problems used was unclear, while 4 of the papers used five or more

Parsons problems.

The research process was sufficiently outlined in 5 of the papers,

while 4 papers reported the results in sufficient detail. Only 3 papers

explicitly outlined research questions, effectively highlighting the

need to make the research objectives more explicit for readers.

Similar to the previous categories, explicitly discussing threats to

validity or limitations of the study was relatively rare (2 papers).

4.4.10 Motivation. We categorized six papers that presented evi-

dence on how Parsons problems can be used to motivate students

to learn programming [2, 20, 127, 168, 189, 222]. Only three of the

papers in this category had clear research questions and clearly

described the research process. None had clearly defined limita-

tions or threats to validity. Only three of the papers had two or

more groups in their study and the only types of Parsons problems

studied were basic and basic with distractors. Each paper included

in this category uses a different programming language: Java, C++,

Visual Basic, SQL, Snap!, and Scratch. All six studies contained quan-
titative measures and three of the studies also included qualitative

measures. The number of participants ranged from 23 to 186, with

five of the six studies at or less than 73 participants. Studies present-

ing evidence on motivating students were delivered in-person (2),

online (1), hybrid (1), and the rest were unclear. While motivating

students to learn programming is a very important outcome to

study, stronger evidence is needed.

4.4.11 Parsons Analysis. We categorized as Parsons analysis ar-

ticles where the authors sought to create new types of Parsons

problems and study them. A total of 6 papers fell into this cate-

gory [11, 12, 86, 123, 157, 234], including e.g., the use of ML tech-

niques to automatically evolve Parsons problems [11, 12] and auto-

matically creating Parsons problems from code [86]. Methodologi-

cally, all 6 papers focused on quantitative analyses, while only 3 of

the papers compared and contrasted two or more types of Parsons

problems. Out of the papers, 5 outlined a clear research process,

while 4 explicitly provided the research questions and outlined the

research results in sufficient detail.

4.4.12 Subgoals. We categorized four papers that presented evi-

dence on Parsons problems and subgoals [39, 115, 164, 165]. Two

papers had clear research questions, and three had a clearly de-

tailed process and reproducible methodology. However, only two

had more than one group in the study, and only one of the papers

had clearly defined threats to validity. Three of the four studied

basic Parsons problems, and one studied basic Parsons problems

with distractors. Only Python and C have been used for this type of

evidence and the number of participants ranges from 20 to 220. Two

of the studies were delivered in-person, one was online, and one

was unclear. The quality of evidence in this category is relatively

strong despite only having four exemplars. However, much future

work remains on the impact of using subgoals in Parsons problems.

4.4.13 Errors. Four papers were identified as studying errors that

students make in Parsons problems [43, 57, 175, 177]. The analyses

were both quantitative and qualitative in 2 papers, while one paper

featured only a quantitative analysis and one paper featured only a

qualitative analysis. The research process was clear and the report-

ing of the results was sufficient in all of the papers, although only 2

out of 4 papers had explicit research questions; similarly, 2 of the 4

papers also had explicitly dedicated parts for threats to validity or

limitations of study. Number of participants was relatively small:

14, 17, 24, 87. Languages used include C, HTML, JavaScript, Pascal,

and Python. Types of Parsons problems used were basic, adaptive,

and distractors. Although the evidence in this category is good,

there is still very little work on the matter.

4.4.14 Other evidence. Nine types of evidence had three or fewer

papers with that tag. We therefore present them here in a group.

Three papers presented evidence on how Parsons problems can

ease the grading load on instructors [34, 43, 201]. While the number

of participants in these studies is relatively high and was tested

with more than one group, they only tested basic Parsons problems

and did so in-person. These studies were conducted in a broad set

of international contexts and only in tertiary education.

Three papers presented evidence that students can struggle with

Parsons problems if not properly equipped to tackle them before

attempting them [60, 67, 114]. The largest study in this group uti-

lized over 2,000 participants and presents high quality evidence on

basic Parsons problems in both secondary and tertiary contexts in

the USA. The other two studies, while conducted in international

contexts of Japan and New Zealand, have a very low number of par-

ticipants and provide vague details about research methods. More

work in this area is needed to confirm the existing evidence in the

literature.

Two papers discussed how Parsons problems are useful for pro-

viding timely feedback to students about their understanding of

the problem [100, 177]. Large and small studies representing quan-

titative and qualitative data are represented in New Zealand and

Finland. However, these studies were only in tertiary contexts on

basic Parsons problems. Future work is needed in other countries,

in other educational contexts, and with newer variations of Parsons

problems.
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Two papers looked at students’ help-seeking behaviors when

working Parsons problems [61, 147]. Both studies provide data from

large online quantitative studies in both tertiary and secondary

educational contexts in the USA on both basic and adaptive Parsons

problems. While these studies present high quality evidence, future

work is still needed to confirm and extend their findings.

Two studies used Parsons problems to examine student under-

standings of hierarchies and relationships in code [142, 175]. Both

studies present quantitative evidence with a small (<100) number

of participants, studying basic Parsons problems, without utilizing

a control and experimental group, in the USA and New Zealand.

The quality of evidence on these claims is relatively low and future

work is needed to better determine how Parsons problems impact

student understandings of hierarchies.

Two papers utilized Parsons problems to get insight into student

misconceptions [12, 54]. Both studies present quantitative evidence

on the use of Parsons with distractors in a USA context. However,

participant counts were relatively moderate (<108) or not reported

and research methodology was unclear. These works have exposed

a viable avenue of future work on how Parsons problems can be

used to understand student misconceptions while learning to code.

Two papers examined how students solve Parsons problems and

found common patterns [101, 217]. Both papers presented quanti-

tative evidence on the use of Parsons, one with distractors and one

without, in international contexts of Japan and Finland. However,

both studies lacked clear research questions and did not contain

enough details in their research methods to reliably reproduce their

results. Therefore, more work is required to validate evidence on

the patterns students use to solve Parsons problems.

One paper presented evidence that Parsons can be a useful teach-

ing tool for non-majors [39], one paper examined how Parsons

impacts students’ computational thinking [134], and one paper

compared execution-based feedback to line-based feedback and

found benefits and drawbacks to both [100]. More work is needed

in these categories to validate their claims.

Figure 12 shows a cross tabulation between the research themes

based on RQ2 and the types of research evidence based on RQ3.

From the figure, it is evident that there are some themes that have a

substantial amount of evidence of various types while other themes

are quite lacking in evidence, thus providing ample opportunities

for future research.

For example, learning programming (LP), student perceptions

(SP), and research studies focusing on Parsons problems (RSPF)

had at least one paper presenting each of the different types of

evidence we analyzed. On the other hand, two themes – literature

review (LR) and collaborative problem solving (CSP) did not have

any papers with evidence. This is not very surprising, however,

since there were very few papers falling under those two themes (2

for LR, 2 for CSP), while the themes with a lot of varied evidence

were also the most common themes (LP with 134, SP with 79, and

RSPF with 64 papers).

5 GAP ANALYSIS AND RESEARCH
DIRECTIONS

From the results of our literature review, we conduct a gap analysis

related to the three main research questions to identify directions

for future research. These are discussed next.

5.1 Contextual Research Gaps
A large proportion of the identified studies on Parsons problems

focused on CS1- and CS2-level courses in tertiary education, cov-

ering elementary concepts such as loops, conditionals, variables,

lists and arrays, and functions. At the present state, although there

is plenty of evidence of Parsons problems supporting learning a

new task and topic, the use of Parsons problems in more advanced

courses and more advanced topics is less common. There is a clear

research gap that calls for researchers to study whether and to what

extent learners would benefit from the use of Parsons problems

in advanced algorithm-focused classes such as Design and Anal-

ysis of Algorithms, Randomized Algorithms, and Computational

Geometry. Further, the benefits of Parsons problems in software

engineering related classes such as Web Software Development

should also be explored — the latter course in particular could pro-

vide insight into the benefits of Parsons problems when working

with applications that consist of multiple files and multiple types

of code (e.g. SQL, JavaScript, HTML, CSS).

When looking into the number of participants in the studies, we

observed a good scatter of participant counts with a median around

102. As the majority of the studies focused on a single context, there

was little discussion on the effect of the class size on the benefits of

the Parsons problems. We see a clear need in studying the benefits

of Parsons problems in classes of different sizes. One could, as an

example, hypothesize that students in smaller classes could have

more direct support available from the course instructors, which

could in a sense influence the observed benefits of Parsons problems.

In the same vein, the benefits of Parsons problems could be more

considerable in larger classes with less opportunities of support

from instructors. Of course, when conducting such studies, the

contextual factors such as available support should be made more

explicitly clear.

As we further reviewed the studies in terms of contextual vari-

ables and sample sizes, we observed less-than-expected consider-

ation of the prior experiences of the participants when reporting

and reflecting on the study results. Given that Parsons problems

are often used as a supporting tool for learning programming, one

should look into the benefits of Parsons problems for students with

different backgrounds and identities. As an example, further stud-

ies should look into to what extent students’ prior programming

background influences the utility of Parsons problems, and also

into at what point can Parsons problems become harmful (e.g. due

to the expertise reversal effect [209]).

Further, when considering the variety of learning management

systems and tools used for delivering Parsons problems, there is a

clear need to understand the affordances of these tools and systems

and consequently their effect on the use of Parsons problems and

learning. Given that diverse systems deliver Parsons problems, is it

possible that some study results could be explained by the tools used



Parsons Problems and Beyond ITiCSE-WGR ’22, July 8–13, 2022, Dublin, Ireland

learning gains engagement student analysis code writing speed cognitive load code tracing predictive student perceptions motivation none parsons analysis subgoals errors
LP 12 9 4 6 7 4 5 4 2 4 1 4 2 1
SP 11 7 3 5 6 4 4 0 1 3 1 3 1 1

RSPF 10 6 3 4 6 3 3 0 1 2 1 3 1 1
RSNPF 2 3 1 1 1 0 2 4 1 2 0 1 1 0

PSS 4 4 2 0 1 0 0 3 0 0 1 2 0 0
SE 0 3 0 0 1 0 0 0 1 2 0 0 0 0
IP 0 1 0 0 1 0 0 0 0 0 0 0 0 0

PSSP 1 2 1 0 0 0 0 0 0 0 0 2 0 0
MD 0 0 0 1 1 0 0 0 0 0 0 0 0 0
CL 2 0 0 0 2 1 0 0 0 1 1 0 1 0
UI 1 1 0 0 0 0 0 0 0 1 0 0 0 0
IS 1 0 1 1 0 0 1 0 0 0 0 0 0 0
KT 1 0 0 0 2 0 0 0 0 0 0 1 1 0

NNN 1 1 0 1 1 0 0 0 0 0 0 0 0 0
PPSS 0 1 1 0 1 0 0 0 0 0 0 0 0 0

LG 0 0 0 0 0 0 0 0 0 1 0 0 0 0
EB 0 1 1 0 0 0 0 0 0 0 0 1 0 0
EA 1 0 0 0 1 0 0 0 0 0 0 0 0 0
GI 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GPP 1 0 0 0 1 0 0 0 0 0 0 0 0 0
PPP 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CSP 0 0 0 0 0 0 0 0 0 0 0 0 0 0
LR 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SAS 0 0 0 1 0 0 1 0 0 0 0 0 0 0

Figure 12: Cross tabulation between the thematic research areas (RQ2) and the research evidence (RQ3) presented in Parsons
related papers showing what type of evidence has been presented for the different research themes. Please note that a paper
could be tagged with multiple different themes and/or types of research evidence, and that only papers tagged with IC1
(empirical papers) are included.

in delivering the problems? If so, the results may not generalize to

cases using alternate tools.

Students learning to use the systems should also be considered

more often; as an example, rather few research studies on Parsons

problems utilized practice sessions where students would first learn

to use the system, which could lead to confounding issues that

relate to the usability of such systems. We acknowledge that the

issue is also present in other studies that deliver content using a

system.

Related to usability is the lack of research on Parsons prob-

lems and error messages. Programming error messages (PEMs) are

widely known to be a source of difficulty for novices [14]. Recent

research has attempted to close this gap by attempting to under-

stand how to make more usable error messages for novice learners

[15, 16, 44, 46, 186, 187], but this usually centers around compiler

or other syntax error messages reported at compile or runtime. One

benefit to using Parsons problems is that we have the opportunity

to rethink PEMs in this context. Since the problem domain has been

drastically reduced, so too have the errors that can and should be

shown to students. This also means that new types of errors are

possible that would not be made by students writing code in an

IDE. It’s possible that existing guidelines for error messages could

be useful [14], though this has not been empirically confirmed. It’s

also possible that information on novices moving to a new pro-

gramming language could be useful [42] given the stark differences

between programming from scratch and using Parsons problems.

We call for more research on this topic.

Finally, naturally, when new types of Parsons problems are intro-

duced, their effect should be compared and contrasted with other

types of Parsons problems, and preferably studied in more than one

context.

5.2 Thematic Research Gaps
When considering the research themes discussed in Section 4.3, we

observe that many of the themes have occurred rarely altogether

and that, regarding jointly reoccurring research themes, there are

various themes that have not appeared together. In addition to the

empty areas in the heatmap in Figure 9, which reveal research gaps,

the areas with only a few papers could require further attention.

As an example, as also already discussed above, the impact of the

systems used on students’ learning should require further attention,

as presently none of the articles explicitly study the user interfaces

(UI) jointly with cognitive load (CL) or student engagement (SE).

Given that the user interface can be a considerable confounding

factor and influence both cognitive load and engagement, varia-

tions in user interfaces should be explored — as an example, one

could study whether having to sort fragments in place or having

to move and sort fragments to a specific solution area would yield

different levels of cognitive load and whether it would affect student

engagement. Naturally, this would have to take into account the

specific types of Parsons problems, such as using distractors in an

area where the only possibility is to sort the fragments would likely

lead to broken programs, if there was no functionality to comment

code or otherwise remove the distractors.

Further, when considering cognitive load, it is perhaps surpris-

ing that identifying behavior that could lead to increased cognitive

load is also relatively rarely explored. As an example, using Prob-

lem Solving Solution Paths (PSSP), one could identify states in the

problem solving process that are likely related to higher cognitive

load, and also look into what pathways lead to those states. For

students who are on such a path, PSSP analysis could inform UI

design, provide early feedback or interventive scaffolding (IS), and

assess the effectiveness of such feedback on students’ learning.
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Interestingly, also, the Problem Solving Solution Paths (PSSP)

seem to not have been studied with Skill Acquisition Sequence

(SAS), although how a student solves an individual Parsons prob-

lem could likely provide insights into their skills and, when using

multiple Parsons problems, and their possible sequencing.

Very few studies have been done that relate to identity issues for

various underrepresented learner groups. We identified only three

papers that consider the intersection of gender identity (GI) and

Parsons problems, and we found none considering the intersections

with many other under-served identity groups.

Lastly, we found that papers related to mobile devices (MD) had

not considered instructor perspectives (IP) or predicting student

success (PSS), which would make novel future directions for re-

search.

5.3 Gaps in Research Evidence
While there is strong evidence for several benefits from Parsons

problems, there is a clear need for replication studies and more

multi-institutional and multi-national studies. Most of the research

studies were conducted at a single institution with less than 500

subjects. Some proposed benefits from using Parsons problems,

such as using them to predict struggling students or to understand

student errors, had a small number of participants. Since much

of the current research was done with introductory concepts in

Python and Java, there is a clear need for more studies using other

languages and/ormore advanced concepts. Also, most of the current

studies were conducted in classrooms, so more work should be done

in online and hybrid formats. In addition, more research studies are

needed on some of the newer types of Parsons problems such as

adaptive, faded, or mobile.

Only one study compared the learning gain from solving Par-

sons problems with distractors versus those without. This study

claimed that distractors hurt learning efficiency [95]. However, it

only studied one type of distractor (suboptimal path) and only

assessed learning on Parsons problems without any distractors.

Parsons and Haden hypothesized that distractors help students

learn to recognize and fix common syntax errors while writing

code [177]. A qualitative study provided evidence that teachers

who were learning to program felt that solving Parsons problems

with distractors helped them learn to fix and write code [57]. Morin

and Kecskemety reported that 60% of their undergraduate students

were positive about distractors [162]. More research needs to be

done with and without distractors to clarify their effect on learning

and student engagement.

In addition, only one study compared solving Parsons problems

with execution-based feedback versus line-based feedback [100].

That study found benefits and issues with both types. However, it

did not compare the two types with respect to learning gains. Stu-

dents who needed more than one attempt to solve the problem took

longer to reach a correct solution with execution-based feedback

than with line-based feedback, while students with execution-based

feedback requested feedback less frequently. Regarding benefits

and issues, execution-based feedback can allow multiple possible

solutions, while line-based systems typically have only one correct

solution. Similarly, line-based feedback highlights problem areas

better than execution-based feedback. Some Parsons systems have

used execution-based feedback [84, 96, 225] while others have used

line-based feedback [59, 109, 128]. More research should be done

to determine the effects of different types of feedback.

While there is evidence that most students find Parsons prob-

lems engaging [161, 177], there is also evidence that some students

strongly dislike them [98]. One study found evidence that Parsons

problems were beneficial for novice students, but that fix and write

code activities were more beneficial for more advanced students

[69]. More work should be done to determine who benefits from

solving Parsons problems and under what conditions. Since Parsons

problems are a type of scaffolding, work should also be done to

determine how to best fade that scaffolding as expertise develops.

Only two randomized controlled studies have been done compar-

ing learning gains from solving Parsons problems versus writing

the equivalent code [59, 62]. These were both conducted with un-

dergraduate students in Python. Most computer science courses

require students to mostly practice by writing textual code from

scratch. More evidence is needed to convince instructors that Par-

sons problems can help students learn to fix and/or write code.

6 PARSONS STUDY IN A BOX
There have been fewmulti-institutional andmultinational studies of

Parsons problems [69–71], and those that have been conducted have

had fewer than 100 participants. Large scale multi-institutional and

multinational studies are needed to provide generalized and robust

evidence of the effectiveness of Parsons problems, and to reveal

different effects by context. We designed and pilot-tested materials

for several studies based on the identified need for research in three

areas related to learning. Specifically, we focused on comparing

learning between the following pairs of conditions:

(1) solving adaptive Parsons problems versus writing the equiv-

alent code

(2) solving adaptive Parsons problems with and without distrac-

tors

(3) using a Parsons problem to scaffold students while writing

code versus no scaffolding

Since most of the research studies to date have been on basic

introductory concepts like loops and conditionals, two of the stud-

ies focus on writing classes in Python. For deploying the studies,

we selected the Runestone Academy platform because it supports

adaptive Parsons problems [59], is a robust platform already used

by thousands of students, and logs all interactions. Our goal was

to create ‘studies-in-a-box’ that include all the information and re-

sources that an instructor would need to contribute to one or more

multi-national and multi-institutional studies on the effectiveness

of Parsons problems.

It is important to note that there can be accessibility issues in

Parsons problems as they are typically visual and require the user

to drag and drop blocks. Runestone Academy added the ability to

use a tab to move blocks for students with accessibility issues. In

addition, Runestone is in the process of changing authoring lan-

guages from reStructuredText to PreText in part because unlike

most other markup languages, PreText is designed to serve doc-

uments in a wide variety of output formats: PDF, HTML, EPUB,

Jupyter notebooks, and electronic or embossed braille. Special at-

tention has been given in PreText to making the HTML output as
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accessible as possible such as the inclusions of tactile outputs for

both mathematical and graphical output.

6.1 Development Process
We first gathered information in a Google form from the working

group members about opportunities for running a study in the

summer and fall. This form included the programming language,

number of students, location, type of opportunity (summer camp,

undergraduate course, etc), and topics covered. Based on these

opportunities, we created materials for an experiment on the basics

of Python 3. We leveraged practice problems that had been used

in other research [98]. Participants were randomly assigned to one

of two types of practice: Parsons problems or write code problems.

See Figure 13 for an example Parsons problem and Figure 14 for

the equivalent write code problem.

Since students in this study were not familiar with the Runestone

platform, we created a page to introduce the types of problems.

The page has videos that explain how to solve adaptive Parsons

problems and write code problems. It also had very simple practice

problems to verify that participants can solve each problem type.

Since we did not have an opportunity to test the materials with

students we added a feedback box to the end of each page in the

study. We revised the materials based on this feedback.

Figure 13: Example question shown to participants in the
practice condition that used Parsons problems

There were five problems in each of the practice conditions and

five problems on the post-test. Three of the post-test problems were

write code problems with unit tests as shown in Figure 15 and

two were fix code problems with errors like the distractors in the

Parsons problem that also had unit tests. The post-test problems

were scored based on the percentage of unit tests that pass. In order

to keep the activity length for this initial pilot short, we did not

include a separate set of questions for a pre-test.

Figure 14: Example question shown to participants in the
practice condition that used write code problems

Figure 15: Example of one of the write code questions on the
post-test with unit test results

6.2 Pilot Test
We tested the study materials with novice students learning to

program in Python at both DePaul University and the University

of Virginia. These students were familiar with the basics of Python

3 including variables, strings, conditionals, functions, list, tuples,

and dictionaries.

Instructors asked students to voluntarily participate in the pilot

test at DePaul University shortly after the semester had ended.

Two students started the practice but did not complete it. One

student correctly completed all the Parsons practice problems but

did not attempt any of the post-test questions. Instructors also asked

students to voluntarily participate in the pilot test at the University

of Virginia. Nine students from the University of Virginia correctly

completed all of the problems in the familiarization page. Only six

(67%) of the students continued to the practice problems. Two (33%)

were in the write code condition and four (67 %) were in the Parsons

condition. The average score for the write code condition was 36%

while the average score for the Parsons condition was 51%. Only

one student (11%) completed the post-test with a score of 64%. Very
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low participation rates in voluntary software evaluations like this

are common, as we have earlier noted in this report (for example,

see discussion of [25] in Section 2.2.1).

6.3 Changes Based on the Pilot Test
Since very few students voluntarily completed all parts of the pilot

test, we recommend that instructors conduct a study as part of

regular class activities, such as in a lab or discussion group, and

give credit to students who at least attempt every section. This will

require that students login with an identifier that instructors can

use to assign credit. Instructors can generate anonymous logins

and passwords for students and keep a map from the generated

login to their actual identifier, or we can share a script to run on

the log file to anonymize the data before it is shared. Instructions

for both of these approaches are included in our study-in-a-box

documents.

In our pilot, the difficulty of the practice problems and post-test

questions may have discouraged some of the participants from

completing the study. We have modified the study since then to

cover fewer topics by removing questions on dictionaries. We added

text on both the practice and post-test page that says, “Please answer

the following problems to the best of your ability without any

outside help. You can stop working on a problem after you worked

on it for about five minutes without solving it.”

6.4 Studies-in-a-box
All materials for these studies, including contact information, can

be accessed on our online resource page
6
.

All studies start with a page explaining the purpose of the study,

the estimated time for the study, and the parts of the study. All

studies have an estimated time of 50 minutes, designed to fit into a

typical lab/discussion period. There are four parts to the studies:

a pre-survey about the student’s experience and confidence, an

introduction to the different types of problems with videos and

practice problems, a set of practice problems with two conditions

(A/B), and a set of post-test problems. Learners are randomly placed

in either condition A or B.

We also created an optional pre-test and an optional post survey.

The pre-test will allow us to establish that the groups have equiva-

lent prior knowledge, and the post survey will permit analyses by

gender identity, age, major, and amount of prior experience with

programming in Python.

The steps to run a study are as follows:

(1) Seek approval for the study from the local Institutional/Ethics

Review Board. On the online resource page, we provide sam-

ple IRB applications.

(2) Fill out an online form with basic information about your

context including the programming language, type of course

or opportunity, number of students, if you are giving any

points/credit for completing the study and if so how many.

(3) Create a custom course on Runestone Academy for your

students.

(4) You can either ask your students to register for your custom

ebook using an institutional identifier such as student name

6
https://iticse22-parsons-problems.github.io/

or number or create user names for your students and handle

the mapping from user name to the student identifier.

(5) Optionally have students take the pre-test in the ebook.

(6) Run the study. We recommend running the study in a lab /

discussion or lecture if possible and giving credit for com-

pleting the study.

(7) Optionally have students fill out the post survey.

(8) If you want to see how your students performed you can use

the grading interface on the instructor’s page to grade the

practice and post-test.

(9) Download the log file for analysis from the instructor’s page

and submit it to a shared online drive for analysis. If the log

file contains any student identifiable data we will provide a

script to convert it to an anonymized format first or alterna-

tively we can request an anonymized log file for that custom

course from Runestone.

We now describe three studies that are ready for deployment.

These studies are all for Python 3.

6.5 Study 1: Solving Adaptive Parsons vs Write
Code

While several studies have provided evidence that students can

solve Parsons problems significantly more quickly than writing the

equivalent textual code [59, 62] or assembling the equivalent blocks

in a block-based environment [234] with no negative effects on

learning, these studies have been conducted at single institutions in

a single country. In addition, recent research found that students are

not always significantly faster at solving Parsons problems versus

writing the equivalent codewhen the Parsons problem solution does

not match the most common student solution and/or when there

are many different possible solutions [55, 98]. It is important to test

the learning efficiency of solving Parsons problems versus writing

the equivalent code in many languages, contexts, institutions, and

countries.

This study uses Python 3. It should be conducted after students

have been introduced to the covered concepts (variables, modulus,

Boolean flags, strings, conditionals, loops, functions, and lists), but

have not yet mastered loops and lists.

Students will be randomly assigned to one of two practice con-

ditions: adaptive Parsons problems or the equivalent write code

problems. The practice problems have been used in other studies

[98] and have been revised to ensure that the Parsons solution

matches the most common student written solution. The fix code

problem in the post-test has errors that match the distractors in

the Parsons problems. The study materials are available in a free

ebook
7
. If you already have a Runestone account you can add the

course name of “p3pt”.

6.6 Study 2: Solving Adaptive Parsons Problems
with Distractors vs No Distractors

As noted in Section 5.3, only one prior research study compared

learning gains from solving Parsons problems with distractors ver-

sus without distractors [95]. This work was conducted in a blocks-

based environment and only used one type of distractor (suboptimal

7
https://tinyurl.com/2p8t6yup

https://iticse22-parsons-problems.github.io/
https://tinyurl.com/2p8t6yup
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Figure 16: Write code problem with a Parsons problem as scaffolding

path). The post assessment required learners to put only the cor-

rect blocks in order. Parsons and Haden hypothesized that solving

Parsons problems with distractors would help students learn to

recognize and avoid common errors [177]. A qualitative study pro-

vided evidence that teachers found solving Parsons problems with

distractors useful for learning to fix and write code [57]. However,

more work needs to be done to determine if distractors can help

students learn to recognize and avoid common errors.

This study uses Python 3. The concepts covered include variables,

creating a class, and writing reserved methods (such as __init__
and __str__) and writing new methods. This study is intended to

be conducted before learners have started to learn how to write a

class. The study materials include a short introduction about how

to create a class and methods in Python.

Students will be randomly assigned to one of two practice condi-

tions: solving Parsons problems with distractors or solving Parsons

problems without distractors. The study materials are in a free

ebook
8
. One of the practice problems with paired distractors is

shown in Figure 17. If you already have a Runestone account you

can add the course name of “class-exp”.

6.7 Study 3: Solving Write Code versus Write
Code with Adaptive Parsons as Scaffolding

Many students struggle while writing textual code from scratch

[124]. Hou, Ericson, and Wang have recently started using Parsons

problems as a type of scaffolding for students who are struggling

whilewriting textual code in Python [106]. They found that students

used the Parsons problem to reduce the difficulty of the write code

problem, to get a sense for the types of elements in a solution, as

a type of directed search, and to help them debug. However, they

8
https://tinyurl.com/3j47kt8s

Figure 17: An adaptive Parsons problem with paired distrac-
tors shown to students in the practice condition

had a ceiling effect on the pre-test [106], so more work needs to be

done to determine the effectiveness of this approach.

This study uses Python 3. The materials in this study are the

same as in Study 2 other than the practice problems. This study is

intended to be conducted before learners have started to learn how

to write a class.

Students will be randomly assigned to one of two practice con-

ditions: solving write code problems without any scaffolding or

solving write code problems with Parsons problems as scaffolding

as shown in Figure 16. The study materials are in a free ebook
9
.

If you already have a Runestone account you can add the course

name of “class-tog”.

9
https://tinyurl.com/34jjck96

https://tinyurl.com/3j47kt8s
https://tinyurl.com/34jjck96
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7 CONCLUSION
Parsons problems have a long history in computing education

practice, providing convenient scaffolding for students learning

to program. In recent years, both research and classroom interest in

Parsons problems have increased due to the widespread adoption

of cloud-based educational platforms into which they are directly

integrated. This working group has conducted an extensive review

of the literature, classifying prior research with respect to study

contexts, research foci, and the extent and quality of the presented

empirical evidence. As a result, we have been able to highlight

current research gaps and thus design targeted study protocols and

associated resources which we now invite the computing education

research community to utilise.

In this report we have explored the origins of Parsons problems

and outlined their defining characteristics. Our systematic review

of the literature identified 141 relevant publications which we have

analyzed and reported with respect to three primary research ques-

tions. Specifically, we investigated the range of contexts in which

studies were conducted and the types of Parsons problem features

that were used (RQ1). We explored the research questions that

guided the work and thus were of interest to the community (RQ2),

and we assessed the quality of the evidence that currently exists for

the benefits (and limitations) of Parsons problems (RQ3). Finally, we

identified existing gaps in the current research literature and have

produced experimental protocols and resources that we welcome

the research community to use. Our hope is that these resources

will enable replication of studies at a large scale and in a variety of

contexts, resulting in more generalizable findings.

Through our findings relating to the quality of evidence, we

emphasize the need for better reporting standards in computing

education research. Researchers should explicitly report:

• study designs, including which variation of the instructional

material was used (e.g., faded Parsons problems, with or

without distractors, type of feedback),

• definitive participant numbers, including the initial number

that began the study as well as how many completed the

entire intervention,

• participant background information, especially previous pro-

gramming experience,

• information on study contexts which should include the in-

stitution characteristics, course information, programming

language, if and how participants were incentivized to com-

plete the study, etc., and

• specific information about the instructional material used,

including any variation on the standard approach.

Finally, our hope is that this working group report will serve as a

useful resource for researchers interested in exploring Parsons prob-

lems, whether they are new to the area and seeking to understand

the current landscape of research, or are experienced researchers

looking to identify new and fruitful directions. In order to better

understand the key factors that determine the success or failure of

Parsons problems in the classroom, there is a need for replication

studies in a broad range of contexts. In addition to the research gaps

highlighted in this report, as new types of Parsons problems are

developed and deployed there remains an ongoing need for their

evaluation. We also hope this report can serve educators who are

interested in using Parsons problems in the classroom to improve a

range of student outcomes, including engagement, satisfaction and

learning.
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A APPENDIX: EXTRACTION SHEET
Reviewer name
Article title
Inclusion / exclusion criteria Parsons problems is an exercise

type used for learning and assessing the ability to construct

programs (* programs = intentionally allowing also e.g. or-

dering higher level plans, while limiting the scope to pro-

gramming). Parsons problems feature a limited set of blocks

that the user needs to move to produce a solution (* limited

= not open-ended, * move = intentionally allowing also a

type where the blocks are in a single area). There can be

extra blocks that are not needed for a solution, and the user

may be allowed to enter e.g. variable values into the blocks.

• IC1 - Contains empirical results on the use of Parsons

problems / collects data from the use of Parsons problems

• IC2 - Describes a system/tool for presenting/delivering

Parsons problems

• IC3 - Describes the use of Parsons problems for teaching

• EC1 - Article is not written in English

• EC2 - Article length is less than or equal to 2 pages

• EC3 - Article is not peer reviewed

• EC4 - Article is a thesis or a dissertation

• EC5 - Parsons problems not discussed (mentioned?) in

methodology or results (e.g. citing Parsons but not relevant

to gist of the paper)

• EC6 - Not related to Parsons problems

Decision If "Exclude" is chosen, there is no need to upload the

paper or provide bibtex information. If "Discuss" or "Include"

are chosen, please fill in the remainder of the form. New: Use

"Exclude but check when building background" if the paper

should be excluded from the lit review but it has components

that could be useful in building the background.

• Include

• Exclude

• Discuss

• Exclude but check when building background

• Other:

Article PDF Upload PDF of article

Bibtex entry Use Google Scholar format; e.g. @inproceedings

du2020review, title=A review of research on Parsons prob-

lems, author=Du, Yuemeng and Luxton-Reilly, Andrew and

Denny, Paul, booktitle=Proceedings of the Twenty-Second

Australasian Computing Education Conference, pages=195–

202, year=2020

Article type A "Lab-based" study is a study that is conducted in

a research lab (i.e. a highly controlled environment), while

a "Classroom-based" study is a study that’s conducted in

a normal classroom situation (less controlled). A "System"

paper describes a system. An "Experience report" is where

the author reflects on their personal experience, but does

not involve collection and analysis of data from students or

the system (such papers used to be common, but are much

less common now).

• Lab-based study

• Classroom-based study

• System paper

• Experience report

• Other:

Study context / level At what educational level is the study con-

ducted?

• Uncontextualized

• Primary school (e.g. elementary school, intermediate school,

middle school)

• Secondary school (e.g. high school)

• Tertiary education (e.g. college, university): CS1, CS2

• Tertiary education (e.g. college, university): other courses

• Life-long learning (e.g. MOOCs)

• Not applicable

• Other:

Study context / course topic (or NA) A copy-paste description

of context / course topic for the purposes of a more detailed

thematic analysis of the sorts of contexts where these studies

have been conducted. This information can often be found

at the beginning of a Methods section.

Study context / course delivery How is the course typically de-

livered to students? The main distinction will be whether

the course is delivered fully "Online" or not. The distinction

between Campus-based and Blended/hybrid might be more

subtle, and may not be easy to determine from the informa-

tion given in the paper (if so, feel free to code as "Unclear").

A campus-based course would be one where all teaching ac-

tivities are conducted on campus, whereas a blended course

would have some teaching components (lectures, labs) deliv-

ered online.

• Campus-based course

• Blended/hybrid course

• Online course

• Unclear

• NA

• Other:

Study context / Parsons problem grading Did students receive

any marks/grades/credit for participating with the Parsons

activities described in the paper?

• Not graded

• Graded

• Unclear

• NA

• Other:

Study context / Parson problem usage (count) Howmany Par-

sons problems did students solve as part of the Parsons ac-

tivities described in the paper?

• One

• Less than five

• Five or more

• Unclear

• NA

• Other:

Study context / Parsons problem role What role do the Parsons

problems play with respect to the delivery of the course?

• Part of normal instruction

• Bonus activity

• Extracurricular activity

• Unclear
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• NA

• Other:

Study context / Country Where does the study take place?

• USA

• Unclear

• NA

• Other:

Number of participants (if available, enter in other) Fromhow

many participants were data collected? (if the information is

available, report the number of students who actually partic-

ipated rather than the total number enrolled in the course).

• Not applicable

• Unclear

• Other:

Two or more groups? Were there two or more groups in the ex-

periment (e.g. a control and a treatment group). In this case,

the authors should make some attempt to "compare" some

measure between the groups.

• Yes

• No

• Unclear

• NA

• Other:

Motivation of work How do the authors motivate the work?

(copy-paste, short description, unclear, or NA). Open-text

entry

Research questions What are the explicit research questions /

research goals / hypotheses in the article? (copy-paste or

NA). Open-text entry

Concepts taught What concepts (e.g. loops etc) are being taught

with Parsons problems? (copy-paste, short description, un-

clear, or NA). Open-text entry

Features What are the features of the used Parsons problems? If

there are novel or unusual features in the article that aren’t

covered by the options, document those in the "Other" field.

• Basic (i.e. draggable code lines)

• Faded (i.e. draggable code lines with parts that need to be

filled in)

• Distractors (i.e. code lines that are not needed)

• Adaptive

• Optional (i.e. code lines where you have to pick one or

more but not all from a set)

• Unclear

• NA

• Other:

Programming langauge What programming language (if any) is

used with Parsons problems?

• Pseudocode

• Java

• Python

• C

• C++

• Not programming language focused

• Other:

Analysis type How does the article evaluate aspects of Parsons

problems or their impact?

• Qualitatively

• Quantitatively

• The article does not evaluate aspects of Parsons problems

Contribution What is the contribution / what are the key results

of the article? Provide a short summary of themain findings.).

Open-text entry

Efficacy Does the article provide a clear measurement of the effi-

cacy/effectiveness of Parsons problems? Although the con-

tribution/results documented in the previous field should

include mention of efficacy/effectiveness where relevant, the

options below may be helpful when we analyze the data to

identify articles that make claims regarding effectiveness.

Please record if the article makes a positive claim regarding

efficacy (of anything) that can be measured, and whether

this is contrasted with other options. If findings are neutral

or negative, please state under "Other".

• Yes, but without a comparison to one ormore other options

• Yes, and with a comparison to one or more other options

• No

• NA

• Other:

Quality assessment An assessment of the research "quality". For

the last question, on threats to validity / limitations: code

as "Yes" if there is an explicit (sub)section, "Vague" if they

are mentioned as part of some other section (i.e. Discussion,

Conclusions), or "No" if they are not mentioned.

• Is there a clearly defined research question/hypothesis?

[Yes/No/Vague]

• Is the research process clearly described? [Yes/No/Vague]

• Are the results presentedwith sufficient detail? [Yes/No/Vague]

• Are threats to validity / limitations addressed in an explicit

(sub)section? (code as "vague" if discussed, but not in a

separate subsection) [Yes/No/Vague]

Additional notes Open-text entry

B APPENDIX: INTERVIEWWITH DALE
PARSONS

We conducted an interview with Dale Parsons on 19th July, 2022.

The list of questions and a transcription of this interview is provided

below.

Q1 First things first, are they "Parsons Programming Puzzles" or

"Parson’s Programming Puzzles" (both spellings appear in your orig-

inal paper, although the former occurs just once). So it would seem

the paper spells them "Parson’s" but your surname is "Parsons"!

Dale: There is quite a story behind this. I would like to retract that
title right now and take the apostrophe off! I consider them my gift to
the world, I prefer no ownership of them. What actually happened, is
that was not the name of the paper. They were originally just called
Programming Puzzles. We wrote the paper and at the last minute,
Patricia thought it wasn’t a jazzy enough title. She likes a bit of
alliteration, so she thought Parsons Programming Puzzles would be
better. We laughed about it, and the deadline was nearly up, so we
did a search and replace quickly. We didn’t proof read it at that point.
The apostrophe was a mistake, there should be no apostrophe.

Q2 Do you recall if there was any discussion about naming the

puzzles? How close were they to being called Haden’s Programming

Puzzles?
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Dale: Patricia was our research coordinator. I work at a Polytech
[type of university] and we had to be research active. Patricia was
thinking what could we publish a paper on. I was thinking nothing,
but I got these little programming puzzles. Patricia said write about
them. They were my puzzles and it was my idea, but Patricia is
actively brilliant, and she turned it into the paper. From that point on
we had the most fantastic partnership. I would come up with ideas
and experiment in the classroom, and Patricia would maneuver it
into a good study and write the final paper. She loved writing and I
hated it. We always thought the other one was doing all the work. It
was a perfect partnership. I really want to emphasize how important
Patricia’s role was, there would not have been a paper without her.
She is one of the finest academic writers I have ever come across. We
were in a research partnership for 15 years and she was always the
most valuable member of the team.

Q3 Your paper motivates the idea well, but do you remember

how you came up with it? What was the inspiration? Did you

explore this activity in other ways before actually building the tool

(based on Hot Potatoes)?

Dale: My thing was that I would run the labs and during the lab
the students would never make errors that I hadn’t seen before. I was
big on, oh, here we go again, it is the same error. I kept wanting to
highlight them. We do a lot of showing code on the board, and asking
what is wrong with this line, it is a very common error. That inspired
me to do the puzzles. I was trying to use all that intel I had with all
the common errors, that is what I was trying to do with the puzzles. I
was hoping students would see that common error, and realize that
is not right, I should be doing this, hopefully when they see the two
lines together. It has always been disappointing that people didn’t see
it that way. People thought you were trying to trick them or distract
them with the puzzles, but actually I was trying to point out common
errors. I think that has been the least successful part of the puzzles.
For implementing the puzzles, hot potatoes was my first attempt at
implementing it. Later we looked at GUIs and other things and they
were much prettier. Hot potatoes was just so easy, and made them so
fast to create.

Q4 How successful were Parsons problems in your own teach-

ing? Did you find that they worked well and helped develop the

skills you wanted students to learn? What lessons would you share

with someone adopting Parsons problems for the first time?

Dale: I think they were always for my struggling students, and
they tended to be the ones that wanted to do them. They didn’t really
take off with my more advanced students, and the struggling students
always wanted more of them. It was a constant struggle to make
enough, and I never really had enough of them. But I always wondered,
I always used them after the lab, as homeworky-type things, and I
also wondered if they would have been better before the lab, so those
students would have had an idea of what was to come, but I never
tried that. I always put a lot of effort into those distractor lines, that
was the whole purpose of the puzzle to me. I didn’t think at the time
that the code ordering was as important as the "let’s don’t fall for
this common error." I was obsessed with the errors all the time. Now I
think the code ordering has become more important and maybe more
useful for the students. For advice for those adopting for the first time,
I would still put a lot of effort into the errors, the distracting line, and
loads of similar problems, because I still think you are aiming for
those struggling students. I don’t think the really good students needed

them other than it is quick. But I think reading good lines of code and
ending up with an exemplar, because the poor students didn’t end up
ever having readable bits of code because they were so lost. So I think
it was beneficial to everyone. You trick them into reading code in the
end.

Q5 You told us that you already used Parson’s problems post-lab

and thought about using them pre-lab. Where and when would you

like to see Parsons problems introduced into a student’s learning

trajectory?

Dale:Well, I still think early on, very early in the course. Even if
you had a bad day in the lab, then at least you could achieve these
things, and you end up with a little bit of code that looks like it is
going to work. It is all about making you feel better about your code.
Nothing worse than spending an hour in the lab and nothing works.
And the students found them fun, so it was all about motivating them
to keep going.

Q6 The use of Activity Diagrams (a bit like flowcharts) were

an important theme in the approach you reported in your paper.

These have been less commonly used by others, in favour of textual

problem prompts. Did you continue to use such diagrams over

time?

Dale: I love them. We still teach activity diagrams in the first
computing course. I think it is probably an old fashioned thing. When
I was learning to program, we would have a whole course where you
actually wouldn’t code, you would just do an activity diagram or flow
chart. And you weren’t allowed to code until you had completed your
flow chart. And I always liked it as a visual representation of the code.
It didn’t matter what language you were going to use, the activity
diagram would be the same. So we thought it was a natural thing that
you could give an activity diagram and make them into a Parsons
problem from it. And we still use them for exam questions. I guess
that didn’t catch on, but I still like that.

Q7 Do you have any particular memories (good or bad) of us-

ing Parsons problems in your own classroom or with individual

students?

Dale: I thought the students liked them. That was a big thing for
me. They liked doing them and they would ask for more. And I thought,
well they very seldom ask for more code problems, so I thought that
was a good thing. In the early days, I distinguished between the puzzles
and the problems, so to me, a Parsons problem is an exam question
and the puzzles is always the electronic rearranging. I just thought,
in the early days when I first came across the problems, I thought, oh
what a shame. Here was my learning tool for the struggling students
that has now become this thing that might fail them. In the end, we
probably used the exam questions more than the puzzles.

Q8Was it immediately clear that you would write a paper about

Parsons problems? It is common in our field for a lot of good practice

to remain unpublished.

Dale:A lot of really good people are doing practice in the classroom
and there are not many avenues for publishing it if it is not a scientific
study. We would have all these ideas, and Patricia would go, "Oh, it is
just another tool". But we need a place to show those tools, because that
was all that this was. It was a little drag and drop puzzle, that I didn’t
think would go anywhere, until Patricia put a bit more of an academic
spin on it, and then we got published in ACE. I think there must be
heaps of little ideas and little tools out there that we need to spread,
but when you have got to have it as a big study and when you are a
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little Polytech, it is really hard to get stuff published where people were
going to see it. So I was surprised that people picked it up or found
it. Everybody needs a Patricia Haden! They need someone to go OOh,
OOh, other people will be interested in this. And we need conferences
where people can show that stuff. When we went to Hobart, people
liked the paper, but nobody thought it was going to go anywhere. It
was a successful little paper presentation, but I don’t think any of us
thought, this has got legs.

Q9 Your original paper was published at ACE (which is a local

conference). How important to you was it to have this local outlet

for your work?

Dale: This paper was published at ACE which was at Hobart and
that was part of the attraction, we wanted to go to Tasmania. At the
conference, I remember people were very kind. It was a very supportive
conference. I didn’t know anyone but Patricia, and they were very
welcoming. Patricia had been in previous years. That sort of group
was very manageable and very inclusive, we couldn’t have done it
without having a conference like that. It is still going isn’t it. We really
needed it. We wouldn’t have been able to get a little idea like that to
a bigger conference at the time. It was just a hot potatoes drag and
drop puzzle. That was always our go to conference. When Patricia
came around and would say, you got to do something, that is where
we would aim for. And we loved the tourism around Australia.

Q10 How has it been for you to have your name associated with

these problems, which have become very popular in computing

education?

Dale: Professionally it has been really good, it has helped me
travel, and people take me seriously in our own institution. So that
has all been good. But, it was an accident, and we still just call them
programming puzzles, until exam questions came along and that is
what we call Parsons problems. I wouldn’t recommend it, and it is all
Patricia’s fault.

Q11 Did you expect that Parsons problems would become so

popular?What were your expectations when you wrote the original

paper?

Dale: No, No. I was embarrassed about the hot potatoes, because
I thought, it was just so easy. So we threw that out and we designed

that little GUI interface. Just because we were embarrassed about how
easy the hot potatoes and how amateurish it looked. Later we did use
the JSparsons, and there was a guy in Canada that was making a
teaching one, but they were just too slow to make. What I really needed
and never really got, was I wanted to copy my code into something
and then tinker with it later. It took me too long to make them.

Q12 What are your thoughts on the many novel tools and adap-

tations that have been applied to Parsons problems (e.g. faded

parsons problems, design-level parsons problems, adaptive parsons

problems, etc.)

Dale: Yeah, I love it. I love those, the faded Parsons problems, where
you wrote into them as well. I thought, Ooh Ooh, that is good. It has
gone a long way from the beginner tool, hasn’t it. Now it is looking like
a tool for everyone. I love Barbara’s work with her adaptive problems.
And I haven’t come across the design-level ones, so I must look those
up. It is weird when you are not in Academia any more, you don’t
have access to papers, so I occasionally stumble over something on
YouTube and watch them that way. So I put out a plea, that they make
them all publicly available so I can read them.

Q13 Is there anything you originally conceived of with Parsons

problems that hasn’t been tried yet, or that you would like to see

done? Are there any particular lines of inquiry you would like to

see researchers explore?

Dale: I wonder about grading them. I still think they are ideally
suited to the struggling student. And it is like there is a spectrum
now. I think the faded problems are probably on the hard side of
the spectrum. And I still can’t help, maybe I should let it go, but the
common errors, that never took off. Nobody could ever prove that they
were useful. I still thought always that was my motivating factor.
All those mistakes I had seen over all those years, I just thought that
would be useful. I don’t think it was proved that that was useful. Now
for distractors, just the word distractor sounds like we are trying to
trick them. Actually, the whole idea was, "Ooh, Ooh, I nearly fell for
that. I’m pretty sure that is not right." That didn’t take off and people
haven’t really used that how I thought they would. I was just trying
to get all that intel I had and put it into the puzzle. My final message
is tell them there is no apostrophe. We blame search and replace.
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Exercises
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2019 Helping Students Solve Parsons Puzzles Better [129]
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2019 Lessons learned from available parsons puzzles software [87]
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2019 Representing and Evaluating Strategies for Solving Parsons Puzzles [131]
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2021 A Tool Help for Introductory Programming Courses [76]
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2021 Analysis of the Answering Processes in Split-Paper Testing to Promote Instruction [217]
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[98]
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