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ARTICLE

Cortical time-course of evidence accumulation
during semantic processing
Gayane Ghazaryan 1✉, Marijn van Vliet 1, Lotta Lammi1, Tiina Lindh-Knuutila1, Sasa Kivisaari 1,

Annika Hultén1,2 & Riitta Salmelin 1,2

Our understanding of the surrounding world and communication with other people are tied to

mental representations of concepts. In order for the brain to recognize an object, it must

determine which concept to access based on information available from sensory inputs. In

this study, we combine magnetoencephalography and machine learning to investigate how

concepts are represented and accessed in the brain over time. Using brain responses from a

silent picture naming task, we track the dynamics of visual and semantic information pro-

cessing, and show that the brain gradually accumulates information on different levels before

eventually reaching a plateau. The timing of this plateau point varies across individuals and

feature models, indicating notable temporal variation in visual object recognition and

semantic processing.
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Concepts are fundamental building blocks of our under-
standing of the world and communication with others.
Brain regions associated with semantic knowledge have

been extensively studied1–4, yet the mechanisms by which con-
cepts are accessed in the brain are still not well understood.
Object recognition is a common task that requires accessing
concepts, and it is a prime target for experimental research on
semantic processing. Despite how rapidly we can recognize an
object, the process likely consists of multiple phases5, involving
the interplay between visual and semantic properties6 and the
emergence and accumulation of information over time7,8. In this
work, we track and examine the dynamic progression of semantic
processing in the human brain over the course of visual object
recognition. In particular, we examine the accumulation of
information through time.

Object recognition is essential in everyday functioning and,
indeed, it has received great interest in human neuroscience6,9–11.
The underlying process is thought to progress from a focus on
low-level visual features to a focus on complex semantic
representations6. Semantic knowledge models12–15 together with
machine learning methods16,17 have been utilized to link brain
activation patterns and semantic processing. Applying such
methods to time-sensitive neuroimaging data, semantic proces-
sing has been shown to follow a coarse-to-fine progression6.
Coarse semantic categories, but not individual concepts, can be
discriminated based on earlier brain response patterns; by around
150 ms, it is possible to decode categories of objects6. Individual
concepts, however, can be decoded only at later time points,
around 300–450 ms after stimulus onset7,18–20.

Previous studies, which have focused on decoding at isolated
time windows in sequence, have revealed a pattern of increasing
decoding accuracy up to a peak, followed by a gradual decrease in
accuracy7,18,19. Furthermore, cross-temporal decoding (decoding
information from one time point with models trained on other
time points) has shown that the underlying brain activation
patterns evolve rapidly following stimulus onset, with some

generalization of similar encoded information across nearby time
points21,22. Such generalization indicates that information is
maintained or accumulated from overlapping processes8,23.

To investigate how the brain processes information and
accesses a concept, we used MEG (magnetoencephalography)
brain response data from a picture viewing experiment, in which
participants were shown pictures of objects and asked to silently
identify them (Fig. 1a). This task focuses on object perception
through to concept access5, and excludes later processes involving
phonological forms and speech production. We contrast two
approaches for decoding semantic representations: the tradi-
tionally used sliding approach taking one time point at a time,
and a cumulative modeling approach (Fig. 1b) that widens the
window at each time step. We demonstrate that, indeed, the brain
gradually accumulates semantic information with eventual sta-
bilization of accumulated information and access to a fully
enriched object identity. For brain-level object recognition, it
seems essential to take into account all information gathered up
to a certain time point, instead of limiting the view to a sequence
of single snapshots, analyzed in isolation.

Results
Participants performed a silent visual concept identification task
while MEG responses were recorded (Fig. 1a, see “Methods” for
further details). We represented each concept as a semantic fea-
ture vector derived from a large text corpus using word2vec24,25,
and trained models to predict these feature vectors from the MEG
responses. To emphasize semantic properties of concepts over
low-level visual features of specific stimulus images, we analyzed
average brain responses to multiple different exemplars of the
same concept. We performed analyses on both the grand average
MEG responses, and separately for each participant. The MEG
responses, spanning a period of 1000 ms after the stimulus onset,
were downsampled and binned into 20 ms time points, resulting
in time series of 50 points for each of the 60 concepts. Each time
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Fig. 1 Overview of experiment and methodology. a Experimental paradigm. In each trial, participants were presented with a picture of an object and asked
to identify it; randomly occurring catch trials ensured compliance. b Overview of the brain-to-semantics mapping method. Linear regression models were
(1) trained on a set of brain response-semantic vector pairs and (2) tested on the brain response to one left-out concept, (3) yielding a predicted vector.
(4) The distance between the predicted vector and the target vector was calculated. This procedure was repeated for all concepts. The same procedure
was performed for each instance of the cumulative window. The dashed line corresponds to the point after which prediction-target distance no longer
decreased (plateau point). Semantic vectors were created using the word2vec algorithm on a large Finnish text corpus.
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point contained MEG responses from 204 sensors. Following a
neural decoding approach, we employed multivariate linear ridge
regression to predict feature vectors from MEG responses (see
“Methods” for further details).

In order to discriminate between conceptual and perceptual
processes (known to be intertwined26), we compared the
semantic feature model (word2vec) to a visual feature model that
aims to describe visual object recognition in a manner that is
similar to the primate visual cortex (CORnet)27. Visual feature
vectors were derived by inputting the same graphical images that
were shown to participants into the CORnet-S model that con-
sists of four layers, corresponding to the cortical regions V1, V2,
V4, and IT. Thus, we considered five different feature vector
models: the word2vec model derived from a large text corpus; and
four levels of the CORnet-S visual processing model. To evaluate
predictive performance, we used a leave-one-concept-out zero-
shot approach, in which trained models were tested on concepts
that were excluded from the training sets. We used the
prediction-target distance as a metric and investigated how this
varied as a function of time.

Grand Average. Using grand average data, we first sought to
examine the degree of shared encoded information between dif-
ferent time points. To do this, we employed a cross-temporal
decoding approach in which models are trained on data from
one time point and tested on another time point. All feature
models indicated significant generalization of information enco-
ded in the brain response (p < 0.05, based on a permutation test
with 1000 permutations, FDR corrected) (Fig. 2a, b). The gen-
eralization was most pronounced for consecutive time points,
with further away time points showing less generalization. The
start of this window, defined as the point after which there was
significant generalization between consecutive time points in the
cross-temporal decoding (Fig. 2b), varied from 250 (V1, V2) to
270 ms (word2vec) (Fig. 3).

We examined the underlying reason for this generalization by
considering two alternatives: either the encoded information is
maintained, or accumulation of information continues through-
out this period. For each feature model, we compared two
different types of models with (1) sliding and (2) cumulative
approaches. All sliding models showed a decrease in prediction-
target distance over time until a trough, followed by an increase in
distance. In contrast, the cumulative models showed decreasing
prediction-target distance, with an eventual plateau (Fig. 2c).
Both approaches yielded mean prediction-target distances
significantly lower than chance at some time points (p < 0.05,
based on a permutation test with 1000 permutations, FDR
corrected). For the sliding models, time points of significantly
lower than chance distance were between 140 to 760 ms for
word2vec, 100 ms to 780 ms for V1, 80 to 760 ms for V2, 80 to
780 ms for V4, and 80 to 680 ms for IT. For the cumulative
models, corresponding time points were 100 ms onwards for
word2vec, 100 ms onwards for V1, 80 ms onwards for V2, 80
ms onwards for V4, and 120 ms onwards for IT. The cumulative
model eventually yielded significantly lower distance compared to
sliding models for all feature models (p < 0.05, based on a
permutation test with 1000 permutations) from 320 ms onwards
for word2vec, and from 340 ms/320 ms/240 ms/320 ms onwards
for the visual feature models V1/V2/V4/IT. Results are shown in
Fig. 2c.

As the cumulative model performed better than the sliding
model, the next target of interest was the time when the
cumulative model plateaued, as this would indicate whether or
not information was accumulated during the generalization
window. We reasoned that if the cumulative models plateaued

close to the same time as the generalization began, this would
indicate that little new information was encoded in the patterns
during the generalization window, and the generalization was
purely due to maintenance. Alternatively, if the plateau occurred
substantially later, this would indicate that new information was
encoded in the brain signal during this period, and there was
information accumulation.

We defined plateau points as the time point at which the
prediction-target distance no longer meaningfully decreased. We
opted for a threshold of 5% for this, meaning that when the
model had reached within 5% of the total reduction in distance,
we classified it as reaching plateau. We chose a 5% threshold
rather than the global minimum whose exact time point could be
rather arbitrary due to noise-induced signal variation. We
interpreted this plateau point as the time after which little more
relevant information was encoded in the MEG signal. We then
used a mixed effects linear regression to predict plateau points
from the feature model used, with random intercepts for each
concept.

Figure 3 shows estimated plateau points in comparison to the
points when the generalization window began. The plateaus were
significantly later than the start of the generalization window for
all models, p < 0.05. This indicates that further relevant informa-
tion is encoded in the MEG signal during this period. In other
words, there is information accumulation rather than only
maintenance.

The estimated mean (95% CI) plateau was 382 (348–416) ms
for V1, 418 (384–451) ms for V2, 415 (381–449) ms for V4, 447
(414–481) ms for IT and 439 (405–473) ms for word2vec. Apart
from V2 and V4 (p= 0.9803), and IT and word2vec (p= 0.4406),
the estimates were significantly different (all p < 0.0001, Tukey
correction).

Individual level results. Following the grand average analyses, we
investigated whether a consistent pattern could be identified at
the individual level and explored individual differences therein.
We again compared the sliding and cumulative models to
investigate the progression of information processing of each
participant. The results for word2vec are presented in Fig. 4 and
the visual feature models are presented in Supplementary
Figs. 1–4. All participants displayed decreasing prediction-target
distance as a function of time with an eventual plateau for
cumulative models, which yielded significantly better than chance
predictions (based on a permutation test with FDR correction,
p < 0.05). The sliding models in word2vec produced significantly
better than chance predictions at some time points (based on a
permutation test with FDR correction, p < 0.05) for the majority
of participants (but not 5, 6, 7, 10, 12, 17).

A linear mixed model (with random intercepts for each
concept) showed significant variation in plateau points between
participants and feature models (Fig. 5a, Table 1). There was a
significant main effect of the feature model (F(4, 5546)= 3.88,
p= 0.001) following a similar pattern observed in the grand
average analyses with IT and word2vec plateauing significantly
later than V1 and V2 (p < 0.05), see Table 2. We also observed a
significant main effect of participants indicating inter-individual
variability (F(18, 5546)= 9.23, p= 0.001).

We explored how plateau timings in one feature model were
related to those in other feature models. The visual feature models
were positively correlated and higher correlations were observed
between consecutive layers such that participants with earlier
plateaus in V1 had earlier plateaus in V2; similarly for V2–V4 and
V4–IT (Fig. 5b and Supplementary Figure 5). We also examined
how the differences between participants in prediction-target
distance changed as a function of time. Specifically, we looked at
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the time points when differences between participants reached
their maximum. The model based on word2vec appeared to reach
maximum variation across participants later compared to visual
feature models (Fig. 5c).

Representational similarity analysis. To investigate the brain
areas involved in the information accumulation processes, we
performed representational similarity analysis (RSA) between
concept similarity in the brain (the brain-level concept-to-
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Fig. 2 Results of grand average analysis. a Cross-temporal decoding results on grand average data. Here, models were trained on one 20-ms time point
and tested on another 20-ms time point. The color corresponds to the prediction-target distance averaged over all targets. b Temporal cross-decoding
results on grand average data. Only statistically significant values shown (p < 0.05, FDR corrected, based on permutation tests with 1000 permutations).
c Distance between predictions and targets over time on grand average data, using two different types of models: a sliding model taking one 20-ms time
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the edges of the shaded areas indicate plus and minus one standard error. The dots above each line plot indicate time points with statistically significant
differences (p < 0.05), based on permutation tests with 1000 permutations, FDR corrected). Note that due to differences in the feature space of the
models, the magnitudes of the Euclidean distance values are on different scales, and should not be directly compared. Instead, the temporal patterns are
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concept dissimilarity matrices at different time points in sliding
and cumulative approaches; Fig. 6a, b) and concept similarity in
the feature models (the feature model concept-to-concept dis-
similarity matrices; Fig. 7). We observed the highest RSA scores
in the occipital regions of both hemispheres (Fig. 8a, b). Incre-
mentally adding time points did not change the regions where the
RSA scores were highest. The 0–420 ms and onward windows
showed the highest correlations. This timing aligned with the
decoding results described above. RSA figures for the visual fea-
ture models are presented in Supplementary Figs. 6–9.

Discussion
In this study, we tracked the progression of information proces-
sing throughout visual object recognition. We identified a period
of information generalization, and found that during this time
there is information accumulation, during which concept repre-
sentations are enriched. This interpretation is in line with Contini
et al.8, who suggested two reasons for information generalization:
(1) the encoded representation is maintained throughout this
period, or (2) there are ongoing overlapping processes of differing
duration, such that some information is maintained while the
representation is enriched with further accumulation. By
demonstrating information accumulation in this window, our
work brings relevant new findings to complement earlier studies
on object recognition28,29 and semantic access in general7,30–37,
especially regarding its temporal progression7,18,19,38.

We demonstrated information accumulation with the help of
models that mapped between MEG responses and concepts, and
showed that these models generalize to new concepts (following a
zero-shot approach17). We compared a semantic feature model
(word2vec) to models using visual features generated from
CORnet, a model mimicking visual processing in primate visual
cortex (V1, V2, V4, and IT). Through this comparison, and by
using static images and multiple instances of each concept, we
aimed to reduce the effects of mere stimulus characteristics on the
observations and highlight neural effects related to semantic
processing of the concept. Importantly, semantic features were
derived from a large text corpus, and not directly from the limited
set of visual stimuli shown to the participants. The visual feature
representations were derived by applying the pre-trained CORnet
visual model to the stimuli the participants were shown. When
comparing visual and semantic models it is important to recog-
nize that such models are always simplifications of the true
underlying processes. In this particular case, the visual feature
models may not capture all underlying visual processes. As such,
differences between the visual models and the semantic model
may not only indicate semantic processing, but rather inade-
quacies in the visual models26. Future work may avoid the con-
founding between visual and semantic processing by focusing on

written words38–40, however, written words are known to be a
more challenging medium for neural decoding41.

The sliding approach indicated that there was information
relevant to concepts starting at about 80–100 ms, which matches
the timing reported in previous work7,18,26,42,43. Cross-temporal
decoding indicated that there was also generalization in the brain
signal from about 250 ms onwards. The cumulative models
resulted in significantly lower prediction-target distance than the
sliding models in all feature models, from 240–340 ms onwards,
indicating there is information accumulation.

Models based on lower-level visual features (V1, V2) plateaued
earlier than the semantic feature model (word2vec) or high-level
visual feature models (IT). This pattern matches the level of
processing. Furthermore, we found that plateau points of con-
secutive layers in the visual feature model were systematically
correlated. Although word2vec showed moderate correlation with
V4, there was indication that individual variability in word2vec
decoding was delayed compared to the visual models. This sug-
gests that the semantic feature model is capturing information
other than visual feature correlates, and the decoding is not just
relying on features correlated with low-level visual processing.

We propose that the plateau point of the semantic model could
be interpreted as the time point after which the representation of
the concept is no longer enriched. On group-level data, the mean
plateau time across concepts was around 450 ms. This, coupled
with the generalization shown between 270 and 750 ms, indicates
that there is likely both accumulation of information (preceding
plateau) and maintenance (following plateau). The timing of the
plateau point varied between participants, with means ranging
from approximately 350 to 500 ms.

Bo et al.44 showed that visual activity appears in different
regions up to around 360 ms. Peaks in conceptual processing
(when controlling for visual features) have been shown to occur
at different points between 180 and 540 ms26. The plateau points
observed here, while not directly comparable due to differing
methodologies, line up with these previous results.

Disentangling accumulation from maintenance, however, may
not be as simple in the presence of noise. In a situation where
there is only maintenance, but the recorded signals have sub-
stantial noise, a similar pattern of decreasing prediction-target
distance might be observed, as adding more time points would
counteract the noise and improve performance. Based on the
behavior of the cross-temporal, cumulative, and sliding models,
however, we consider this to be a less likely explanation than
accumulation. Specifically, we refer to the following observations:
First, the cross-temporal models indicated that while there was
some generalization, this was predominantly between consecutive
time points. If there was a constant signal with noise, we would
not expect such a difference between consecutive and non-
consecutive cross-temporal decoding performance. Second, the
sliding models showed an increase and then decrease in predictive
performance, rather than a sustained level of performance,
counter to what would be expected in pure maintenance. Third,
significant prediction by the sliding models continued well past
the plateau of the cumulative models. If the cumulative models
were simply accommodating for noise in the data, we could
expect the increase in performance to continue until the signal
was no longer predictive.

RSA indicated that occipital areas were relevant to semantic
processing of pictures and showed temporal patterns in accor-
dance with the decoding approach, with higher RSA scores at
time points when decoding performed better. Interestingly, brain
regions that are consistently reported in studies of picture
naming45, such as the left temporal and left parietal cortices, did
not strongly account for semantic relationships between target
concepts. However, our results align with Simanova et al.43, who
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suggested that the predominance of occipital areas may be due to
inherent visual similarities between semantically similar objects.
In other words, the appearance of an object is tied to its semantic
meaning, so it is unsurprising that brain regions related to visual
processing emerged in the RSA analysis. While it is possible that
silent identification of the pictures did not activate the phono-
logical form of the concept as strongly as an overt naming task
would have done, the lack of involvement of the typical language
areas may be a reflection of the fact that semantic similarity is not

mirrored in phonological similarity (for example ‘cat’ and ‘dog’
are semantically near but phonologically distant).

The fact that people agree on names of objects and can com-
municate about them indicates that there are commonalities in
semantic understanding. However, as each person has a unique
life experience, the underlying semantic processes are also likely
to vary. Previous studies have reported inter-individual variation
in behavioral measures of naming speed46, neural correlates of
semantic representation47, and gaze-behavior measures of visual
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salience48. Individual variation has also been indirectly investi-
gated through cross-decoding between individuals. This is per-
formed by training models on data from one or more individuals
and testing on data from another individual32,33,49. Generally,
such cross-decoding has been less accurate than within-individual

decoding. As these studies predominantly used imaging methods
that favor high spatial precision over temporal precision, the
results likely indicate individual variation in the cortical areas
involved in language processing, the existence of which has been
known since early studies50. Individual differences in the tem-
poral domain of semantic processing have also recently been
indicated by Rupp et al.19, who reported individual variation in
the windows when decoding performed best, suggesting differ-
ences in the progression of semantic understanding. Here, we
found individual variability in accumulation of visual and
semantic information. This finding is relevant to, for example,
development of brain-computer interfaces, where individual
variability may need to be taken into account. Variability between
concepts is also an intriguing question for future studies but will
likely require more repetitions of each concept than in the present
study to ensure less noisy cortical time courses for individual
concepts.

We have presented here a new perspective on the temporal
dynamics of semantic understanding that opens future avenues of
research. These include a deeper understanding of individual
cognitive variation, addressing the link to behavioral measures,
adapting to other modalities such as spoken or written words, and
investigating concept processing in context by using more nat-
uralistic stimuli such as sentences or stories. Such research will
bring us towards a more complete model of language within
the brain.
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Table 2 Estimated plateau points for each feature model.

Feature model Min estimate Max estimate SE

V1 308 ms 435 ms 33 ms
V2 319 ms 499 ms 33 ms
V4 292 ms 473 ms 33 ms
IT 368 ms 494 ms 33 ms
word2vec 347 ms 506 ms 33 ms

Table 1 Mixed-model regression analysis of plateau times.

Effect df F p-value

Participant 18, 5546 3.88 <0.001
Feature model 4, 5546 9.23 <0.001
Participant × Feature model 72, 5546 1.13 0.271
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Methods
Participants. Twenty native speakers of Finnish (females/males
10/10, age range 20–27, mean age 22) participated in the study.
All participants were right handed (Edinburgh handedness
questionnaire51) and had normal or corrected to normal vision.
The study was approved by the Aalto University Research Ethics
Committee and participants provided written informed consent
prior to their participation. All ethical regulations relevant to
human research participants were followed. Data from 1 parti-
cipant was excluded due to technical issues with the MEG
recordings, leaving data from 19 participants in the final analysis.

Stimuli and procedure. Stimuli consisted of 300 grayscale pho-
tographic images of 60 concrete Finnish nouns (five different
depictions of each). To minimize the effects of low-level visual
features on the neural responses, there were five different images
depicting each concept. Overall, each concept was presented in
picture form 18 times (across three sessions on different days),
the responses of which were averaged.

The concepts belonged to 7 different categories: animals, body
parts, buildings, nature, human characters, tools/artifacts, and
vehicles. Details of the nouns are presented in Supplementary
Table 1. There were nine concepts in each category except for
vehicles, which had six concepts. In the experiment, the concepts
were also presented in written and auditory forms in separate
trials; the responses from those trials were not analyzed in
this study.

Participants were tasked with viewing each picture and silently
identifying and thinking about the depicted object. The stimuli
were presented at a size of 106 × 106 mm on a screen 140 cm
from the participants’ eyes, corresponding to a visual angle of
4.3∘. Each trial started with a fixation cross displayed for 1000 ms.
The picture was then shown for 300 ms, followed by a blank
screen for a randomized duration of 700–1200 ms (Fig. 1a).

To ensure that participants remained engaged during the
experiment, we included comprehension tasks after 10% of trials.
In these tasks, participants used optical response pads to indicate

whether or not a written description was characteristic of the
previously shown concept. As these tasks occurred after the trials,
they did not interfere with the responses, thus all trials were
included in the analysis.

Data acquisition. MEG measurements were conducted at the
Aalto NeuroImaging MEG Core (Aalto University, Espoo, Fin-
land) using a Vectorview whole-head MEG system (MEGIN
(Elekta Oy), Helsinki, Finland). The system has 306 sensors (204
planar gradiometers, 102 magnetometers). The head position was
continuously tracked during the experiment by 5 head position
indicator (HPI) coils placed at known locations with respect to
identifiable anatomical landmarks. Eye movements and blinks
were captured using 2 electrode pairs (one pair positioned above
and below the left eye, the other in the corner of each eye). The
recording was bandpass-filtered at 0.03–330 Hz and sampled at
1000 Hz. Anatomical MRIs were obtained using Siemens Mag-
netom Skyra 3.0 T MRI scanner with a T1-weighted MP-RAGE
sequence at the Aalto NeuroImaging Advanced Magnetic Ima-
ging (AMI) Centre.

Data preprocessing. MEG data was first visually inspected and
noisy channels were identified. External sources of noise were
then removed using spatiotemporal signal space separation
(tSSS)52 with Elekta Maxfilter software (MEGIN Oy, Finland).
For each participant, data from different sessions was trans-
formed to the same head position. All subsequent analysis was
performed using the MNE-Python software package53. The data
was low-pass filtered at 40 Hz and split into 1200 ms epochs, the
first 200 ms of which was the pre-stimulus baseline interval. To
reduce contamination related to heartbeats, eye movements, and
blinks, we performed independent component analysis (ICA). In
order to minimize the effect of slow drifts on ICA decomposition,
we used continuous data high-pass filtered at 1 Hz54. Compo-
nents corresponding to heartbeats, eye movements, and blinks
were visually identified and excluded from epochs. Epochs cor-
responding to the same concept were then averaged, the time

Fig. 8 RSA maps for the semantic feature model. RSA maps illustrating the statistically significant clusters for different time windows, with a the sliding
fixed-length approach and b the cumulative approach. For details on calculations of RSA scores see Methods. We used a cluster permutation test61 across
participants with a cluster threshold of p= 0.01, a cluster-wide significance threshold of p= 0.05 and 5000 permutations in accordance with Hultén et al.38.
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period between 0 and 1000 ms was extracted, and the signal was
downsampled to create 20 ms bins. Only data from the gradi-
ometers was used in the final analysis. This resulted in a matrix
with 60 concepts × 204 channels × 50 time points for each
participant.

We computed the source-level estimate of the average response
to each concept using minimum norm estimates (MNE)53.
Anatomical MRIs were used to reconstruct the cortical surface of
each participant applying the FreeSurfer software package55–57.
We used a single-layer boundary element model (BEM) with an
icosahedron mesh of 2562 vertices in each hemisphere. When
computing the inverse solution, a loose orientation constraint of
0.3 and depth weighting parameter of 0.8 were used. An empirical
noise-covariance matrix was computed based on the pre-stimulus
200 ms interval to all concepts. To prepare the data for group-
level analysis, participant-level source estimates of each concept
were morphed to the FreeSurfer standard template brain
(fsaverage).

Semantic features. Semantic vector representations for the sti-
muli were obtained using the word2vec tool with skip-gram
architecture and negative sampling algorithm25. Each concept
was represented as a vector of length 300 which defines its
location in semantic space. The components of a vector are based
on word co-occurrence statistics in large text corpora, the Finnish
Internet Parsebank24, which is based on a large sample (1.5 bil-
lion words) of Finnish language websites. Co-occurrence was
considered to take place when a word appeared within a window
from 5 words before to 5 words after the word corresponding to
the concept of interest.

Visual features. The CORnet model is a neural network archi-
tecture designed to simulate the processing of visual information
in the primate brain. It consists of multiple layers of artificial
neurons that are modeled after the neurons found in the primary
visual cortex (V1), secondary visual cortex (V2), visual area V4,
and the inferior temporal cortex (IT). V1, V2, V4, and IT form a
hierarchy of visual processing, with each region responsible for
processing increasingly complex visual information. Beginning
with low-level features such as orientation and color, each region
builds upon the previous one to construct a more complete
representation of visual stimuli. This process culminates in high-
level visual processing, such as object recognition27.

We created visual feature vectors by inputting the grayscale
images into the CORnet-S model, and saving the outputs of each
layer. We reduced the dimensionality of the visual feature vectors
using PCA (principal components analysis). Following the zero-
shot approach, we did this transformation in a cross-validated
manner by first leaving out the exemplars of the left-out test
concept, and then calculating the principal components on the
training set. We then projected both the training and test vectors
onto 295 principal components (the largest possible for the size of
the training set) and averaged the transformed feature vectors
across exemplars to arrive at one visual feature vector for each
concept (per iteration of the cross-validation). For RSA, the
procedure was the same but without leaving out concepts.

Regression models. We used a zero-shot decoding approach17.
Regularized multivariate ridge regression, as implemented in
scikit-learn58, was used to fit a model that predicts the semantic
feature vector of a target concept based on brain response. The
sensor-level MEG responses were first standardized with respect
to concepts, such that the mean of each predictor (time point-
channel pair) was 0 and the standard deviation was 1. We used
leave-one-out cross validation, such that models were trained on

59 out of the 60 concepts and evaluated on the remaining concept
the model had not been trained on, for all permutations.

For the regression models, we compared prediction and target
vectors using Euclidean distance. The Euclidean distance matches
the loss function of linear regression. As the Euclidean distance to
the training items is minimized during model fitting, it is
appropriate to use this metric to assess the predictive perfor-
mance on the test items. Note that due to differences in the
feature space of the models, the magnitudes of the Euclidean
distance values are on different scales and not directly compar-
able. Instead, the temporal patterns are the focus of interest.

Mapping brain response to semantic space as a function
of time. In accordance with Carlson et al.21 and Grootswagers
et al.22, we performed cross-temporal decoding, in which models
were trained and tested on different time windows to check
whether there is information generalization in the brain across
different time points. For this we trained and tested models on
pairs of 20-ms time windows on data averaged over all partici-
pants. To explore the progression of semantic understanding in
more detail we compared two types of models on average sensor-
level MEG responses. First, we used sliding windows of fixed
length similar to Sudre et al.18 and Rupp et al.19. Second, we
developed a method to examine cumulatively widening windows
(see details below). We evaluated models based on prediction-
target distance (smaller distance indicates that the model better
predicts the target concept). Both types of models were evaluated
using leave-one-out cross validation.

For sliding fixed-length window models, regression models
were trained and tested on fixed-length subsets of MEG data. A
sliding window of 20 ms was used, with no overlap between
adjacent windows. Each subset was evaluated independently of
others. Similar models have been used by Sudre et al.18, Rupp
et al.19, Hultén et al.38 and we expected a pattern of gradual
decrease, followed by an increase in prediction–target distance.

For cumulative window models, regression models were
trained and tested on cumulative subsets of MEG data. The
window size was sequentially increased by 20 ms. Thus, all
previously encoded information was included in the estimation
and model evaluation (Fig. 1b).

Identifying individual differences. To compare the progression
of semantic understanding between participants, we used the
cumulative models. We first calculated the progression of
semantic information for all concepts for each participant. We
then focused on the point of plateau, the time point after which
there was less than 5% further decrease in prediction-target dis-
tance. We compared these plateau points using a linear mixed
model, with random intercepts for concepts.

Representational similarity analysis. We performed repre-
sentational similarity analysis (RSA)59 on source localized MEG
data to extract the brain areas accounting for highest similarity
between the brain activation patterns and vector representations
of the concepts for different time windows. This was done using
the MNE-RSA software package60. RSA was performed for both
sliding and cumulative time windows.

The model dissimilarity matrices (DSM) were obtained by
calculating pairwise cosine distances between feature vectors. This
was followed by the calculation of brain DSMs for each
participant at each source-level vertex with a searchlight patch
radius of 2 cm for the time window of interest. Brain DSMs were
computed by calculating pairwise Pearson correlation coefficient
between brain signals in response to different stimuli. The
relationship between the brain DSMs and model DSMs was
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quantified by Spearman rank correlation coefficients for each
participant. This resulted in participant-level RSA maps. We then
used a cluster permutation test61 across participants with a cluster
threshold of p= 0.01, a cluster-wide significance threshold of
p= 0.05 and 5000 permutations in accordance with Hultén
et al.38.

Statistics and reproducibility. Statistical significance between
regression model performance was evaluated using permutation
tests with 1000 iterations as in Kivisaari et al.30. For each per-
mutation, models were trained and evaluated. For the individual
level analysis, this was done separately for each participant. p-
values were calculated by the proportion of test statistics from the
permuted data sets that were at least as high as the test statistics
from the observed data.

When comparing prediction-target distance to chance-level,
the mean distance over all concepts was used. When comparing
the two types of models, a paired t statistic (across concepts) was
calculated and compared to the permutation distribution for each
time point. p values were corrected using false discovery rate
(FDR) correction.

For RSA we used a cluster permutation test61 across
participants with a cluster threshold of p= 0.01, a cluster-wide
significance threshold of p= 0.05 and 5000 permutations in
accordance with Hultén et al.38.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Data availability
The text corpus containing 1.5 billion Finnish words used to derive the statistical model
cannot be publicly distributed due to the Finnish copyright law limitations. For further
information see https://turkunlp.org/finnish_nlp.html#parsebank. The stimulus concepts
are listed in the Supplementary Table 1. The MEG and MRI data are available upon
reasonable request from the authors; the data is not publicly available as it contains
personal information, and its reuse for other research purposes requires a new ethical
pre-review. Numerical data for the figures that do not contain individual participant data
is available at https://zenodo.org/doi/10.5281/zenodo.1007637662.

Code availability
For preprocessing we used Elekta Maxfilter software (MEGIN Oy, Finland) and MNE-
Python53. For the primary analysis we used Python and made substantial use of MNE-
Python53, scikit-learn58, NumPy63, and Matplotlib64. In addition, we used R and the
following packages: afex65, lme466, qvalue67, ggplot268. The feature vectors used in this
study, together with the custom code used in the study can be accessed at https://zenodo.
org/doi/10.5281/zenodo.1007637662. The code to compute RSA can be found at https://
github.com/wmvanvliet/mne-rsa.
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