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On-Demand Vehicular Fog Computing
for Beyond 5G Networks

Wencan Mao , Ozgur Umut Akgul , Byungjin Cho , Yu Xiao , Member, IEEE, and Antti Ylä-Jääski

Abstract—Emerging compute-intensive and latency-sensitive ve-
hicular applications are expected to be deployed at the edge instead
of the cloud to shorten the network latency. Mobile fog nodes car-
ried by moving vehicles, namely vehicular fog nodes (VFNs), have
been proposed to complement the stationary fog nodes co-located
with base stations to handle the spatio-temporal variations of de-
mand in a cost-efficient way. Existing works on capacity planning
for such vehicular fog computing (VFC) scenarios are built on
the assumption of certain spatio-temporal patterns of vehicular
traffic. They consider long-term capacity planning (e.g., updated
every season) but leave the adaptation to temporary changes or
unexpected variations out of scope. These solutions typically result
in high computational costs and thus are not suitable for short-term
capacity planning, which requires low-latency responses. To reduce
time complexity, we propose an integer linear programming (ILP)-
based framework called on-demand capacity planning (ODCP)
to implement two-phase planning through optimizing the routing
strategies of VFNs, with the aim of maximizing the profit and
quality of service (QoS). More specifically, ODCP first predicts the
traffic flow and resource demand using seasonal auto-regressive
integrated moving average (SARIMA) and estimates the revenue
using an economic model defined by service level agreement (SLA).
With the estimated workload and revenue, the first phase (i.e.,
global planning) decides the ratio of tasks that can be served at the
city scale and assigns VFNs to each region. The second phase (i.e.,
regional planning) assigns the VFNs to users within the same region
and schedules the routes of VFNs based on the mobility of users.
Experimental results show that the proposed solution achieves a
higher performance in terms of profit and QoS than the existing
single-phase capacity planning solutions. We also find that a large
number of VFNs, a small region size, high penalty costs, and low
travel and rental costs lead to high service rates, whereas a large
region size and low travel, rental, and penalty costs lead to high
profits.

Index Terms—Capacity planning, vehicular fog computing
(VFC), quality of service (QoS), integer linear programming (ILP),
and techno-economic analysis.
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I. INTRODUCTION

THE emerging vehicular applications in beyond 5 G net-
works range from advanced driving (e.g., sensory appli-

cations and infotainment) to cooperative driving (e.g., collab-
orative intersection crossing and see-through passing). These
applications involve intensive computing, which is expected to
be offloaded to computing nodes at the edge instead of the cloud,
due to the strict latency constraints [1]. The computing entities,
which are called edge/fog nodes, can be deployed on network
infrastructures (e.g., cellular base stations) and/or vehicles (e.g.,
buses and taxis). We denote the former as cellular fog nodes
(CFNs) and the latter as vehicular fog nodes (VFNs). The con-
cept of VFC [2] is motivated by the spatio-temporal variation in
vehicular traffic, where the VFNs are envisioned to complement
CFNs by utilizing their mobility to fulfill the temporary demand
in a cost-efficient manner [2].

Capacity planning for VFC determines where to deploy the
fog nodes and how much capacity should be deployed. Our
previous work [3] proposed using commercial fleets (e.g., buses)
to serve as VFNs and jointly decide the long-term capacity plans
of VFNs and CFNs based on spatio-temporal traffic patterns
learned from real-world traffic. Such a long-term capacity plan-
ning solution was not designed to handle the temporary changes
in traffic patterns, due to occasional events, such as football
matches and traffic accidents. Therefore, it was not suitable to
be executed frequently (e.g., every hour or several minutes)
due to the time complexity. To address this issue, this article
focuses on a scenario where VFN trips are regularly scheduled
to meet temporary needs. We call this scenario on-demand VFC
(ODVFC).

Such an ODVFC scenario can be envisioned where we route
the VFNs to places where new demand emerges. Unlike com-
mercial fleets, the VFNs in ODVFC are installed on taxis or
other vehicles with flexible schedules and adaptable routes. In
this article, we target capacity planning in ODVFC, which is
a challenging problem. Due to the Bellman called curse of
dimensionality, the computational time of the capacity planning
model increases with the number of tasks and VFNs [3]. Unlike
long-term planning which allows sufficient time (i.e., days or
weeks) to find the optimal solution, ODVFC is considered as
short-term capacity planning that requires the solution to be
found in minutes or even seconds.

To address the computation time limit, we propose an inte-
ger linear programming (ILP) based framework referred to as
on-demand capacity planning (ODCP) to create the capacity
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plan in two steps. During global planning, we determine the
global routing strategy for VFNs. In this way, the service rate is
maximized at the city scale with the overall capacity constraint.
Meanwhile, the VFNs are routed to the corresponding regions
with minimized traveling costs. During regional planning, we
decide the task allocation and regional routing strategies for
VFNs. More specifically, the VFNs are routed according to the
locations of the users within the same region with minimized
costs. Meanwhile, the VFNs are assigned to the users within the
communication range with minimized service level agreement
(SLA) violations. Such two-phase capacity planning enables
parallel decision-making at the regional level, which greatly
shortens the computational time.

The aim of ODCP is to maximize the profit of the ser-
vice provider and the quality of service (QoS) received by
the users. To anticipate the temporary changes in demand,
the framework uses seasonal auto-regressive integrated moving
average (SARIMA) to predict the upcoming traffic flow and
estimate the computing workload frequently (e.g., hourly). We
estimate the profit by using an economic model defined by
the SLA. The economic model includes various parameters
including the price for different service types as well as traveling,
rental, capacity, and penalty costs. Then we formulate and solve
the two-phase planning problem using ILP, with the constraint of
estimated workload and the objective of maximizing profit. We
simulate the ODVFC scenario with the real-world road network,
cellular map, and application profiles as inputs. We evaluate
the techno-economic performance of ODCP under different
traffic scenarios where gradual or sudden changes in demand
occur and compare it with other capacity planning solutions
presented in the literature. We also assess the techno-economic
implications of the impacting factors, including the number of
VFNs, economic model, and region size.

The contributions of this work are listed as follows:
1) We propose the ODVFC scenario, where the VFNs are

routed to the places where computing demand emerges.
Unlike previous works on long-term capacity planning,
ODVFC can quickly adapt to temporary changes in de-
mand.

2) We propose an integer linear programming (ILP)-based
framework called ODCP for capacity planning in ODVFC.
By using prediction-based workload estimation, the an-
ticipatory planning phase ensures timely and accurate
vehicle routing solutions. By using two-phase capac-
ity planning, it is sufficiently lightweight to be updated
frequently.

3) ODCP improves the QoS and profit by increasing the
accuracy of traffic prediction using SARIMA instead of
the regression-based method. Furthermore, ODCP outper-
forms the existing vehicle routing method by balancing
the QoS and costs in the objective function instead of
regarding the demand as a hard constraint.

The rest of the article is organized as follows. Section II
reviews the related works, and Section III demonstrates the
system overview. We detail the demand prediction and resource
provisioning in Sections IV and V, respectively. Sections VI
and VII present the experimental setup and results, respectively.

Finally, Section VIII presents the discussion, and Section IX
concludes the article.

II. RELATED WORK

This section compares our work with the state-of-the-art
capacity planning, resource management, and vehicle routing
methods, as listed in Table I.

A. Capacity Planning and Resource Management Methods

Three scenarios of edge/fog computing have been studied
from the capacity planning perspective. The first scenario con-
siders the capacity planning of stationary edge/fog nodes under
certain constraints, such as latency constraints. For example,
Stypsanelli et al. [4] formulated the capacity planning problem
as an ILP problem that minimizes the costs and aimed to find the
capacity planning strategy with the probability delay guarantee.
Noreiki et al. [5] proposed a method to find the combinations
of resource demand that can improve resource utilization in the
edge computing environment. Noreiki et al. [6] further modeled
the capacity planning problem using queuing theory, and aimed
to minimize the number of homogeneous fog nodes while meet-
ing the demands of latency-sensitive applications. In the second
scenario where vehicles become users of computing services, the
mobility of users is considered. For example, Hussain et al. [7]
formulated an ILP problem aiming to minimize both latency
and energy consumption in the vehicular environment, and
including computing, network, cloud capacity, and link types as
constraints. Premsankar et al. [8] utilized a mixed ILP model to
find the location, number, and capacity of fog nodes in order
to minimize the costs and fulfill the computational demand
and network coverage requirements. Although these works have
considered the mobility of users, their solutions do not support
VFNs.

In the third scenario, the mobility of both users and fog
nodes is considered. In our previous work [3], we considered
both stationary CFNs and VFNs that follow regular routes
and timetables, such as the fog nodes carried by buses, and
proposed a long-term capacity planning solution based on ILP.
In this work, we also target the third scenario where both users
and fog nodes are mobile. Different from [3], we assume that the
routes of VFNs can be scheduled frequently to fulfill temporary
or unexpected demand with cost-efficiency. Such short-term
capacity planning solutions are supposed to be lightweight com-
pared with long-term capacity planning.

Resource management has also been studied for VFC. For
example, Wu et al. [9] proposed a cooperative caching scheme
for vehicles based on asynchronous federated and deep rein-
forcement learning to minimize the content transmission delay.
They [10] further proposed a deep Q-network-based algorithm
where the intelligent vehicular nodes are trained to learn the
dynamic environment with maximized age fairness. Although
ODVFC is also related to resource management with the aim
of maximizing profit and QoS, the methods in [9], [10] cannot
be used for ODVFC since they do not support dynamic VFN
routing.
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TABLE I
COMPARISON OF OUR WORK WITH THE EXISTING CAPACITY PLANNING METHODS [3], [4], [5], [6], [7], [8], RESOURCE MANAGEMENT METHODS [9], [10], AND

VEHICLE ROUTING METHODS [11], [12], [13], [14], [15], WHERE UM REPRESENTS THE USER (E.G., USER VEHICLES AND CUSTOMERS/GOODS) MOBILITY AND

RM REPRESENTS THE RESOURCE (E.G., FOG NODES AND TAXIS/DELIVERY VEHICLES) MOBILITY

B. Vehicle Routing Methods

The vehicle routing problem (VRP) is a well-studied problem
in the literature, mainly used for scheduling taxis to pick up
passengers or scheduling logistic cars to deliver goods. Similar
to our problem, VRP aims to route the vehicles to the location
of demand with minimized traveling costs. The works in [11]
and [12] proposed scheduling the routes of vehicles to minimize
the traveling costs using deep reinforcement learning. However,
the demands in the works remain at the same level across the
time horizon.

VRP with time windows (VRPTW) considers the dynamic
demand which changes over time, similar to ODVFC. Different
methods, such as the genetic algorithm [13], particle swarm
optimization [13], multi-agent attention model and policy gra-
dient [14], have been proposed to solve the VRPTW problem.
These solutions do not fit well when applied to solve the capacity
planning for ODVFC, due to the following reasons. Previous
works on VRPTW assumed that the demand is known before-
hand, which means they did not handle unexpected changes in
the demand. Apart from this, the objective of the VRPTW is to
route the vehicles to the exact places as the customers. However,
in ODVFC, the VFNs are supposed to provide services for
the vehicles within the one-hop communication range. Finally,
previous works on VRPTW did not consider different levels
of QoS. In other words, they always tried to satisfy all the
demands; however, in our case, the ratio of users to be served
varies with time and region. In most works related to VRP, the
focus has been placed on scheduling the routes of service
providers. There also exist works that try to move the users
instead of service providers. For example, Bekkouche et al. [15]

proposed an unmanned aerial vehicle (UAV) path planning
solution based on ILP and a heuristic. In this case, UAVs are the
users of edge computing services provided by stationary cellular
fog nodes. Different from [15], our work aims to schedule the
routes of VFNs in order to fulfill the demand generated by other
vehicle users. We consider only ground vehicles in our case.

III. SYSTEM OVERVIEW

In this section, we demonstrate an exemplary scenario of
ODVFC and present the system architecture in terms of network
architecture and methodology.

A. Exemplary Scenario

Dedicated short-range communications (DSRC) and cellular
V2X (C-V2X) are the most widely used radio access technolo-
gies for vehicular communication. For ODVFC, we assume that
communication between vehicles is implemented with 5 G new
radio (NR) V2X. In this work, we assume that the vehicles
communicate with others connected to the same cell using 5 G
V2N. Note that the application data exchanged between VFNs
and the user vehicles can be implemented with 5 G NR V2V after
the task assignment is completed. In addition, VFC, including
ODVFC, is meant to support the offloading of compute-intensive
and latency-sensitive tasks from vehicles to nearby CFNs or
VFNs. In ODVFC, we focus on routing VFNs with flexible
schedules to fulfill the demand which is not covered by CFNs
or the VFNs with fixed routes. Fig. 1(a) illustrates an exemplary
scenario of ODVFC that we envision. In this work, a city is
divided into multiple connected but independent regions, each
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Fig. 1. Overview of ODVFC. (a) Exemplary scenario, (b) Time horizon, and (c) Flowchart of ODCP.

consisting of multiple nodes. The nodes are the start or end
points of the road segments that compose the road. In the region
shown in the figure, two cellular cells are deployed along a
road that consists of at least five nodes. There are five users in
the figure. Based on the workload estimation, three VFNs have
been allocated to this region beforehand. At the upcoming time
slot, User A and User B will arrive at the purple and red nodes,
respectively, both are located within the communication range
of Cell 1. Thus VFN 1, whose capacity is high enough to serve
both User A and User B, is sent to the purple node. Similarly,
we route VFN 2 and VFN 3 to the yellow node, so that they can
serve the Users C, D, and E. To ensure the availability of a VFN
in a given cell when a latency-critical service is received, we
assume that VFNs are routed to the regions before the demand
is generated. To fulfill this assumption, it is essential to be able to
accurately predict the traffic flow and the corresponding demand
for computational resources in the next moment or time window.
In the case of ODVFC, the capacity plan needs to be updated
frequently, which requires the capacity planning solution to be
lightweight enough to calculate the routes within minutes or
even seconds.

B. System Architecture

We assume that both the VFNs and user vehicles are equipped
with 5 G onboard units (OBUs). When a user generates a
computing task, it will send a request to the cellular base station
that it connects to, including its information (e.g., vehicle ID,
location, speed, and direction) and the task-related information
(e.g., service type and latency requirement). The cellular base
station receives the capacity and resource allocation plans from
the central entities (i.e., the controller in Fig. 1(a)) and informs
the user whether the task can be executed or not, and in the
former case, the ID of the VFN is assigned to the user. The user
and VFN update their locations periodically to the connected

base stations. When they are within the communication range
of the same cellular cell, the base station initiates the task
offloading between them. We utilize lightweight containers for
service provision [16], and the result is transmitted to the user
while the task is executed on the VFN. When either the user
or the VFN moves out of the cellular cell, the tasks would be
migrated to the new cell with iterative live migration [16].

We follow a data-driven methodology to implement capacity
planning in ODVFC. The flowchart of ODCP is presented in
Fig. 1(c), where the demand and supply are modeled separately.
To predict the demand, we need both the city-scale vehicular
traffic distribution and the resource consumption profiles of dif-
ferent vehicular applications. The inputs for demand prediction,
as described in Section IV-A, are the traffic dataset, task record,
application profiles, and SLA. The traffic dataset and task record
are used for predicting traffic flows and the arrivals of comput-
ing tasks, respectively. Together with the vehicular application
profiles, which describe the patterns of the central processing
unit (CPU) and graphics processing unit (GPU) consumption
of each task, the workloads can be estimated. In other words,
we can estimate how much CPU and GPU capacity is needed
for satisfying the latency requirements of the services run on the
vehicles in each region. From the SLA negotiated with the users,
we know the price for each task and the penalty cost if the SLA
is violated. Based on the price and penalty cost, we estimate
the revenue w.r.t. the workload, which is fed to the resource
provisioning module.

Apart from the estimated workload and revenue provided by
the demand prediction module, the inputs for resource provi-
sioning also include the road and cellular maps, as described in
Section V-A. To balance the trade-off between the computational
time and the techno-economic performance of the capacity plan-
ning solution, we divide the road network of the considered city
into multiple regions and create the capacity plan in two steps,
namely global planning and regional planning. Afterward, we
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feed the capacity plan to the service evaluation module in order
to get feedback for the next iteration.

The decision-makers of capacity planning are the global and
regional agents, which are controllers (e.g., CFNs) running
the optimization problems. The global agent is located in the
central cloud. It collects information from the regional agents
and evaluates the service performance. The regional agents are
distributed at the centroids, which are the nodes that have the
minimum traveling distance to all other nodes in each region,
calculated by the Floyd-Warshall algorithm [17]. The regional
agents monitor the state of each VFN and each user in their
regions and forward them to the global agent.

During global planning, the global agent is responsible for
deciding the QoS level (i.e., what percent of tasks are planned
to be served in each region) and the global routing plan (i.e.,
how many VFNs will be routed to each region) based on the
demand prediction. In this step, each episode (i.e., the duration
of the capacity planning horizon) is discretized intoE1 long time
slots (LTs), cf. Fig. 1(b), based on which we update the global
capacity plan. During regional planning, the regional agent takes
charge of determining the regional routing plan (i.e., which VFN
will be routed to which node) and the resource allocation plan
(i.e., which VFN will serve which user) based on the upcoming
location as well as CPU and GPU consumption of each user in
the region. In this step, each LT is discretized into E2 short time
slots (STs), cf. Fig. 1(b), based on which we update the regional
capacity plan.

Finally, the regional capacity plan is fed to the service evalua-
tion module to measure the achieved QoS and profit. At the end
of each LT, the global agent evaluates the prediction accuracy
of traffic flow in the current LT and uses it as feedback to
improve the prediction accuracy in the next LT. At the end of
each episode, the global agent evaluates the cost-efficiency of
the sequential capacity plans on the episode as feedback for the
capacity planning for the next episode.

IV. DEMAND PREDICTION

The demand prediction model aims to estimate the workload
that is generated in each region during each LT based on the
traffic flow and task volume prediction. In this section, we detail
it in terms of inputs, traffic flow prediction, task volume pre-
diction, and problem formulation. The notations and definitions
used in the model are listed in Table II.

A. Inputs for Demand Prediction

The inputs for demand prediction include the traffic dataset,
task record, application profiles, and SLA.

1) Traffic Dataset: According to the traffic flow theory [18],
traffic flow describes both macroscopic and microscopic be-
haviors of vehicle traffic. In this work, the macroscopic traffic
dataset records the number of vehicles in each region during each
LT, while the microscopic traffic dataset consists of the locations
of each vehicle in each ST. The former is used for traffic flow
prediction and workload estimation, while the latter is used for
regional planning and service evaluation.

TABLE II
NOTATIONS AND DEFINITIONS

2) Task Record: We define each computing task involved
in vehicular applications with two attributes: the service
type and the latency requirement (note that there can be
multiple levels of latency requirement for one service, cf. Ta-
ble III). The information of the scheduled tasks is collected
from all the users into the regional agents during each ST.
The key information from each region is further forwarded to
the global agent and stored in the task record in each LT. From the
user’s perspective, the computing task will either be served (i.e.,
delivered within the pre-defined latency constraint) or unserved.

3) Application Profiles: Apart from the number of comput-
ing tasks, the computing demand also depends on how much
CPU and GPU resource is required for processing each task
within its latency constraint [5]. We containerize exemplary
services into Docker images [19] and follow the benchmark
algorithm proposed in [3] to measure the CPU and GPU con-
sumption corresponding to different combinations of service
types and latency requirements.

4) Service Level Agreement: Following the common practice
in cloud computing, we use SLA to describe commitments
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TABLE III
APPLICATION PROFILES AND SLA, WHERE L1-L3 ARE DIFFERENT STANDARDS OF LATENCY REQUIREMENTS, C1-C3, G1-G3, AND P1-P3 ARE THE CPU

CONSUMPTION, GPU CONSUMPTION, AND PRICES, RESPECTIVELY, CORRESPONDING TO EACH LATENCY REQUIREMENT

between the service provider and customers selected by the
global agent [20]. SLA defines negotiable parameters, such as
desired QoS, prices, and penalties, which provide inputs for
calculating the most profitable resource allocation plan that
avoids or minimizes the violations of the agreement [20]. In
this work, we define the economic model in SLA as follows: for
a given task, the service provider will charge the price w.r.t. the
service type and latency requirement (cf. Table III) if the task
is anticipated to be served during the global planning phase.
However, if the VFNs fail to serve the task during the regional
planning phase, the penalty cost (directly proportional to the
price) will be refunded to the user. The penalty cost is usually
higher than the price of the task, which motivates the model to
reduce the violation of SLA.

B. Traffic Flow and Task Volume Prediction

Auto-regressive integrated moving average (ARIMA) is a
widely-used method for predicting traffic flow. As an extended
algorithm of ARIMA, seasonal ARIMA (SARIMA) is particu-
larly useful to model seasonal traffic behavior [21]. In this work,
we use SARIMA to predict the macroscopic traffic flow (i.e.,
the number of vehicles in each region) with a minimum Akaike
information criterion (AIC) [22]. During an LT, the actual traffic
flow and the predicted traffic flow in the region j are denoted by
Aj and Fj , respectively.

We assume that each user will keep one active computing
task in each ST, which means that the number of tasks to be
executed is equal to the number of vehicles. We define QoS
levels based on the percentage of tasks that are planned to be
served by the available VFNs. For example, if the set of QoS
levels is K, the highest level |K| (|.| represents the cardinality
of the set) indicates all the computation requests from vehicles
are planned to be handled by the VFNs, while the lowest level
1 indicates only 1/|K| of tasks are planned to be served. The
number of tasks to be executed in the region j under QoS level
k, denoted by γjk, can be calculated as

γjk = Fj × k/|K|. (1)

We predict the number of tasks belonging to each service type
and latency requirement based on sampled probability. More
specifically, after aggregating the user tasks selected in each LT,
we calculate the probability of selecting each service type and
latency requirement based on the statistics. This probability is
then multiplied by the predicted number of tasks to be executed
in order to predict the number of each type of task that will be
generated during the upcoming LT. Finally, we accumulate the
prices of the tasks planned to be served in each region for every

QoS level. We represent it as the revenue θ, which is an input
for global planning.

C. Workload Estimation

In ODVFC, the computing tasks generated from the users
are expected to be offloaded to the VFNs. Therefore, we for-
mulated the problem of workload estimation (i.e., how much
workload would be generated or needs to be handled) as a
capacity planning problem of finding the minimum comput-
ing capacity requirement. For the sake of simplicity, we as-
sume that the VFNs contain homogeneous configurations and
provide identical services to the requests generated by the
users.

In this problem, P represents the set of computing tasks, and
Q represents the set of VFNs that are required for handling
P . Assume that the resource consumption of each task does
not exceed the capacity of any single VFN, thus in the worst
case, the number of required VFNs is equal to the number of
tasks. This is denoted as |P | = |Q| = γ. The CPU and GPU
consumption of each computing task p is represented by c(p)
and g(p), respectively. The values of c(p) and g(p) depend on the
service type and latency requirement. The maximum capacity
of the CPU and GPU, depending on the configurations of the
VFNs, are given by BCPU and BGPU, respectively. The workload
estimation problem can be expressed in (2a)–(2e). The objective
function (2a) aims to minimize the workload, namely the number
of VFNs required to serve all the computing tasks generated
by the users. The binary decision variable xpq indicates if the
task p is assigned to the VFN q. The symbol �.� represents the

ceiling function, and the term
⌈∑

p∈P xpq

γ

⌉
indicates that if at

least one task is assigned to the VFN, then the VFN will be
required. Constraints (2b) and (2c) are the CPU capacity con-
straint and GPU capacity constraint, respectively, which ensure
that the computing tasks assigned to each VFN do not exceed
the corresponding CPU or GPU capacity defined in BCPU and
BGPU, respectively. Finally, constraint (2d) is the non-repetitive
assignment constraint, which guarantees that each computing
task is only assigned to one VFN.

min
xpq

∑
q∈Q

⌈∑
p∈P xpq

γ

⌉
(2a)

s.t.
∑
p∈P

c(p)xpq ≤ BCPU, ∀q ∈ Q (2b)

∑
p∈P

g(p)xpq ≤ BGPU, ∀q ∈ Q (2c)
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Fig. 2. Graphs generation using graph theory in Helsinki. (a) City-scale road network, where the red lines are road segments and the blue dots are nodes.
(b) Traveling distance matrix of the road network, where the legend represents the distance in kilometers. (c) Exemplary road clustering using k-means, where
each dot is a node and each color represents a region. (d) City-scale region network, where each dot is a region. (e) Map overlay of the cellular base station and
road maps. (f) Left: Traveling distance matrix of the road network in a region, where the legend represents the distance in kilometers. Right: cellular coverage map
in a region, where two adjacent nodes are within the coverage of the same cellular base station.

∑
q∈Q

xpq = 1, ∀p ∈ P (2d)

xpq ∈ {0, 1}, ∀p ∈ P, ∀q ∈ Q. (2e)

We use the nextfit heuristic [23] to solve the workload esti-
mation problem as follows: we first choose a random VFN and
assign tasks to it until all the CPU and GPU resources have been
allocated. We repeat this process of choosing random VFNs and
assigning tasks until we have assigned all tasks or all VFNs are
fully booked. The heuristic method could offer two benefits: low
complexity and bounded solutions. First, since the complexity of
the next-fit heuristic is O(n), the method can solve the problem
in polynomial time [23]. Second, while the solution based on the
heuristic suffers from the sub-optimal issue, the approximated
solution could act as an upper bounding for the workload. This
would avoid underestimating the workload, which is particularly
problematic in the initial assumption in global planning that a
VFN assigned to one region can serve all the users within the
same region. The workload estimation problem is solved in each
LT for each region at each QoS level. The value of the objective
function is represented as the workload w, which is an input for
global planning.

V. RESOURCE PROVISIONING

During the resource provisioning phase, we need to decide
the QoS level (i.e., the percentage of the tasks that are expected
to be served), the routing plan (i.e., when and where to send each
VFN), as well as the resource allocation plan (i.e., which user
will be served by which VFN). When the numbers of users and

VFNs increase, the joint scheduling of all the tasks and VFNs
will be time-consuming. To speed up the decision-making, we
propose to create the capacity plan in two phases, including
global planning and regional planning phases. In this section,
we explain the input for resource provisioning, the formulation
of global and regional planning problems, and the metrics used
for evaluating techno-economic performance.

A. Inputs for Resource Provisioning

Apart from microscopic traffic data, SLA, and estimated
workload, the inputs for resource provisioning include the road
and cellular maps, based on which we generate the road net-
work and cellular coverage graphs, respectively, using graph
theory [24]. The city-scale road network (cf. Fig. 2(a)) is a
weighted directed graph extracted from HERE Traffic API [25],
where each edge represents a road segment defined by HERE,
and the nodes are either the starting or the ending point of a
road segment. Two nodes are adjacent to each other if there
is a road segment in between. The edge weights are set by
the traveling distance through a road segment. Consequently,
different driving directions have different edge weights. We
calculate the traveling distance matrix of each pair of nodes
following the Floyd-Warshall algorithm [17] (cf. Fig. 2(b)). We
then calculate the traveling time based on the traveling distance,
assuming the speed of VFN is a constant value v (cf. Table IV).
and each color represents a region. (d) City-scale region network,
where each dot is a region. (e) Map overlay of the cellular base
station and road maps. (f) Left: Traveling distance matrix of
the road network in a region, where the legend represents the
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TABLE IV
SIMULATION CONFIGURATIONS FOR THE EXPERIMENTS

distance in kilometers. Right: cellular coverage map in a region,
where two adjacent nodes are within the coverage of the same
cellular base station.

We divide the city-scale road network into multiple con-
nected but independent regions using k-means clustering (cf.
Fig. 2(c)). More specifically, the algorithm aims to divide the
nodes into a pre-defined number of regions to minimize the sum
of distances between the nodes and their respective regional
centroids. Various numbers of regions are used to evaluate the
impacts of clustering (cf. Table IV). We assume that a VFN is
dedicated to the users located in the same region and within the
communication range of the VFN.

The city-scale region network (cf. Fig. 2(d)) is a weighted
directed graph, where each node is a region. Two regions are
adjacent to each other if any nodes within them are adjacent.
The weight of the edge is the traveling distance between the
centroids of the regions. We extract the road network for each
region together with the traveling distance matrix of each pair
of nodes (cf., Fig. 2(f) on the left), and calculate the traveling
time based on the distance.

For each region, we also create a cellular coverage graph
to describe the locations and coverage of cellular base sta-
tions. The graph is created using map overlay (cf. Fig. 2(e)).
The first step is to plot the locations of nodes from the road
map. The next step is to plot the locations of base stations
from the cellular map. Then, we find the overlap between
the nodes and the coverage of base stations and generate
the cellular coverage graph. The cellular coverage graph (cf.
Fig. 2(f) on the right) is an unweighted undirected graph, where
each node represents a node. Two nodes are adjacent to each
other if they are within the coverage of the same cellular base
station.

B. Global Planning

The global planning problem aims to decide the QoS level
for each region and the global routing plan based on workload
estimation. The decision is made by the global agent in each
LT. In this problem, I denotes the set of VFNs in the city,
J denotes the set of regions plus the depot, and the depot is
represented by 0. K denotes the set of QoS levels. The output
of the workload estimation model, denoted as wjk, represents
the estimated workload in the region j when it chooses the QoS
level k.

The city-scale revenue in an LT is defined as

Crev =
∑
j∈J

∑
k∈K

θjkyjk (3)

where θjk represents the revenue gained from the region j when
the QoS level k is selected, based on the prices defined in the
SLA, and yjk is the binary variable indicating whether the region
j will select the QoS level k.

The city-scale traveling cost in an LT is defined as

Ctra,cs = ctra ×
∑
i∈I

∑
j∈J

dijxij (4)

where ctra denotes the unit traveling cost per VFN per minute,
dij denotes the time it would take for VFN i to travel from the
location at the end of the current LT to the region j, based on
the traveling distance matrix of the city-scale region network,
and xij is the binary variable indicating whether the VFN i will
travel to the region j.

The city-scale rental cost in an LT is defined as

Crent = crent ×
∑
i∈I

∑
j∈J

aijxij (5)

where crent represents the unit rental cost per VFN per LT, and
aij , which indicates whether the VFN i is active or not in the
region j, equals 0 when the VFN is in the depot (j = 0) and
equals 1 otherwise.

The global planning problem can be formulated in (6a)–(6f).
The objective function (6a) aims to maximize the profit, which is
the difference between the revenue and the traveling and rental
costs on a city scale. Constraint (6b) is the QoS constraint, which
guarantees that we have routed enough VFNs to each region
according to their QoS level selection. Constraint (6c) is the one
destination constraint, which prevents any VFN from going to
multiple regions during one LT. Finally, constraint (6d) is the
one QoS level constraint, which ensures that a region can only
select one QoS level during one LT.

max
xij ,yjk

Crev − Ctra,cs − Crent (6a)

s.t.
∑
i∈I

xij ≤
∑
k∈K

wjkyjk, ∀j ∈ J (6b)

∑
j∈J

xij = 1, ∀i ∈ I (6c)
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∑
k∈K

yjk = 1, ∀j ∈ J (6d)

xij ∈ {0, 1}, ∀i ∈ I, ∀j ∈ J (6e)

yjk ∈ {0, 1}, ∀j ∈ J, ∀k ∈ K. (6f)

C. Regional Planning

During the global planning phase, we assume that a VFN
assigned to one region is allowed to serve all the users located
inside the same region. However, in practice, a VFN can only
serve the users within the communication range. In ODVFC, we
assume that the VFNs located at the same node can share their
resources to serve the surrounding users. The above two aspects
are considered in the regional planning model. The regional
planning problem aims to determine the regional routing plan
and the resource allocation plan based on the upcoming locations
of the users (e.g., collected from the vehicles’ navigation system)
and their task selections. The decision is made by the regional
agent in each ST. In this problem, L, M , and N represent the
sets of VFNs, nodes, and tasks in the region, respectively. The
CPU and GPU consumption of the task n are denoted as c(n)
and g(n), respectively.

Similar to the definitions presented in Section V-B, the re-
gional traveling cost in an ST is defined as

Ctra,rg = ctra ×
∑
l∈L

∑
m∈M

dlmxlm (7)

where dlm is the traveling time from the VFN l to the node m,
and xlm is the binary variable representing whether the VFN l
will travel to the node m.

The regional penalty cost in an ST is defined as

Cpen =
∑
n∈N

βnεn (8)

where βn denotes the penalty cost of the task n, and εn is a
binary variable that represents whether the SLA is violated for
the task n.

The regional planning problem can be formulated in Equa-
tions (9a)–(9g). Our objective function (9a) aims to minimize
regional traveling and penalty costs. We represent the SLA
violation by εn defined in (9b). The binary variable ymn denotes
whether the VFNs on the node m will serve the task n. hmn in-
dicates whether the VFNs on the node m can connect to the user
of the taskn, based on the location of the user at the ST as well as
the adjacency matrix of the cellular coverage graph. Constraint
(9c) is the one destination constraint, which means each VFN
can only go to one node during each ST. Constraints (9d) and (9e)
are the CPU capacity constraint and GPU capacity constraint,
respectively, which avoid the computing tasks assigned to the
VFNs at each node from exceeding the maximum capacity of
VFNs.

min
xlm,ymn

Ctra,rg + Cpen (9a)

s.t. εn = 1 −
∑
m∈M

hmnymn, ∀n ∈ N (9b)

∑
m∈M

xlm = 1, ∀l ∈ L (9c)

∑
n∈N

c(n)ymn ≤
∑
l∈L

xlm, ∀m ∈ M (9d)

∑
n∈N

g(n)ymn ≤
∑
l∈L

xlm, ∀m ∈ M (9e)

xlm ∈ {0, 1}, ∀l ∈ L, ∀m ∈ M (9f)

ymn ∈ {0, 1}, ∀m ∈ M, ∀n ∈ N. (9g)

The global and regional planning problems were developed
in Python 3.7 and solved using the Gurobi [26] solver.

D. Performance Metrics

We evaluated the accuracy of traffic flow prediction using
the symmetric mean absolute percentage error (SMAPE). Since
the traffic flow could sometimes be 0, the mean absolute per-
centage error (MAPE) cannot be used here. The SMAPE during
each LT, denoted by S, is calculated as follows:

S =
1

|J | − 1

∑
j∈J\{0}

|Fj −Aj |
(Aj + Fj)/2

(10)

where J \ {0} is the set of regions except the depot, Aj and
Fj represent the actual traffic flow and the predicted traffic flow
using SARIMA for region j during the LT, respectively. We use
service rate rser to evaluate the achieved QoS. It calculates the
ratio of tasks served during each LT as follows:

rser =
1

|J | − 1
1

|E2|
∑

j∈J\{0}

∑
t∈E2

δjt/ηjt (11)

where E2 is the set of STs in an LT, δjt and ηjt are the number
of served tasks and the overall number of tasks in the region j
in ST t, respectively. It is worth mentioning that the achieved
QoS rser can be different from the QoS level selected for each
region during global planning, due to the different assumptions
mentioned in V-C and the potential errors in traffic flow and task
volume prediction.

To evaluate the long-term economics, we assume there is
a capacity cost ccap for each deployed VFN. The city-scale
capacity cost in an LT can be calculated as

Ccap = ccap × |I| = cins, man × |I|/Ls (12)

where |I| is the number of VFNs in the city, cins, man is the
installation and maintenance cost per VFN, andLs is the lifespan
of the VFNs in LTs.

We use profitCpro to evaluate the economic benefit of ODVFC
during each LT, which is the difference between the city-scale
revenue and the overall traveling, rental, capacity, and penalty
costs. It is calculated as follows:

Cpro = (6a)−
∑

j∈J\{0}

∑
t∈E2

(9a)− Ccap

= Crev − Ctra,cs − Crent − Ccap

−
∑

j∈J\{0}

∑
t∈E2

Cj,t
tra,rg −

∑
j∈J\{0}

∑
t∈E2

Cj,t
pen. (13)
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By maximizing Equation (6a) during global planning and min-
imizing Equation (9a) during regional planning, we have trans-
formed the multi-objective of maximizing QoS (in terms of
minimizing penalty costCpen) and maximizing revenueCrev into
a single objective, namely maximizing profit Cpro in Equation
(13). Moreover, we assume that the penalty cost of a task cpen is
proportional to the price of the task cprice, with their ratio αpen

denoted as

αpen = cpen/cprice. (14)

When we adjust the value of αpen, we are essentially adjusting
the weights of the QoS and revenue.

At the end of each episode, the values of rser and Cpro are used
for techno-economic evaluation. Between them, rser reflects the
general performance whileCpro is more sensitive to extreme sce-
narios, for example, those with large spatio-temporal variation
in the demand.

VI. EXPERIMENTAL SETUP

This section describes the experimental setup including the
input datasets, traffic models, capacity planning strategies, as
well as simulation and network configurations.

A. Input Datasets

As discussed in Section IV-A, the inputs for demand predic-
tion include traffic dataset, task record, application profile, and
SLA. We also need road and cellular maps to generate the graphs
discussed in Section V-A. Below we describe the datasets used
in this study.

1) Road and Cellular Maps: The road map of Helsinki, more
specifically, the area ranging from latitude 60.222306, longi-
tude 24.858754 to latitude 60.142211, longitude 24.993980, is
extracted from HERE Traffic API [25]. There exist 865 nodes
in the target area, and the nodes are usually dense in the city
downtown and sparse in the city suburb. We collect the locations
and adjacency relationship of the nodes, as well as the traveling
time between them to generate the road network. We set the VFN
depot in Pasila, a major transportation hub in Helsinki, where the
Pasila railway station, the second busiest station in Finland, and
the terminal of many local buses are located. The cellular map
is extracted from OpenCellID [27], which includes the latitudes
and longitudes of all the base stations that support/will support
5 G in the area. We select the base stations provided by Elisa [28],
the largest Finnish telecommunication operator, and set the
communication range of each base station as 300 meters [29].

2) Traffic Dataset: Based on the road network, the traf-
fic dataset is generated using Simulation of Urban MObility
(SUMO) [30]. We generate the microscopic traffic flow (i.e.,
the location of each user in each ST) following the approach
of activity-based demand generation [31], which creates the
trips of the individual vehicles based on the description of the
city population. To simulate different routes and schedules of
school, employed, unemployed, and retired populations, we set
the age distribution according to the data published by Statis-
tics Finland in the year 2022 [32]. The working time of the
inhabitants is distributed from 6:00 to 18:00. We set two peak
hours during weekdays, one in the morning and the other in

the afternoon (cf. Fig. 3(a)–(c)). We assume that the homes,
schools, and working places are evenly distributed in the city.
During each day, each inhabitant either commutes regularly
between their school/working place and home (for school and
employed travelers) or wanders in the city (for unemployed and
retired travelers). The above-mentioned trips together form the
microscopic traffic flow. Considering that there would be other
random activities (e.g., entertainment after work), we set the
uniformRandomTraffic parameter as 0.2, which indicates that
80% of the traffic flow is generated by regular commuting.
After collecting the microscopic traffic data, we aggregate the
macroscopic traffic flow in each region.

3) Task Record: During the experiment, each user generates
a computing task per ST. The regional and global agents will ag-
gregate this information and store them in the task record. We set
uniform distribution for each service type as well as each latency
requirement.

4) Application Profiles: We take four exemplary service
types for a case study and set the input to be a 1280x720 driving
footage video captured at 25 frames per second.
� Object detection: represents ultra-low latency and GPU-

intensive service. It is implemented with YOLOv5s [33]
trained on the COCO dataset [34]. It divides images into
grids, where each cell in the grid is responsible for detecting
objects within itself.

� Semantic segmentation: represents low latency and GPU-
intensive service. It is implemented using Image Segmen-
tation Keras [35] with the VGG-UNET model. The model
is trained on the Cityscapes dataset [36]. It classifies each
pixel in an image into one of the predefined classes using
a fully convolutional network.

� Lane detection: represents ultra-low latency and CPU-
intensive Service. It is implemented with OpenCV [37]
in Python. It includes image processing techniques such
as color selection, canny edge detection, region of interest
selection, and Hough transform line detection.

� Video transcoding: represents low latency and CPU-
moderate service. It is implemented using HandBrake
video transcoder [38] with x265 video encoder and mp4
container.

We assume that each service type is associated with three
latency requirements. The application profile is measured on a
computer equipped with an Intel Core i7-7700 K CPU and an
NVIDIA GeForce RTX 2080 Ti GPU.

5) Economic Model in SLA: In this work, the prices and
costs are purely designed for comparison purposes and given
in monetary units (MU). The price of a task cprice is listed in
Table III, and the ratio between the penalty cost and price of
a task αpen, unit traveling cost ctra, unit rental cost crent, and
unit capacity cost ccap are listed in Table IV. We set the prices
following two rules: i) the price of the task will be higher when
the CPU and GPU consumption is higher; ii) the price of the
GPU consumption is higher than the CPU consumption.

B. Traffic Models

The duration of a capacity planning simulation is an episode.
We assume that all the VFNs leave the depot at the beginning
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Fig. 3. Working hour distribution in different traffic models. (a) Working hour distribution in STM, TM-OE, and the first three days in TM-SC. (b) Working hour
distribution in the middle three days in TM-SC. (c) Working hour distribution in the last four days days in TM-SC.

of each episode, and return to the same depot at the end of the
episode [11], [12], [13], [14]; thus, the episode needs to be long
enough to ensure VFNs would be able to travel back. During
the experiment, we set the length of each episode as 1 d, each
LT as 1 h, and each ST as 5 minutes. The lengths of LT and ST
are set to be larger than the traveling time among the regions in
the city and among nodes in a region, respectively, to ensure
that the VFN can arrive at the destination before the next LT/ST
starts. We generate the microscopic traffic data for ten working
days with ST intervals. We consider three types of traffic models:
� Stationary Traffic Model (STM): The traffic pattern remains

unchanged during the ten days.
� Traffic Model with a Seasonal Change (TM-SC): There

is a gradual change in the distribution of the working
hours (cf. Fig. 3(a)–(c)) due to a more flexible schedule,
such as the hybrid working schedule during the pandemic
period.

� Traffic Model with an Occasional Event (TM-OE): There
is a sudden change in the demand magnitude (i.e., the
total number of users doubled from 5000 to 10000) over
the last four days due to an occasional event, such as an
international football match.

Among them, STM is the baseline, while TM-SC and TM-OE
represent the scenarios where temporary changes occur in the
demand. We collect the macroscopic traffic flow in terms of the
number of vehicles in each region. We use the first nine days to
train the SARIMA model with LT intervals and use the last day
for prediction.

C. Capacity Planning Strategies

Due to the uncertainty in traffic flow, the traffic flow pre-
diction cannot always be accurate. The impacts of traffic flow
prediction accuracy on capacity planning are analyzed through
the following scenarios:
� ODCP with Accurate Traffic (AT): Assume that the traffic

flow prediction is 100% accurate and use the proposed
model for capacity planning.

� ODCP with Traffic Prediction With Feedback (TP-
WF): Predict traffic flow using SARIMA, which takes
the prediction errors in the previous time slot as feedback
and uses the proposed model for capacity planning.

� ODCP with Traffic Regression with No Feedback (TR-
NF): Estimate the traffic flow based on Gaussian process

regression [3] from the historical data and use the proposed
model for capacity planning.

TP-WF is our proposal, AT is the baseline, and TR-NF is used
for comparison.

We also compare ODCP with the following strategies pre-
sented in the literature:
� Vehicle Routing method (VR): Formulate the plan-

ning problem as VRPTW [13] and solve it using
ILP.

� Randomly Go and serve (RG): The VFNs randomly travel
among the regions and serve the demand that is within the
same region (i.e., a naive approach).

D. Simulation Configurations

We design four sets of experiments. The simulation configu-
rations for each experiment are detailed in Table IV. We repeat
each experiment 10 times to get the mean values and statistical
confidence intervals, and we use the same random seed for
task generation in each comparison group. The first experiment
aims to evaluate the techno-economic performance of different
scenarios described in Section VI-C. We present the results in
Sections VII-A and VII-B. Assuming the traffic flow prediction
is correct, we want to see how different parameters affect the
techno-economic performance of the capacity plan. The second
experiment aims to find the impacts of the number of VFNs on
performance. We change the number of VFNs from 20 to 70
and change the capacity cost from 0 to 50 while keeping other
parameters fixed. The results are presented in Section VII-C.
The third experiment aims to evaluate how the cost parameter
values, including the unit traveling, rental, and penalty costs,
will affect the performance of the capacity plan. We change
them once per time while keeping other parameters unchanged.
The results for this experiment are presented in Section VII-D.
The last experiment aims to find the impacts of region size on
performance. We change the regional number from 10 to 20,
while keeping other parameters fixed. We present the results in
Section VII-E.

E. Network Configurations

The latency experienced by the users consists of both com-
puting and network latency. The experimental settings presented
in the previous sections only consider computing latency since
ODCP is focused on planning the computational capacity in
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Fig. 4. (a)–(c): Traffic flow prediction results in terms of the number of the user vehicles in the city. (d)-(f): Global routing plans created by ODCP with TP-WF
under different traffic scenarios, where the x-axis represents the 24 LTs, the y-axis represents the 20 regions, and the color bar represents the density of the active
VFNs in each region. (a) Ft under STM. (b) Ft under TM-SC. (c) Ft under TM-OE. (d) Number of active VFNs in each region during each LT under STM,
where mean=1.14, std=0.44, correlation with At=89%. (e) Number of active VFNs in each region during each LT under TM-SC, where mean=1.18, std=0.40,
correlation with At=94%. (f) Number of active VFNs in each region during each LT under TM-OE, where mean=1.32, std=0.69, correlation with At=74%.

TABLE V
PHYSICAL AND NETWORK PARAMETERS IN THE NETWORK SIMULATION

the time granularity of ST. On the other hand, the network
latency depends on the network and the applications using the
bandwidth on the network. Therefore, we demonstrate an ex-
emplary scenario using our capacity planning solution together
with a real-time VFC simulator VFogSim [39] to measure the
network latency experienced by the users in a region located in
central Helsinki. We set the physical and network parameters
according to Table V, and repeat each measurement 20 times
to get the cumulative distribution function (CDF) of network
latency distribution. We consider various traffic scenarios where
the number of vehicles within a region ranges from 50 to 150 and
compare the network latency experienced by the users (including
queuing and migration latency) using the following strategies,
assuming that the capacities of CFN and VFN are equal:
� ODVFC: The scenario created by ODCP.
� CFN Only – Off-peak: Deploying only CFNs according to

the demand during off-peak hours.

� CFN Only – Peak: Deploying only CFNs according to the
demand during peak hours.

The results are presented in Section VII-F.

VII. EXPERIMENTAL RESULT

This section presents the results of the experiments described
in Sections VI-D and VI-E.

A. Traffic Flow Prediction

We compare the performance of our traffic flow prediction
algorithm (i.e., TP-WF) with TR-NF in different traffic scenarios
including STM, TM-SC, and TM-OE. As shown in Fig. 4(a)–(c),
TP-WF outperforms TR-NF when compared with AT which
represents the ground truth. TP-NF is not able to react as fast
as TP-WF to the gradual change in case of TM-SC. In addition,
TP-NF significantly underestimates the demand in the case of
TM-OE where sudden change occurs. As shown in Table VI,
the traffic flow prediction SMAPE using TP-WF is lower than
the one using TR-NF, both in terms of mean values and confi-
dence intervals. This is because TP-WF uses feedback from the
previous LT to train the model and leads to higher prediction
accuracy.

B. Capacity Planning

Fig. 4(d)–(f) present the global routing plans of ODCP with
TP-WF in terms of the number of active VFNs routed to each
region during each LT. Averaged over all the LTs, more active
VFNs are needed for each region in the case of TM-OE than in
the cases of STM and TM-SC, and the deviation of it is smaller
in the case of TM-SC than in the case of STM. These results
are consistent with the traffic patterns described in Section VI-B
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TABLE VI
TECHNO-ECONOMIC PERFORMANCE METRICS WITH MEAN VALUES AND CONFIDENCE INTERVALS IN DIFFERENT SCENARIOS

since the occasional event results in higher demand in TM-OE,
and the gradual changing time schedule leads to more evenly
distributed demand in TM-SC. Furthermore, there exist strong
correlations between the traffic flow and the active VFNs utilized
during each LT in all traffic scenarios. Among them, the corre-
lation in TM-OE is slightly lower than in other cases because
the limited number of VFNs cannot meet the peak demands in
TM-OE.

Table VI shows the techno-economic performance of different
scenarios described in Section VI-C, in terms of the average
service rate and overall profit in an episode. First, we consider
the ODCP scenario that we propose and evaluate the impacts
of the traffic flow prediction accuracy on the techno-economic
performance. ODCP with AT scenario assumes that the traffic
is known beforehand; thus, it has the highest service rate and
profit (i.e., the optimum values). ODCP with TP-WF scenario
has a higher performance in terms of service rate and profit than
the case of ODCP with TR-NF because a more accurate traffic
flow prediction helps to adapt better to the temporary changes
in demand.

Then, we compare the performance of ODCP with other ca-
pacity planning strategies. With the same traffic flow prediction
method (i.e., TP-WF), the service rate of VR is similar to that
in ODCP. However, the profit in VR is much lower than that in
ODCP, especially under TM-OE. This is because VR plans to
serve all the tasks, without considering the trade-off between the
QoS and costs. When the demand exceeds the overall capacities
of the VFNs, it will lead to higher penalty costs than ODCP,
and the extreme amount of demand in TM-OE has intensi-
fied this situation. Finally, RG has an undesirable performance
due to non-adaptation to the demand, with up to 20% lower
service rate and 91% lower profit than ODCP with TP-WF.
In case of 20 regions, RG uses 95% of VFNs throughout the
day and stores the remaining 5% at the depot. Since not all
VFNs are used during peak hours, the service rate is lower than
other strategies; meanwhile, a high number of VFNs are utilized

Fig. 5. Impact analysis of the deployed capacity and the economic model in
use on the achieved profit and service rate. (a) Number of VFNs versus overall
profit and service rate. (b) Unit traveling cost versus overall profit and service
rate. (c) Unit rental cost versus overall profit and service rate. (d) Unit penalty
cost versus overall profit and service rate.

during off-peak hours, which leads to the waste of resources
and costs. Consequently, ODCP outperforms others, especially
when the demand shows high temporary changes.

C. Impacts of the Number of VFNs

Fig. 5(a) shows the techno-economic implications of the
number of deployed VFNs. The increasing number of VFNs
leads to service rate improvement and higher profit until they
reach a saturation point. This is because the calculation of
profit in Equation (13) considers not only the traveling and
rental costs but also the revenue and penalty cost, which are
tightly associated with the QoS received by the users. The
objective function not only maximizes the economic gain but
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also the QoS simultaneously. Meanwhile, the increase in QoS
and profit gradually slows down, and they achieve the saturation
point when the number of VFNs is large enough that there is
sufficient capacity. For example, when there are 50 VFNs, all
tasks are planned to be served, and a further increase in the
number of VFNs lets more VFNs remain at the depot, which can
no longer increase the service rate or profit. On the other hand,
more VFNs also result in more installation and maintenance
costs. When the number of VFNs becomes excessive, the profit
will decrease, particularly when the capacity cost is high.

D. Impacts of the Economic Model

Fig. 5(b)–(d) show the techno-economic implications of the
cost parameters values. The overall profit decreases linearly with
the unit traveling, rental, and penalty costs, respectively, since
these costs are independent of each other in (13). However,
the cost parameter values have different effects on the average
service rate. When the unit traveling cost becomes higher, the
global and regional traveling costs will increase accordingly.
As a result, the global and regional agents tend to move the
VFNs as little as possible, which may lead to degraded QoS.
When the traveling cost keeps increasing, the degradation in QoS
becomes faster (cf. Fig. 5(b)). When the unit rental cost becomes
higher, the rental cost increases, which forces the global agent
to deploy as few VFNs as possible. Consequently, the service
rate decreases steadily when the unit rental cost increases (cf.
Fig. 5(c)). When the penalty cost per user increases, the regional
planner is motivated to serve more tasks. However, the potential
to increase the service rate in this way is limited by the number
of VFNs available in the region, or by the total amount of tasks
to be served. Therefore, the increase in service rate slows down
when the unit penalty cost increases, and it will stop increasing
when the unit penalty cost has reached a certain level (e.g.,
1.5 times the value of the prices) (cf. Fig. 5(d)). Fig. 5(d) also
shows the trade-off between the QoS and revenue, as mentioned
in Section V-D. When the value of αpen increases, the QoS has
a higher weight than the revenue. Therefore, the service rate
increases, and the profit decreases, and vice versa.

E. Impacts of Region Size

Fig. 6 reports how the selection of the region size affects the
techno-economic performance of the capacity plan. We divide
the same urban area into different numbers of regions. From
Fig. 6(a), we can see when the region size becomes smaller,
more VFNs will be used, which can result in a higher service
rate but also higher costs. According to Fig. 6(b), during off-peak
hours, using smaller regions can increase the service rate. In
contrast, it is more profitable to use a larger region size during
peak hours, as illustrated in Fig. 6(c). These are partially caused
by the assumption that a VFN assigned to one region is only
allowed to serve users within the same region. When the region
size is large, a VFN in practice cannot serve all the users within
the same region, due to the limited coverage of each cell. On the
other hand, with a larger region size, there are fewer regional
boundaries, and the VFN utilization rate can be higher. However,
as shown in Fig. 6(d), the execution time of regional planning
greatly increases with the region size during peak hours. When

Fig. 6. Impact analysis of region size. (a) Impacts of region size on the VFN
utilization. (b) Impacts of region size on the service rate. (c) Impacts of region
size on the hourly profit. (d) Impacts of region size on the average execution
time of regional capacity planning.

the region size becomes very large, for example, the whole city
as an extreme case, the capacity plan would become the optimal
solution in terms of profit, but there is no guarantee to get the
optimal capacity plan within a feasible time.

In practice, we can set a threshold value for the service rate
when selecting the region size. When the service rate reaches
the threshold, there is no need to further decrease the region
size. On the other hand, we can set a limit for the execution
time of regional planning. When the execution time reaches the
time limit, there is no need to further increase the region size.

F. Network Latency Experienced by the Users

As shown in Table VII, ODVFC has similar performance
compared to CFN only – Off-peak when the network latency
requirement is relaxed (e.g., 150 ms) or when the user density is
low (e.g., 50 users). However, ODVFC has significantly better
performance (i.e., up to 17%) compared to CFN only – Off-peak
when the latency requirement is stringent (e.g., 50 ms) and when
the users are densely distributed (e.g., 150 users). Therefore,
ODVFC is suitable for serving latency-sensitive applications,
especially in the urban environment. Compared to CFN only –
Peak, ODVFC has similar network latency; by using a flexible
number of VFNs, it can save 14 and 6 VFNs when there are 50
and 100 users, respectively; thus, it is a cost-efficient strategy.

VIII. DISCUSSION

In this section, we analyze the time complexity and network
overhead of ODCP. We also discuss the limitations and future
directions.

A. Time Complexity

To evaluate the time complexity of ODCP, we measure the
execution time of the model by running it on a core of an Intel
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TABLE VII
CDF OF NETWORK LATENCY EXPERIENCED BY THE USERS USING DIFFERENT DEPLOYMENT STRATEGIES

Fig. 7. Scalability analysis of capacity planning model. (a) Execution time of global planning versus the number of VFNs in the city |I| (|J \ {0}| = 10, |K| = 10).
(b) Execution time of global planning versus the number of regions in the city |J \ {0}| (|I| = 50, |K| = 10). (c) Execution time of global planning versus the
number of QoS levels |K| (|I| = 50, |J \ {0}| = 10). (d) Execution time of regional planning versus the number of VFNs in a region |L| (|M | = 150, |N | = 50).
(e) Execution time of regional planning versus the number of nodes in a region |M | (|L| = 50, |N | = 50). (f) Execution time of regional planning versus the
number of users in a region |N | (|L| = 50, |M | = 150).

i7-10510 U CPU. First, we evaluate the time complexity of the
demand prediction model. If we use SARIMA for traffic flow
prediction in a city with 20 regions, the average training and pre-
diction time are both around 29 seconds (i.e., 58 seconds in total).
With the same setting, the average modeling and prediction time
using Gaussian process regression is about 44 seconds, which is
more computationally efficient. However, as shown in Table VI,
by using SARIMA (i.e., TP-WF), we can increase the profit by
9.05% and service rate by 8.72% compared to using Gaussian
process regression (i.e., TR-NF) under TM-OE. Therefore, there
is a trade-off between performance and computational time
in the case of traffic flow prediction using training-based and
regression-based methods.

Then, we evaluate the scalability of the capacity planning
model. The nextfit heuristic can solve the workload estimation
problem in polynomial time [23]. To measure the scalability of
the global and regional planning models, we use random inputs
with various sizes of data and compare the execution time. We
repeat each measurement 20 times to get the mean values and
standard derivations.

Fig. 7(a)–(c) show how the execution time of the global
planning model changes with the number of VFNs in the city
|I|, the number of regions |J \ {0}|, and the number of QoS

levels |K|, respectively. It can be seen that the increasing rates
are close to linear in the case of |I| and |J \ {0}|, and slightly
slower than linear in the case of |K|. When we set the QoS
levels, we essentially divide the tasks in each region into |K|
groups and make batch decisions about serving them or not.
In the optimal cases, when the value of |K| is equal to or
larger than the number of tasks, we will individually consider
whether to serve each task or not, and the service rate will be the
optimal value. However, this process will take a long time when
the number of tasks is high. Therefore, similar to determining
the regional size, we can set a threshold value for the service
rate when selecting |K|. When the service rate reaches the
threshold, there is no need to further increase the number of
levels.

Fig. 7(d)–(f) show how the execution time of the regional
planning model changes with the number of VFNs |L|, the
number of nodes |M |, and the number of tasks |N | in a region,
respectively. It can be seen that the increasing rates are close to
linear in the case of |L| and |M |, and slightly faster than linear
in the case of |N |. By using two-phase capacity planning, we
greatly reduce the scale of |L|, |M |, and |N |. Therefore, the exe-
cution time is significantly shortened compared to single-phase
capacity planning.
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B. Network Overhead

We study the impact of the proposed method on network
data overhead by measuring the data exchange among the
users, regional agents, and the global agent with the network
configuration described in Section VI-E. The information that
the regional agents need to collect from the users includes the
vehicle ID, vehicle dynamics per second (e.g., location, speed,
and direction), service type, and latency requirement, which is
collected every ST. We measure the data overhead in the regional
agent for 10 minutes. With 150 users in the peak scenario, the
data overhead is around 3500 kB. Meanwhile, the information
that the global agent needs to collect from the regional agents
includes the region ID and the vehicle ID, service type, and
latency requirement of the users located in the region. Such data,
which is collected every LT, is usually small (i.e., less than 1 kB
for each user). The data overhead is around 400 kB for the city
in this case.

C. Limitations and Future Directions

In this work, we assume that the VFNs have the same con-
figuration and can serve all the requests. In the future, we will
explore how the heterogeneity of the VFNs would affect the
techno-economic performance of the capacity plan. In addition,
we assume that the traveling time between two regions is fixed
(i.e., depending purely on the distance). In our future work, we
will consider dynamic traveling time (i.e., depending both on
the distance and the real-time traffic condition), and we will
investigate the impacts of travel delays on the achievable QoS.
While the current ODCP assumes that the VFNs use 5 G NR
V2N [40] to provide computing service to the users within
the one-hop communication range, we will also consider V2V
communication [41] and multi-hop collaboration in the future.
Finally, this article addresses the capacity planning problem
from season to ST. In the future, we will further shorten the time
granularity and study the problem from LT to several seconds.

IX. CONCLUSION

In this work, we propose ODCP, a data-driven capacity
planning framework for ODVFC. While the existing long-term
capacity planning solutions cannot timely adapt to the temporary
changes in demand, we formulate and solve the two-phase
capacity planning problem using ILP, which shortens the execu-
tion time of the capacity planning model by enabling parallel
capacity planning at the regional level. Through a city-scale
simulation, we evaluate the service rate and profit of different ca-
pacity planning solutions under various traffic scenarios. We also
compare the network latency experienced by the users among
different fog node deployment solutions. The experimental re-
sults show that the proposed capacity planning solution achieves
high performance in both service rate and profit. Furthermore,
if a smaller region size is used, it will lead to a higher service
rate during off-peak hours; if a larger region size is used, it will
lead to higher profit during peak hours.

Overall, this article focuses on short-term capacity planning,
but we can combine this article with our previous work [3] for

both short-term and long-term capacity planning. More specifi-
cally, we can derive the regular demand based on the regression
of daily traffic flow and fulfill it by CFN placement and bus
scheduling following the approach proposed in [3]. Afterward,
we can estimate the temporary demand based on the prediction
of hourly traffic flow and fill the capacity gap by ODCP.
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