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A B S T R A C T   

District heating (DH) load forecasting for buildings and cities is essential for DH production planning and 
demand-side management. This study analyzes and compares the hourly DH load patterns for a city and five 
different types of buildings over an entire year. The various operating modes introduce nonlinear dependencies 
between the DH load and the outdoor temperature. We compare the prediction accuracies of different multiple 
linear regression (MLR) and artificial neural network (ANN) models. Without nonlinear dependencies, both ANN 
and MLR provide good, almost identical prediction accuracies. In the case of nonlinear dependencies, ANN is 
superior to MLR. However, the novel clustering method eliminates nonlinear dependencies and improves the 
accuracy of MLR on par with the ANN. ANN methods can automatically adapt to various nonlinearities. The 
advantage of combining MLR with the clustering method is that it is simpler than designing an ANN method, 
although manual work is required. In addition, MLR methods provide more insight into load patterns and how 
the load depends on various factors compared with ‘black-box’ ANN models. The developed methodology can be 
widely applied to building- and city-level load analyses and forecasting in different DH systems combined with or 
without domestic hot water consumption.   

1. Introduction 

1.1. Background 

The energy crisis and environmental problems have become a global 
focus because highly developed economies are increasing energy de-
mand. For example, the heating and cooling sector represents half of the 
energy consumption in the European Union (EU) [1,2]. In most EU 
countries, the annual heat demand in buildings is the largest, surpassing 
electricity and cooling demands [3]. Thus, there is an urgent need for 
energy savings during heating. In 2016, the Energy Efficiency Directive 
updated the binding measures for EU countries to set a new 30 % energy 
efficiency target for 2030 [4]. In temperate and cold climates, district 
heating (DH) provides a more cost-effective and sustainable solution for 
supplying heat to buildings in urban areas [5]. It is vital to implement 
low-carbon smart energy systems in countries with high heat demands 
[6,7]. However, DH is a large and complex system with time delays and 
multi-level coupling [8,9]. Operating according to customer re-
quirements is challenging, and improper operation can lead to 

considerable degradation in energy efficiency. Thus, demand-side 
management (DSM) has become popular [10], and many researchers 
have proven that DSM is crucial for improving the flexibility of DH to 
balance supply with demand better and reduce energy consumption [11, 
12]. Forecasting the short-term future DH load in buildings and dis-
tricts/cities is a vital component in the application of DSM to optimize 
energy use and consequently reduce greenhouse gas emissions [13]. 

1.2. Related research and research gaps 

White-box and black-box methods are typical for predicting the heat 
demand of buildings and districts/cities [14,15]. For the white-box 
method, a forecasting model of a building is developed based on 
detailed physics equations. Building energy simulation software such as 
TRNSYS, EnergyPlus, IDA-ICE, and CARNOT are typical tools for 
building models and forecasting heat loads. Ascione et al. adopted 
TERMUS® and EnergyPlus to analyze the link between climatic stress 
and building heating performance using two residential buildings in 
Italy [16]. Magni et al. summarized the features of the mathematical 
models employed in several building energy simulation tools. They 
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evaluated the computational cost of an office building to support users in 
selecting a fit-for-purpose simulation tool [17]. Scholars have employed 
theoretical analysis methods or combined the above tools to predict 
building heat loads. Ghedamsi et al. presented a bottom-up approach to 
forecast the energy consumption of residential buildings in Algeria [18]. 
Kristensen et al. demonstrated a hierarchical archetype modeling 
framework combined with bottom-up physics-based dynamic building 
energy modeling to forecast the heat load of Danish single-family houses 
[19]. 

With the development of intellectualization in DH and increased heat 
load measurements, black-box methods, known as data-driven models, 
have become popular [14]. This is because black-box methods predict 
the heat load based on measurement data without detailed information 
about the physical building properties. Statistical regression models, 
such as decision trees, multiple linear regression (MLR), autoregressive, 
and autoregressive integrated moving averages (ARIMA), are typical 
black-box methods used for heat forecasting in buildings and districts 
[20]. Fang et al. proposed several forecasting models based on MLR and 
seasonal ARIMA to forecast a city’s heating demand [21]. Giulla et al. 
developed an MLR approach to forecast the building energy re-
quirements for building stock in Italy, including heating and cooling 
[22]. Other typical black-box methods include machine learning or deep 
learning methods such as random forest (RF), artificial neural networks 
(ANN), support vector machines (SVM), and clustering methods. 
Depending on the structure of the ANN, it can be divided into different 
methods, such as feedforward neural networks (FFNN), convolutional 
neural networks, and long short-term memory (LSTM). Many re-
searchers have used machine learning methods, deep learning methods, 
or a combination of these to forecast heat load [23,24]. Koschwitz et al. 
compared the performance between ε-SVM regression and two 
nonlinear autoregressive exogenous recurrent neural networks (NARX 
RNN) in monthly load predictions [25]. Potočnik et al. applied several 
machine learning methods for a city’s heat load forecasting and proved 
that Gaussian process regression obtained the best forecasting results 
[26]. Xue et al. proposed an algorithm based on the attention LSTM to 
predict the heating load for a district containing residential buildings 
[27]. Bünning et al. introduced two forecast correction methods to 
reduce the variance in an ANN for heat forecasting without using 

ensemble methods [28]. Wei et al. compared the heating load fore-
casting performances of seven machine learning algorithms, such as 
extreme gradient boosting (XGBoost), supported vector regression 
(SVR), and multilayer perceptron (MLP). They proved that SVR, 
XGBoost, and LSTM were among the top three in terms of performance 
[29]. Lumbreras et al. proposed a clustering method, the Q-algorithm, 
for the heat load prediction of 42 buildings with different energy de-
mand profiles in Estonia [30]. Runge et al. compared the performances 
of several machine learning methods in heat load forecasting for a dis-
trict and concluded that the LSTM and XGBoost models outperformed 
other techniques [13]. Pachauri et al. proposed a weighted linear ag-
gregation of Gaussian process regression and a least-squares boosted 
regression tree, known as WGPRLSB, for heat and cooling load fore-
casting of heating, ventilation, and air conditioning (HVAC) systems in 
residential buildings [31]. Shakeel et al. developed an improved 
Facebook-Prophet (FB-Prophet) model with additional positional 
encoding layers to forecast DH consumption [32]. Gong et al. developed 
a new framework based on Informer to forecast the DH load. They 
proved that the Informer-based forecasting model can achieve the most 
accurate and stable predictions [7]. Liu et al. compared deep rein-
forcement learning models with conventional supervised models for an 
office building with a ground-source heat pump [33]. Xu et al. proposed 
an optimized MLP to forecast the heating and cooling of buildings [34]. 
Table 1 lists the details of black-box methods adopted in mentioned 
references. 

Previous research has shown promising results when applying white- 
box, black-box, or a combination of these methods for heat load fore-
casting in buildings and districts/cities. However, some aspects require 
further investigation.  

(1) The white-box method has poor universality and reproducibility 
because it requires building parameters and expert experience to 
obtain good forecasting results. A suitable method for this case 
may not apply to other buildings or cities.  

(2) Previous research using data-driven models mainly focused on 
improving prediction accuracy by developing more complex 
methods and neglecting the applicability of these methods. These 
methods require better reproducibility, and it is difficult to 

Nomenclature 

Abbreviation 
DSM Demand-side management 
DH District heating 
EU European Union 
SH Space heating 
DHW Domestic hot water 
MLR Multiple linear regression 
ANN Artificial Neural Networks 
ARIMA Autoregressive integrated moving average model 
SVM Support vector machine 
LSTM Long short-term memory 
RF Random forest 
FFNN Feedforward neural networks 
RMSE Root mean squared error 
AMAPE Adapted mean absolute percentage error 
pp Percentage point 

Symbols 
A Area, m2 

Tin Indoor temperature, ◦C 
Tout Outdoor temperature, ◦C 
Tthres Threshold when heat demand stops depending on outdoor 

temperature, ◦C 
hin,hout The composite heat transfer coefficient, W/(m2⋅K) 
δ The thickness of the layer of walls or roofs, m 
λ The thermal conductivity, W/(m2⋅K) 
ɸ The heat transferred between indoor air and outdoor 

environment, W 
U The overall heat transfer coefficient, W/(m2⋅K) 
ṁ The mass flow rate of ventilation, kg/s 
c The heat capacity of indoor and outdoor air, J/(kg⋅K) 
η The heat recovery factor of ventilation 
ŷ The predicted heat loads, MW or kW 
y The real heat loads, MW or kW 
y The average heat loads, MW or kW 
β The regression coefficient matrix 
X Input matrix 
ε Error in time t, MW or kW 
d The dummy variables 

Subscript 
i The index of layers, and it is from 1 to n; n is the total 

number of layers of walls 
t The index of time (hour), from 1 to N  
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generalize them to actual projects. This is because the design of 
this type of method relies heavily on the competence and expe-
rience of specific experts, such as in the determination of 
hyperparameters, which is difficult for engineers who are not 
majoring in machine learning to understand and apply. MLR and 
ANN (considered FFNN) are two simple and most intuitive black- 
box prediction methods [22]. The potential of these two predic-
tion methods for heat load forecasting requires further 
exploration.  

(3) Most previous studies have been more dependent on the data or 
algorithms to improve forecasting accuracy, ignoring customer 
energy consumption behaviors and their correlation [35]. The 
DH load patterns of buildings and districts/cities must be 
researched further to understand how buildings function and how 
the demand-side load develops to adopt suitable forecasting 
methods based on their patterns.  

(4) Many of the cases in previous research only predict the heat load 
for space heating (SH); for example, in China [7,27,29], the DH is 
used only for SH, allowing the system to be shut down during the 
summer. In some countries, such as the Nordic countries [21] and 
Estonia [30], DH is also used to produce domestic hot water 
(DHW); therefore, the system must operate year-round. Accord-
ing to Ref. [36], a sustainable DH system must supply DHW to 
buildings in the future. Previous studies have separately devel-
oped forecasting methods for buildings [22,28,30,31,34] and 
districts/cities [7,13,21,25–27,29,32]. More general methods 
that can be applied simultaneously to building- and 
district/city-level DH load forecasting require further research. 

1.3. Research novelty 

To fill the abovementioned research gaps, this study aimed to 

develop a convenient, general, and practical method for forecasting DH 
loads containing SH and DHW at the building and city levels to support a 
flexible and precise DSM. The novelty of this study is as follows: 

(1) Analyze the yearly heat load patterns of a major city and build-
ings of different types to identify the significant factors affecting 
heat load forecasting at building and city levels, considering the 
delay in heat exchange, daily and weekly rhythms, holidays, and 
seasons.  

(2) General short-term DH load forecasting methods based on the 
MLR and ANN are proposed for building- and city-level DH load 
forecasting. These methods are suitable for DH systems with SH 
alone or with DHW production.  

(3) Develop a novel clustering method that significantly improves 
the accuracy of MLR forecasts in the case of nonlinearities owing 
to multiple SH load patterns for buildings. 

1.4. Applications of research 

The proposed clustering method can be used to analyze the DH load 
patterns of a building and city’ with or without DHW. In addition to 
improving the forecasting accuracy of the MLR of buildings with 
nonlinear dependencies, the clustering method can be applied to other 
aspects, such as designing optimal methods or strategies to realize the 
DSM. The proposed forecasting methods can be applied to both building- 
and city-level DH load forecasting for countries where the DH supplies 
only SH, such as China, and where the DH supplies both SH and DHW, 
such as Nordic Countries. 

The remainder of this manuscript is as follows. Section 2 introduces 
the case study and analyzes the SH consumption and heat load patterns 
of a city and five buildings. Section 3 presents the methodology of the 
study. Section 4 analyzes DH load patterns and presents a novel 

Table 1 
Details of black-box methods adopted in previous studies.  

Ref. Method Forecasting purpose Selected Features Buildings/Districts 

[21] Seasonal ARIMA; 
MLR 

DH for SH and DHW Outdoor temperature; Wind speed; Social components; Past behaviors City 

[22] TRNSYS; MLR Cooling and heating Heating degree days; Cooling degree days; External temperature; Opaque 
surface; Glazed surface; Shape factors; Internal gains 

Nonresidential building 

[25] ε-SVM regression; 
NARX RNN 

District heating and 
cooling 

Occupancy; Outdoor temperature; Relative humidity; Dew point 
temperature; Wind direction; Wind velocity; Precipitation intensity and 
quantity 

District (200 nonresidential 
buildings) 

[26] Gaussian process; 
Traditional forecasting methods 

DH Outdoor temperature; Solar irradiance; Relative humidity; Wind speed; 
Weekly cycle, Yearly cycle; Population behavior; Aggregation of hourly 
values into daily features 

District (residential, 
commercial, and industrial 
buildings) 

[27] Attention LSTM DH for SH Weather forecast; Historical heat consumption; Outdoor temperature; 
Indoor temperature 

District (residential buildings) 

[28] ANN; 
RC model; 
Regression-based methods 

DH Outdoor temperature; Historical heat load; Date data Three office Buildings and a 
building for working and living 

[29] SVR; RF; MLP; XGBoost; CNN; 
LSTM; K-nearest neighbor 
regression 

DH for SH Historical heat; Meteorological data (Outdoor temperature; Relative 
humidity; Solar irradiation); Weather forecast data; Date-time data; 
Electricity meters 

District (residential buildings) 

[30] Q-algorithm DH for SH and DHW Outdoor temperature; Global solar irradiance on a horizontal plane; Wind 
speed; Wind direction; Time factors 

Buildings with different types 

[13] FFNN; CNN; RF; LSTM; XGBoost; 
SVM; Light gradient boosting 
models 

DH for SH and DHW Outdoor temperature; Solar radiation; Relative Humidity; Time index 
variables; Occupancy variable 

District 

[31] WGPRLSB Heat and cooling load 
of HVAC systems 

Relative compactness; Surface area; Wall area; Roof area; Overall height; 
Orientation; Glazing area; Glazing area distribution 

Residential buildings 

[32] FB-Prophet DH Outdoor temperature; Humidity; Wind speed; Wind direction; Cloudiness; 
Sea level atmospheric pressure; Collection of weather variables; 
Historical; Data-time 

District (buildings with different 
types) 

[7] Informer DH for SH Time variables; Outdoor temperature; Humidity; Wind speed; Air quality 
index; Supply and return water temperature; Flow rate; DH regulation 
signal; Historical heat load 

District (residential buildings) 

[34] MLP Heating and cooling Surface area; Wall area; Roof area; Relative compactness; Overall height; 
Orientation; Glazing area; Glazing area distribution 

Residential buildings  
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clustering method for handling nonlinear dependencies. Section 5 de-
fines the predictors and parameters of the forecasting models. Section 6 
presents the computational results obtained by applying the forecasting 
models at the city and building levels. Finally, Section 7 concludes the 
paper. 

2. Case introduction and space heating consumption 

2.1. Case introduction 

Helsinki, the capital of Finland, with a population of approximately 
658,000 in 2021, has a large DH system. Approximately 92 % of the total 
space and DHW heating demand in Helsinki is covered by DH [37]. We 
study the DH load at the city level and for five different types of build-
ings: a Residential building, an Office building, a Hospital, a Mall, and an 
Adult education center. In Helsinki, residential buildings account for 
approximately 62 % of the DH heated floor space [38]. The Finnish 
Meteorological Institute provided the historical weather data [39]. The 
Helen Company provided the historical DH load for Helsinki [37]. The 
historical DH load for the Residential building was provided by an un-
named real estate management company, and for other buildings by 
Ref. [40]. Table 2 summarizes information about Helsinki and the other 
buildings. 

Missing data and outliers are the two most common types of 
abnormal data in this study. The abnormal weather parameters and DH 
loads were corrected using valid parameters in the temporal vicinity. 
Tables 3 and 4 summarize the weather parameters and DH load. 

2.2. Analysis of space heating consumption 

The SH depends mainly on weather factors. Thus, we first analyze the 
SH consumption of a building. The heat exchange process between a 
building and the outdoor environment is shown in Fig. 1. 

When the outdoor temperature is colder than the indoor tempera-
ture, the heat transfer from the indoor to the outdoor temperature is 

φ=AU(Tin − Tout) + ṁc(1 − η)(Tin − Tout). (1) 

Here, A is the area of the building envelopes, U is the overall heat 
transfer coefficient for the building envelopes (combination of conduc-
tive, convective, and solar radiation heat transfer), ṁ is the mass flow 
rate of ventilation, η is the heat recovery factor of ventilation, and c is the 
heat capacity of air. 

Outdoor temperature is a critical factor that must be considered. 
Indoor structures (walls, floor, and ceiling) and other components, such 
as lights, personnel, and furniture, affect the indoor temperature by 
exchanging heat through a combination of convection, conduction, and 
radiation. Therefore, the indoor temperature is a critical factor [41]. 

Determining the U-value is challenging because it is affected by 
many factors, and each factor is coupled. Thus, we analyze the main 
factors affecting the U-value. Equation (2) shows the theoretical formula 
for calculating U-value [42,43]. 

U =
1

1
hin
+
∑n

i=1

δi
λi
+ 1

hout

(2)  

where hin is the composite heat transfer coefficient of indoor air and 
interior walls or roofs, W/(m2⋅K); hout is the composite heat transfer 
coefficient of the outdoor environment and exterior walls or roofs, W/ 
(m2⋅K); δ is the layer thickness of walls or roofs, m; λ is the thermal 
conductivity, W/(m2⋅K); i is the index of layers ranging from 1 to n; and n 
is the total number of layers of walls or roofs. 

From Equation (2), hin consists of the convection and conduction heat 
exchanges between the indoor air and the inner face of the walls and 
radiation between different walls, closely related to the fluid types and 
properties. In addition, indoor air temperature and speed are critical 

factors affecting hin (mainly affecting convection and conduction). In 
practice, the indoor air speed is low; hence, it was not considered when 
forecasting the heat loads. The heat exchange caused by radiation be-
tween different walls is smaller than convection and conduction and is 
difficult to calculate because of the heat exchange delay of indoor 
thermal objects. Therefore, we consider historical parameters (historical 
indoor air temperature and air speed) as important factors to describe 
hin. 

hout consists of the convection and conduction heat exchanges be-
tween the outdoor air and the outer face of the walls and radiation be-
tween the outdoor environments. Outdoor temperature and wind speed 
are the two main factors that affect hout caused by convection and con-
duction. Regarding the factors affecting hout caused by radiation, only 
the heat exchange caused by solar radiation is considered. Considering 
the heat exchange delay of outdoor thermal objects, historical parame-
ters (historical outdoor temperature, wind speed, and solar radiation) 
are also regarded as important factors. Other factors, such as wind di-
rection and relative humidity, show minimal improvement in fore-
casting accuracy and can be considered negligible. 

Some factors, such as the area of the building envelopes A and 
thermal conductivity λ of enclosure structures, are relatively fixed. This 
implies that these factors do not change once a building is completed. 
Furthermore, these factors affect the heat load of buildings based on 
Equation (2) but not the heat load change of the buildings. In other 
words, a change in the heat load of a building is caused by changes in 
factors such as a change in outdoor temperature. In addition, data- 
driven models consider the effects caused by these factors and learn 
rules using a training dataset to determine suitable structures or pa-
rameters for the forecast model. 

Although many factors affect the U-value, it is difficult to identify all 
of them. Therefore, the primary factors must be selected. Based on the 
above analysis, factors such as indoor and outdoor air temperatures, 
wind speed, solar radiation, and historical parameters were determined 
to affect the U-value. 

3. Methodology 

We consider two types of forecasting models: MLR and ANN. Linear 
regression models work well when all dependencies are linear. Neural 
networks can handle nonlinear dependencies and automatically adapt to 
various situations. 

3.1. Multiple linear regression 

The MLR model is as follows: 

ŷ = βX + ε. (3) 

Here, ŷ is the predicted DH load; X is the input variable matrix; β is 
the vector of regression coefficients; and ε is the error vector. The 
regression model determines the regression coefficients to ensure ε =

ŷ − βX is as small as possible in the least squares sense, as shown in 

Table 2 
Information for a city and five buildings.  

Type Name Description 

City Helsinki Capital of Finland, 92 % of floor space is connected 
to DH. 

Buildings Office Work from 8:00–9:00 to 16:00–17:00 on 
workdays, and rest on weekends and holidays. 

Hospital Large hospital with 24/7 operation. 
Residential 
building 

A large multi-floor, energy-efficient residential 
building built in 2017. 

Mall 07:30–23:00 from Mon. to Thur.; 07:30–04:00 on 
Fri.; 08:00–04:00 on Sat.; 10:00–04:00 on Sun. 

Adult education 
center 

Both daytime and evening courses on workdays, 
mainly day-time courses on Saturdays.  
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Equation (4). 

min
∑N

t=1
ε2

t . (4)  

3.2. Artificial neural networks 

A common method for modeling the intricate connections between 
inputs and outputs is the nonlinear statistical data modeling method 
known as ANN. The input, hidden, and output layers constitute the 
fundamental framework of an ANN. The neurons linking the input and 
output layers comprise the hidden layers. A basic ANN structure with 
two hidden layers is illustrated in Fig. 2. 

The backpropagation (BP) algorithm employs ANN and has been 
widely used because of its powerful learning and generalization abilities 
[44]. 

3.3. Evaluation indicators 

To evaluate the accuracy of the forecasting models, we use the co-
efficient of determination R2, relative root mean squared error (RMSE 

%), and adapted mean absolute percentage error (AMAPE%) [21]. R2 

ranges from 0 to 1. Furthermore, the accuracy increases as R2 ap-
proaches 1. The AMAPE% and RMSE% values are between 0 % and 100 
%, with lower values indicating higher accuracy. With y equal to the 
average yt , the indicators are defined as follows: 

R2= 1−

∑N

t=1
(yt − ŷt)

2

∑N

t=1
(yt − y)2

, (5)  

RMSE%=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

t=1
(ŷt − yt

)2
√

y
⋅100%, (6)  

AMAPE=

(
1
N
∑N

t=1

|ŷt − yt|

y

)

⋅100%. (7)  

4. Analysis of district heating load patterns 

4.1. District heating load patterns 

In addition to weather parameters, SH depends on calendar cycles if 
the indoor temperature and ventilation rate are adjusted according to 
building use. DHW heating depends mostly on human behavior and is 
linked to yearly, weekly, and daily calendar cycles.  

(1) The heating season occurs when DH is used for space and DHW 
heating. During this period, we referred to the following winter.  

(2) During the non-heating season or summer, SH is mostly switched 
off, and DH is mainly used for DHW. The summer season may 
vary slightly from year to year and between different buildings; 
however, we assume that summer starts on May 16th and ends on 
September 15th, which is typical in Helsinki. 

Table 3 
Information on weather parameters in 2020 and 2021.  

Year Outdoor temperature (◦C) Wind speed (m/s) Solar radiation (W/m2) 

Min Max Average Min Max Average Min Max Average 

2020 − 8.9 28.9 8.4 0.0 15.1 4.8 − 8.9 957.6 145.4 
2021 − 21.8 31.7 6.4 0.0 12.8 4.6 − 7.2 943.6 134.6  

Table 4 
Information on the DH load of the city and five buildings.  

Name DH load (MW for city/kW for buildings) 

2020 2021 

Min Max Average Min Max Average 

Helsinki 178.8 1736.3 726.3 30.1 2422.6 853.0 
Office building 10 400 151.2 10 630 183.2 
Hospital 80 2420 885.3 60 3760 1032.4 
Residential building 12 232 87.2 11 325 100.2 
Mall 48 1198 472.0 31 1685 555.0 
Adult education 

center 
5 203 57.9 4 327 72.0  

Fig. 1. Heat exchange process between the indoor and outdoor environments.  
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Fig. 2. Simple ANN structure.  

Fig. 3. DH load of Helsinki and various buildings in 2021.  
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Fig. 3 shows the hourly DH load in winter and summer for Helsinki 
and the five buildings as a function of the outdoor temperature in 2021. 
The regression line for the winter load is also included. The regression 
line provides a simple forecast of the winter DH load as a function of 
outdoor temperature. The hourly DH load depends strongly on the 
outdoor temperature, provided it is colder than approximately 17 ◦C. SH 
is switched off at warmer outdoor temperatures. This implies that the 
winter heat load nonlinearly depends on the outdoor temperature, with 
a bending point of 17 ◦C. In summer, the temperature dependency be-
comes much weaker because the SH is switched off, and the DHW 
heating load does not depend much on the outdoor temperature. 

The load patterns for Helsinki, Residential building, Office building, 
and Hospital are similar and follow a simple regression forecast. Of 
these, the Residential building exhibits significant variation because it 
has high DHW consumption, which has a significant random variation 
owing to individual resident behavior. The Office building, Hospital, 
and Adult education center exhibit minimal DHW consumption. For the 
Mall and Adult education center, the load patterns do not follow the 
winter regression line. For these buildings, the DH loads are clustered 
around multiple lines with different slopes, indicating that other 
important factors affect the DH load. 

4.2. Clustering method 

This section develops a novel clustering method to identify and 
handle nonlinearities in winter DH loads owing to multiple load patterns 
for a building. The objective is to form clusters of hourly data such that, 
within each cluster, the dependency of the DH load on the weather 
(outdoor temperature) is close to linear. The clustering was performed in 
three phases.  

(1) Fit a regression model to winter data.  
(2) Divide the hourly data into groups based on how the average DH 

load differs from the regression model at different times of the 
day and on different weekdays.  

(3) Fit a regression model for each group and form clusters with 
similar regression parameters. 

Next, we apply the clustering method to the Mall and the Adult ed-
ucation center as examples. 

In Phase 1, we use simple regression models with outdoor temper-
atures to predict the DH load, as presented in Section 4.1. 

In Phase 2, we consider grouping according to different times of the 
day and weekdays, including national midweek holidays (whose DH 
load may be similar to nonworking days). Fig. 4 shows the average error 
between the simple regression line prediction and the actual hourly heat 
demand on different days and times of the day for the two buildings. A 
positive error indicates the actual heat demand is lower than the fore-
cast, whereas a negative error implies the opposite. For example, the 
error was positive at night, indicating that the actual DH load was below 
the regression line shown in Fig. 3. 

For the Mall, the daily pattern is similar for all days because the Mall 
operates every day. The small differences between 6:00 and 8:00 were 
because of the later opening times on weekends. The actual DH load was 
lower than the regression line forecast at night and higher between 9:00 
and 21:00. A lower nighttime DH load is caused by smaller DHW con-
sumption and a lower ventilation rate during off-hours. While a smaller 
DHW consumption shifts the DH load by a constant, a lower ventilation 
rate reduces the slope of the outdoor temperature dependency. 

For the Adult education center, the DH load patterns from Monday to 
Friday were similar; however, for Saturday and Sunday, they differed. 
Heat demand depends on the programming of the heating and ventila-
tion systems of the building. During nonworking hours, the ventilation 
rates are reduced, leading to a lower load and temperature-dependent 
factor. Surprisingly, the DH load on holidays was similar to that on 
working days. This indicates that the heating and ventilation system is 
not programmed to differentiate the midweek holidays from normal 
working days, including when the building is empty. 

Based on Fig. 4, the hourly heat demand was divided into several 
groups. For the Mall, we grouped days into weekdays (Monday to Friday 
and holidays) and weekends (Saturday and Sunday). The weekday hours 
were divided into four intervals of 8–19, 20–0, 1–5, and 6–7. The 
weekend hours were divided into 9–19, 20–0, 1–4, and 5–8 intervals. 
For the adult education center, we grouped days into workdays, Satur-
days, Sundays, and holidays. Workdays and holiday hours were divided 
into intervals of 8–22 and 23–7. Saturday hours were divided into 8–16 
and 17–7 intervals. For Sundays, all the hours formed a single group. 

In phase 3, we fit a linear regression model separately for each group 
and cluster the periods with similar regression parameters (slopes and 
intercepts of the regression lines). Table 5 lists the different periods and 
regression parameters for each group and cluster with similar regression 
parameters. We obtained four clusters from the winter data for the Mall 
and two from the Adult education center. Furthermore, considering the 
summer cluster, we obtained five clusters for the Mall and three for the 

Fig. 4. Average error between the winter regression line forecast and the hourly heat demand for different days and times of the day. Top: Mall; Bottom: Adult 
education center. 
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Adult education center. 
To illustrate the clusters, Fig. 5 presents the heat demand for the first 

cluster of the Mall, consisting of weekdays 8–19 and weekends 9–19. It is 
evident that the heat demand for both subgroups drawn with different 
colors is well centered around a single regression line. The other clusters 
show similar linear dependencies on the outdoor temperature. 

In summary, the DH load patterns differ by city and building type. 
The load patterns depend on the season (winter/summer), weekday, and 
time of day. This is caused by the occupancy of the buildings and how 
the heating and ventilation systems are programmed to adjust the indoor 
temperature and ventilation rate. 

5. Forecasting models 

5.1. Predictors and sliding window 

Based on the analysis discussed in the previous section, the main 
factors for the prediction model proposed in this study are determined. 
These factors apply to city- and building-level DH load forecasting.  

(1) Weather parameters: outdoor temperature, solar radiation, and 
wind speed.  

(2) Time parameters: season (winter/summer), daily rhythm (24 h), 
and weekly rhythm (7 days). 

In addition, the indoor temperature is also an essential factor. In 
Finland, it generally ranges from 20 ◦C to 26 ◦C [21]. Because of the 
unavailability of the building’s indoor temperature measurements, we 
assume a constant 20 ◦C. Hence, the indoor temperature can be ignored 
as a predictor. 

We first divide the data into training and testing sets to apply the 
forecasting methods. We defined dummy variables (indicator variables) 
to represent seasonal, daily, and weekly rhythms in the prediction model 
[45]. For example, Table 6 presents the dummy variables for weekly 
rhythms. The holidays in the midweek are regarded as workdays for all 
buildings. 

We use a 25-h sliding time window to forecast the hourly DH load. 
This means we use the weather parameters and rhythms in the past 24 h 
and the weather parameters and rhythms in the current hour to predict 
the load in the 25th hour. Subsequently, we move the sliding window to 
the next hour and repeat the above process, as shown in Fig. 6. 

5.2. Parameters of forecasting models 

To decrease the number of input variables for MLR, we use Akaike’s 
Information Criterion to select the predictors. We then compare the 
three forecasting models based on MLR, as presented in Table 7. In the 
MLR models, model 2 indicates seasonal information, model 24 in-
dicates daily rhythm, and model 7 indicates weekly rhythm. 

Generally, when the outdoor temperature exceeds a threshold tem-
perature Tthres, the dependency between the heat demand and outdoor 
temperature disappears. This makes the temperature dependence of the 
heat demand nonlinear. Because MLR does not adapt well to nonlinear 
dependencies, we use the minimum real temperature and Tthres to fit the 
MLR model. In Finland, Tthres = 17 ◦C is typically used for this purpose. 

For the ANN, we use data from 2020 for training and validation and 
2021 for testing. The proportions of the data for training and validation 
are 90 % and 10 %, respectively. Similar to the MLR models, we compare 
the three ANN models with different amounts of temporal information: 
season, daily rhythm, and weekly rhythm. The hyperparameters of the 
three ANN models are listed in Table 8. 

6. Results 

We applied six models based on MLR and ANN to a city and five 

Table 5 
Groups and clustering of hourly DH load for Mall and Adult education center.  

Mall 

Days groups Hourly intervals Slope (kW/◦C) Intercept (kW) Cluster 

Weekdays 8–19 − 40.84 880.26 1 
20–0 − 36.66 759.65 2 
1–5 − 21.59 536.78 3 
6–7 − 33.68 776.43 2 

Weekends 9–19 − 40.46 864.02 1 
20–0 − 36.30 749.52 2 
1–4 − 23.68 528.73 3 
5–8 − 29.29 685.44 4 

Adult education center 
Days groups Hourly intervals Slope Intercept Cluster 

Weekdays 8–22 − 8.38 130.53 1 
23–7 − 5.52 91.99 2 

Saturday 8–16 − 8.21 130.83 1 
17–7 − 5.58 92.40 2 

Sunday 0–23 − 5.08 84.66 2 
Holiday 8–22 − 8.00 125.81 1 

23–7 − 5.42 92.65 2  

Fig. 5. Cluster 1 for the winter heat demand of the Mall consisting of weekdays 8–19 and weekends 9–19.  
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building types. The results are summarized in Table 9. The daily and 
weekly rhythms can improve the accuracy of the MLR and ANN models 
at the city level and for all buildings. Next, we analyzed and compared 
the DH load forecasting accuracy at the city and building levels. 

6.1. DH load forecasting at city level 

Based on Table 9, the MLR and ANN models performed well in DH 
load forecasting at the city level, with R2 > 0.97. The ANN models 
exhibited slightly better forecasting accuracy than the MLR models, 
regardless of whether the rhythms were considered: AMAPE (7.81 %, 
7.55 %, and 7.38 %) for MLR versus (7.37 %, 6.28 %, and 5.62 %) for 
ANN. Fig. 7 shows the DH load forecasting results of the city for a sample 
week in winter. 

In Fig. 7, the DH load forecast without rhythms, marked in red, 
follows, on average, the real load using both MLR and ANN but fails to 
reach the peak and valley values. The models that added rhythms, 

marked in green and blue, slightly improved the forecasting accuracy. 
The MLR and ANN models with daily and weekly rhythms exhibited 
better forecasting accuracy at the city level in winter. The same 
conclusion applies to the DH load forecasting in summer. 

6.2. DH load forecasting at building level 

Based on Table 9, the ANN_2/24/7 model applies well to buildings of 
various types and produces the most accurate forecasting results at the 
building level compared to the other models, with each R2 value higher 
than 0.93 and AMAPE below 10 %, except for the Residential building. 
Similar to the city level, for building DH load forecasting, adding daily 
and weekly rhythms to the MLR and ANN models improved the accuracy 
(Table 9). For the Office building, Hospital, and Residential building, the 
improvements owing to the introduction of a daily rhythm were mini-
mal, with the AMAPE improving by less than 1.0 pp (percentage point). 
Adding daily rhythms to the Mall and Adult education center signifi-
cantly improved forecasting accuracy. The AMAPE improved by 3.0 pp 
and 0.7 pp for the Mall and 2.0 pp and 1.8 pp for the Adult education 
center when applying MLR and ANN, respectively. Adding the weekly 
rhythm further improved the forecasting accuracy. For the Adult edu-
cation center, the improvement of 1.3 pp and 3.3 pp (MLR vs. ANN) was 
significant; however, it was less than 0.4 pp for the other buildings. The 
results obtained in this study are consistent with those presented using 
the clustering method in Section 4. 

MLR with daily and weekly rhythms can achieve good forecasting 
accuracy for the city and buildings, with a predominantly linear rela-
tionship between the hourly DH load and outdoor temperature. How-
ever, the MLR is less accurate for buildings with a weaker dependency 
between the hourly DH load and outdoor temperature. To better handle 
the nonlinearities owing to different winter load patterns for the Mall 
and Adult education center, we fit the MLR model with daily and weekly 
rhythms separately for the clusters of hourly demand formed in Section 
4.2. Table 10 presents the forecasting accuracy of the clusters and 
combined forecasts. Cluster-based MLR significantly improves fore-
casting accuracy. Regarding AMAPE%, the accuracy of the cluster-based 
MLR is now identical to that of the best neural network model, ANN_2/ 
24/7, for the Mall and approximately 1 pp worse for the Adult education 
center. Fig. 8 illustrates the forecasting results for the Adult education 
center using MLR_2/24/7, MLR_24/7 with three clusters, and ANN_2/ 
24/7. 

To summarize, MLR can provide forecasts with an accuracy com-
parable to that of ANN. However, in the case of nonlinearities for spe-
cific buildings, they must be identified, as described in Section 4, which 
may require manual work. The advantage of the ANN over the MLR is 
that the ANN model can adapt automatically to various nonlinearities 
and DH load patterns. 

Table 6 
Dummy variables for representing different days in a week [45].  

Variables d1,t d2,t d3,t d4,t d5,t d6,t 

Monday 1 0 0 0 0 0 
Tuesday 0 1 0 0 0 0 
Wednesday 0 0 1 0 0 0 
Thursday 0 0 0 1 0 0 
Friday 0 0 0 0 1 0 
Saturday 0 0 0 0 0 1 
Sunday 0 0 0 0 0 0  

Fig. 6. Schematic diagram of sliding time window.  

Table 7 
Description of proposed models based on MLR.  

Models Predictors considered Number of 
inputs 

MLR_2 Historical and current outdoor temperature, wind 
speed, solar radiation, and seasons 

25~40 
MLR_2/24 Adding daily 24 h rhythm to MLR_2 
MLR_2/24/7 Adding weekly 7-day rhythm to MLR_2/24  

Table 8 
Hyperparameters of ANN models.  

Hyperparameters ANN_2 ANN_2/24 ANN_2/24/7 

Predictors considered Historical and current outdoor temperature,  
indoor temperature, wind speed,  
solar radiation, and seasons 

Adding daily rhythm based on ANN_2 Adding weekly rhythm based on ANN_2/24 

Number of epochs 600–1200 
Batch size 64,128 
Optimization algorithms Adam [46] 
Activation function ReLU [47] 
Initial learning rate 1e− 5-1e− 2 

Regularization factor 1e− 5-1e− 1 

Number of hidden layers 1 
Number of neurons 100/64/1 675/256/1 825/256/1  
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7. Conclusions 

This study analyzes the DH load patterns of a major city and five 
building types, identifies the main factors affecting load forecasting, 
proposes different models based on MLR and ANN, and compares their 
performances. A novel clustering method was developed to describe 

different DH load patterns and improve the accuracy of MLR. The con-
clusions are as follows:  

(1) The DH load patterns of buildings and the city differed in winter 
(heating season) and summer (non-heating season), as well as 
according to the daily and weekly rhythms. The multiple linear 
dependencies between the DH load and outdoor temperature 
resulted from the different functions and operation modes of the 
buildings. Automation may lower the temperature and ventila-
tion rate for some building types during nonworking hours.  

(2) Including daily and weekly rhythms improved the forecasting 
accuracy of both the MLR and ANN methods for the city and 
building DH load forecasting. The improvements in forecasting 
accuracy caused by adding rhythms to different buildings differed 
because of the different DH load patterns that depend on how the 
building operates.  

(3) The ANN methods provided more accurate DH load forecasts than 
the MLR methods for the buildings and city, regardless of whether 
the rhythms were considered. The ANN_2/24/7 model, with daily 
and weekly rhythms, exhibited optimal forecasting accuracy, 
with R2 > 0.93, AMAPE 5.6 % for the city, and less than 10 % for 
the buildings, except for the Residential building. MLR methods 
are almost as effective at the city level and for buildings without 
strong nonlinear dependencies.  

(4) When different operating modes cause nonlinearities, the novel 
clustering technique developed in this study can improve the 

Table 9 
Evaluation indicators for DH load forecasting.  

Name Models R2 RMSE (%) AMAPE (%) 

City MLR_2 0.972 10.24 7.81 
MLR_2/24 0.974 9.80 7.55 
MLR_2/24/7 0.976 9.55 7.38 
ANN_2 0.974 9.81 7.37 
ANN_2/24 0.982 8.26 6.28 
ANN_2/24/7 0.984 7.50 5.62 

Office building MLR_2 0.973 12.08 8.98 
MLR_2/24 0.975 11.60 8.55 
MLR_2/24/7 0.976 11.39 8.33 
ANN_2 0.976 11.28 7.87 
ANN_2/24 0.978 10.89 7.62 
ANN_2/24/7 0.978 10.87 7.64 

Hospital MLR_2 0.979 11.16 8.57 
MLR_2/24 0.980 10.81 8.36 
MLR_2/24/7 0.981 10.60 8.20 
ANN_2 0.985 9.55 7.23 
ANN_2/24 0.986 9.12 6.95 
ANN_2/24/7 0.986 9.04 6.89 

Residential building MLR_2 0.912 20.90 15.93 
MLR_2/24 0.923 19.53 14.93 
MLR_2/24/7 0.925 19.29 14.70 
ANN_2 0.932 18.37 13.77 
ANN_2/24 0.936 17.88 13.14 
ANN_2/24/7 0.938 17.48 13.09 

Mall MLR_2 0.876 22.26 15.99 
MLR_2/24 0.918 18.11 12.95 
MLR_2/24/7 0.921 17.78 12.56 
ANN_2 0.960 17.88 9.36 
ANN_2/24 0.964 12.04 8.63 
ANN_2/24/7 0.968 11.87 8.56 

Adult education center MLR_2 0.902 27.50 20.44 
MLR_2/24 0.917 25.37 18.43 
MLR_2/24/7 0.929 23.37 17.16 
ANN_2 0.937 15.87 14.62 
ANN_2/24 0.939 14.67 12.85 
ANN_2/24/7 0.967 11.57 9.54  

Fig. 7. Real and predicted data using six models for the city for a sample week from Monday to Sunday (February 22nd to 28th in 2021).  

Table 10 
Forecasting accuracy of different clusters using MLR_24/7.  

Name Models RMSE (%) AMAPE (%) 

Mall MLR_winter_1 10.0 6.9 
MLR_winter_2 8.4 6.3 
MLR_winter_3 13.0 9.7 
MLR_winter_4 10.8 8.4 
MLR_summer 31.0 22.2 
Total 12.8 9.1 

Adult education center MLR_winter_1 10.2 7.6 
MLR_winter_2 10.9 3.3 
MLR_summer 39.9 29.1 
Total 17.1 8.6  
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accuracy of the MLR forecasts to a level comparable to that of an 
ANN.  

(5) The ANN_2/24/7 model has good application prospects for DH 
load forecasting in cities and buildings with DSM in the future. 
This is because the time-dependent indoor temperature control 
makes the DH load dependency nonlinear, which can be the best 
forecast by an ANN with daily and weekly rhythms. For example, 
an office building could control the indoor temperature at 20 ◦C 
during working hours and 16 ◦C during nights and weekends. To 
support the DSM for buildings, the improved accuracy caused by 
adding daily and weekly rhythms can be significant. 

For DH load forecasting of buildings with nonlinear dependencies, 
ANN is superior to MLR; however, determining the hyperparameters of 
ANN is challenging for engineers who are not majoring in machine 
learning. Although MLR combined with a clustering method currently 

requires manual work, it is more effortless than determining suitable 
ANN hyperparameters. Engineers can use Excel to complete the heating 
load forecasting of the MLR combined clustering method without pro-
gramming software. Another advantage of MLR with the clustering 
method is that the resulting clusters and obtained regression parameters 
have a straightforward interpretation that promotes an understanding of 
system behavior. In contrast, no such understanding is contributed by 
the ANN model. In future studies, we intend to improve the clustering 
method to achieve nonlinear decoupling for the heat load of buildings 
automatically. In addition, indoor temperature is essential in heat load 
forecasting at the building level. However, owing to the lack of 
measured indoor temperatures, these were not considered in this study. 
We will deploy temperature sensors in buildings and add indoor tem-
perature as a factor in the MLR and ANN models to test the forecasting 
performance in our future studies. 

Fig. 8. Real and predicted data for the Adult education center. Top: MLR_2/24/7; middle: cluster-based MLR_24/7; bottom: ANN_2/24/7.  
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[26] Potočnik P, Škerl P, Govekar E. Machine-learning-based multi-step heat demand 
forecasting in a district heating system. Energy Build 2021;233. https://doi.org/ 
10.1016/j.enbuild.2020.110673. 

[27] Xue G, Qi C, Li H, Kong X, Song J. Heating load prediction based on attention long 
short term memory: a case study of Xingtai. Energy 2020;203:117846. https://doi. 
org/10.1016/j.energy.2020.117846. 

[28] Bünning F, Heer P, Smith RS, Lygeros J. Improved day ahead heating demand 
forecasting by online correction methods. Energy Build 2020;211. https://doi.org/ 
10.1016/j.enbuild.2020.109821. 

[29] Wei Z, Zhang T, Yue B, Ding Y, Xiao R, Wang R, et al. Prediction of residential 
district heating load based on machine learning: a case study. Energy 2021;231: 
120950. https://doi.org/10.1016/j.energy.2021.120950. 

[30] Lumbreras M, Garay-Martinez R, Arregi B, Martin-Escudero K, Diarce G, Raud M, 
et al. Data driven model for heat load prediction in buildings connected to District 
Heating by using smart heat meters. Energy 2022;239. https://doi.org/10.1016/j. 
energy.2021.122318. 

[31] Pachauri N, Ahn CW. Weighted aggregated ensemble model for energy demand 
management of buildings. Energy 2023;263:125853. https://doi.org/10.1016/j. 
energy.2022.125853. 

[32] Shakeel A, Chong D, Wang J. Load forecasting of district heating system based on 
improved FB-Prophet model. Energy 2023;278:127637. https://doi.org/10.1016/j. 
energy.2023.127637. 

[33] Liu T, Tan Z, Xu C, Chen H, Li Z. Study on deep reinforcement learning techniques 
for building energy consumption forecasting. Energy Build 2020;208. https://doi. 
org/10.1016/j.enbuild.2019.109675. 

[34] Xu Y, Li F, Asgari A. Prediction and optimization of heating and cooling loads in a 
residential building based on multi-layer perceptron neural network and different 
optimization algorithms. Energy 2022;240. https://doi.org/10.1016/j. 
energy.2021.122692. 

[35] Wang Z, Liu X, Huang Y, Zhang P, Fu Y. A multivariate time series graph neural 
network for district heat load forecasting. Energy 2023;278:127911. https://doi. 
org/10.1016/j.energy.2023.127911. 

[36] Lund H, Werner S, Wiltshire R, Svendsen S, Thorsen JE, Hvelplund F, et al. 4th 
Generation District Heating (4GDH). Integrating smart thermal grids into future 
sustainable energy systems. Energy 2014;68:1–11. https://doi.org/10.1016/j. 
energy.2014.02.089. 

[37] Helen company official website. https://www.helen.fi/en/company/responsibilit 
y/current-topics/open-data. [Accessed 24 May 2022]. 

[38] Helsingin tilastotietokannat. https://kaupunkitieto.hel.fi/fi/helsingin-tilastotieto 
kannat. [Accessed 25 April 2023]. 

[39] Finish meteorological institute official Website. https://en.ilmatieteenlaitos.fi/do 
wnload-observations. [Accessed 24 May 2022]. 

[40] Energy Consumption Data of City of Helsinki’s Utility and Service Properties. https 
://www.opendata.fi/data/en_GB/dataset/helsingin-kaupungin-palvelukiinteistoje 
n-energiankulutustietoja. [Accessed 24 May 2022]. 

[41] Zhang L, Li J, Xu X, Liu F, Guo Y, Yang Z, et al. High spatial granularity residential 
heating load forecast based on Dendrite net model. Energy 2023;269:126787. 
https://doi.org/10.1016/j.energy.2023.126787. 

P. Hua et al.                                                                                                                                                                                                                                     

https://walterahlstrom.fi/
https://walterahlstrom.fi/
https://doi.org/10.2760/943257
http://refhub.elsevier.com/S0360-5442(23)03260-7/sref2
https://doi.org/10.1016/j.energy.2017.07.037
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52016PC0761
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52016PC0761
https://doi.org/10.1016/j.energy.2009.11.023
https://doi.org/10.1016/j.energy.2009.11.023
https://doi.org/10.1016/j.energy.2021.121615
https://doi.org/10.1016/j.energy.2021.121615
https://doi.org/10.1016/j.energy.2022.124179
https://doi.org/10.1016/j.energy.2022.124179
https://doi.org/10.1016/j.apenergy.2019.114021
https://doi.org/10.1109/TSTE.2021.3107439
https://doi.org/10.1016/j.energy.2020.119440
https://doi.org/10.1016/j.energy.2020.119440
https://doi.org/10.1016/j.apenergy.2020.116392
https://doi.org/10.1016/j.apenergy.2020.116392
https://doi.org/10.1016/j.energy.2019.05.131
https://doi.org/10.1016/j.energy.2023.126661
https://doi.org/10.1016/j.energy.2023.126661
https://doi.org/10.1016/j.enbuild.2020.110022
https://doi.org/10.1016/j.enbuild.2021.111160
https://doi.org/10.1016/j.jclepro.2021.126616
https://doi.org/10.1016/j.jclepro.2021.126616
https://doi.org/10.1016/j.enbuild.2021.111260
https://doi.org/10.1016/j.enbuild.2021.111260
https://doi.org/10.1016/j.enbuild.2015.12.030
https://doi.org/10.1016/j.enbuild.2015.12.030
https://doi.org/10.1016/j.energy.2020.117687
https://doi.org/10.1016/j.energy.2022.124283
https://doi.org/10.1016/j.energy.2022.124283
https://doi.org/10.1016/j.apenergy.2016.06.133
https://doi.org/10.1016/j.apenergy.2019.113500
https://doi.org/10.1016/j.apenergy.2019.113500
https://doi.org/10.1016/j.apenergy.2022.118801
https://doi.org/10.1016/j.apenergy.2022.118801
https://doi.org/10.1016/j.apenergy.2021.118231
https://doi.org/10.1016/j.energy.2018.09.068
https://doi.org/10.1016/j.enbuild.2020.110673
https://doi.org/10.1016/j.enbuild.2020.110673
https://doi.org/10.1016/j.energy.2020.117846
https://doi.org/10.1016/j.energy.2020.117846
https://doi.org/10.1016/j.enbuild.2020.109821
https://doi.org/10.1016/j.enbuild.2020.109821
https://doi.org/10.1016/j.energy.2021.120950
https://doi.org/10.1016/j.energy.2021.122318
https://doi.org/10.1016/j.energy.2021.122318
https://doi.org/10.1016/j.energy.2022.125853
https://doi.org/10.1016/j.energy.2022.125853
https://doi.org/10.1016/j.energy.2023.127637
https://doi.org/10.1016/j.energy.2023.127637
https://doi.org/10.1016/j.enbuild.2019.109675
https://doi.org/10.1016/j.enbuild.2019.109675
https://doi.org/10.1016/j.energy.2021.122692
https://doi.org/10.1016/j.energy.2021.122692
https://doi.org/10.1016/j.energy.2023.127911
https://doi.org/10.1016/j.energy.2023.127911
https://doi.org/10.1016/j.energy.2014.02.089
https://doi.org/10.1016/j.energy.2014.02.089
https://www.helen.fi/en/company/responsibility/current-topics/open-data
https://www.helen.fi/en/company/responsibility/current-topics/open-data
https://kaupunkitieto.hel.fi/fi/helsingin-tilastotietokannat
https://kaupunkitieto.hel.fi/fi/helsingin-tilastotietokannat
https://en.ilmatieteenlaitos.fi/download-observations
https://en.ilmatieteenlaitos.fi/download-observations
https://www.opendata.fi/data/en_GB/dataset/helsingin-kaupungin-palvelukiinteistojen-energiankulutustietoja
https://www.opendata.fi/data/en_GB/dataset/helsingin-kaupungin-palvelukiinteistojen-energiankulutustietoja
https://www.opendata.fi/data/en_GB/dataset/helsingin-kaupungin-palvelukiinteistojen-energiankulutustietoja
https://doi.org/10.1016/j.energy.2023.126787


Energy 289 (2024) 129866

13

[42] Cengel YA. Heat transference a practical approach, vol. 4. MacGraw-Hill; 2004. 
p. 874. 

[43] Han J-C. Analytical heat transfer. 2008. 
[44] Wang J. Sports performance prediction model based on BP neural network 

application research. Biotechnol An Indian J 2014;10:2933–9. 
[45] Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice. OTexts; 

2018. 

[46] Salem H, Kabeel AE, El-Said EMS, Elzeki OM. Predictive modelling for solar power- 
driven hybrid desalination system using artificial neural network regression with 
Adam optimization. Desalination 2022;522:115411. https://doi.org/10.1016/j. 
desal.2021.115411. 

[47] Walls S, Binns AD, Levison J, MacRitchie S. Prediction of actual evapotranspiration 
by artificial neural network models using data from a Bowen ratio energy balance 
station. Neural Comput Appl 2020;32:14001–18. https://doi.org/10.1007/s00521- 
020-04800-2. 

P. Hua et al.                                                                                                                                                                                                                                     

http://refhub.elsevier.com/S0360-5442(23)03260-7/sref42
http://refhub.elsevier.com/S0360-5442(23)03260-7/sref42
http://refhub.elsevier.com/S0360-5442(23)03260-7/sref43
http://refhub.elsevier.com/S0360-5442(23)03260-7/sref44
http://refhub.elsevier.com/S0360-5442(23)03260-7/sref44
http://refhub.elsevier.com/S0360-5442(23)03260-7/sref45
http://refhub.elsevier.com/S0360-5442(23)03260-7/sref45
https://doi.org/10.1016/j.desal.2021.115411
https://doi.org/10.1016/j.desal.2021.115411
https://doi.org/10.1007/s00521-020-04800-2
https://doi.org/10.1007/s00521-020-04800-2

