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A B S T R A C T   

In recent years, the European Commission and the International Maritime Organization (IMO) implemented 
various operational measures and policies to reduce ship fuel consumption and related emissions. The effec-
tiveness of these measures relies upon developing accurate predictive models encompassing the influence of real 
operational conditions. This paper presents a deep learning method for the prediction of ship fuel consumption. 
The method utilizes big data analytics from sensors, voyage reporting and hydrometeorological data, comprising 
of 266 variables made available following sea trials of a Kamsarmax bulk carrier of Laskaridis Shipping Co. Ltd. A 
variable importance estimation model using a Decision Tree (DT) is used to understand the underlying re-
lationships in the available dataset. Consequently, a deep learning model is developed to understand the in-
fluence of sailing speed, heading, displacement/draft, trim, weather, sea conditions, etc. on ship fuel 
consumption (SFC). This is achieved by incorporating attention mechanism into Bi-directional Long Short-Term 
Memory (Bi-LSTM) network. The potential of the new method is demonstrated by training data streams corre-
sponding to real ship fuel consumption rates as well as internal and external operational conditions. A 
comprehensive comparison with existing methods indicates that the Bi-LSTM with attention mechanism presents 
the best fit when using high frequency data. It is concluded that subject to further testing and validation the 
method could be used for the development of decision support systems for monitoring environmentally sus-
tainable ship operations.   

1. Introduction 

Maritime transport, as highlighted by the United Nations Conference 
on Trade and Development (UNCTAD), assumes a paramount role in the 
global trade and transportation supply chain. Today shipping is 
responsible for approximately over 80% of the transportation of global 
cargo volume while it ensures the uninterrupted movement of goods 
fostering global economic growth (UNCTAD, 2022). Whereas shipping 
may be considered relatively safe and clean in relation to other modes of 
transportation (Kevin and Kodak, 2023; Probha and Hoque, 2018), 
within the context of the targets set by the Paris Agreement decarbon-
isation remains a top priority (UNFCCC, 2022). According to the Inter-
national Maritime Organisation (IMO) in 2018 shipping accounted for 
2.89% of anthropogenic emissions worldwide (IMO, 2020a; IMO, 
2020b). Hence to reduce Greenhouse Gas (GHG) emissions by 2050 by 
50% in relation to the 2008 baseline, it is imperative to decarbonise via 

retrofitting ships in service and reduce the emissions footprint of new-
build specifications. 

To respond to the pressing needs of the decarbonisation agenda there 
is an urgent need to develop a precise model for the accurate prediction 
of Ship Fuel Consumption (SFC) rates in real operational conditions. 
Review papers by Yan et al. (2021) and Fan et al. (2022) highlight that 
such a model can be further harnessed to optimize ship voyages in real 
operational conditions, with the primary objectives of achieving 
improved fuel efficiency and emission reductions. 

Common research on SFC prediction/estimation can be broadly 
categorized into two main areas namely (a) physics-based models and 
(b)machine learning models. 

Physics-based models offer a reliable means of approximating SFC 
based on specific assumptions (Lang and Mao, 2020). Common methods 
used are based on ship-propeller-engine performance models, and ship 
resistance estimation models, see Fan et al. (2022). The former are used 
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to assess the overall performance of ship energy systems, e.g., engine, 
propeller, and associated components (Dai et al., 2022; Saydam et al., 
2022). And they are useful in terms of estimating the energy needed to 
overcome the total resistance encountered by a ship during operations 
(Wang, 2020; Wang et al., 2021). Tillig and Ringsberg (2019) developed 
a ship fuel consumption prediction model based on the generic energy 
systems theory. Their approach accounts for ship motions in four de-
grees of freedom, external forces and moments associated with waves. 
More recently, Kim et al. (2023) proposed a comprehensive approach for 
ship powering prediction. Their method includes data pre-processing for 
ship resistance estimation, and propulsion efficiency. These studies 
collectively suggest that the accuracy of physics-based models for ship 
fuel consumption are closely tied to ship resistance. 

To comprehensively evaluate the total resistance experienced by a 
ship, both calm water and added resistance components should be 
considered, e.g., see Lang and Mao. (2020) and Wang et al. (2020). Calm 
water resistance refers to the hydrodynamic effects a ship encounters 
when she is moving through calm and undisturbed waters. Sub-
components of this resistance include the influences from frictional and 
viscous effects (Molland et al., 2017). Added resistance refers to addi-
tional hydrodynamic influences a ship hull may encounter from the 
waves, wind, other ships, or obstacles (Vinayak et al., 2021; Liu et al., 
2020). In most cases, ship resistance is evaluated in still waters (Liu and 
Papanikolaou, 2020). The Holtrop and Mennen (1982) model and its 
derivatives, e.g., see Julianto et al. (2021) and Elkafas et al. (2019), have 
been commonly employed to estimate ship resistance at the preliminary 
ship design stage. Over the years, the International Towing Tank Con-
ference (ITTC) proposed empirical methods (ITTC, 2002). For example, 
Choi et al. (2010) employed the model-based ship performance analysis 
method based on the revised ITTC’78 method to predict speed perfor-
mance using resistance and propulsion characteristics. On the same 
basis, Min and Kang (2010) introduced an improved extrapolation 
procedure based on the ITTC’78 method to predict full-scale ship 
resistance performance. 

In recent years, the use of Computational Fluid Dynamics (CFD) 
became increasingly useful within the context of ship design (Yaakob 
et al., 2015; Haase et al., 2016). A recent contribution by Grlj et al. 
(2023) introduced a Reynolds Averaged Navier-Stokes (RANS)- CFD 
model to investigate the influences of various container configurations, 
trim settings, and ship motion on wind and air resistance. Farkas et al. 
(2020) presented a novel method for estimating the effects of fouling on 
ship resistance and propulsion characteristics using the same method. 
Campbell et al. (2022) used CFD to explore the influence of trim and 
draught variations on the resistance of a ship in confined waters. The ISO 
(2015) guidance, the empirical methods proposed by Lewis (1988), and 
the CFD models of Kim et al. (2017); Luo et al. (2016) can be employed 
to estimate the added resistance due to wind. The empirical methods put 
forth by Hasselmann et al. (1973) and numerical modelling procedures 
introduced by Sadat-Hosseini et al. (2013), Luo et al. (2016), and Cho 
et al. (2023) can be utilized to estimate wave resistance. To account for 
the combined effects of wave resistance on ship motions, semi-empirical 
models have been proposed. These models are based on experimental 
data and incorporate empirical equations. Examples are given by Fujii 
and Takahashi (1975), Tsujimoto et al. (2008), and Liu et al. (2016, 
2020). Jinkine and Ferdinande. (1974), Liu et al. (2016), ITTC (2014, 
2017), and Valanto and Hong (2015) also explored the overall influence 
of added resistance effects on ship motions. 

Physics-based models are often used to estimate the total resistance a 
ship may encounter during operations (e.g., Lang, 2023; Carlton, 2018). 
Nevertheless, it is worth noting that their accuracy may be limited when 
it comes to changing or extreme operational conditions (Vinayak et al., 
2021) that pose unique challenges not accounted for in existing models 
(Fan et al., 2020, 2022; Yan et al., 2021; Haranen et al., 2016). 

Artificial Intelligence (AI) technologies and big data theory could 
offer a potentially valid solution to address the challenges associated 
with capturing influencing factors and interactions from various 

resistance components encompassed in physics-based models (Chen 
et al., 2023; Lang, 2023; Shang et al., 2023). This is because AI could be 
employed to elucidate the intricate relationship between measured SFC 
and a multitude of influential parameters, encompassing realistic navi-
gational patterns, ship operational status, engineering systems specifics, 
weather conditions, etc. To date, several review papers have extensively 
discussed the potential application of machine and deep learning 
methods to predict SFC (Yan et al., 2021; Fan et al., 2022; Huang et al., 
2022). These papers identified three main clusters of algorithms 
commonly utilized, namely: (i) supervised Machine Learning Methods 
(MLMs), (ii) unsupervised MLMs, and (iii) Deep Learning Methods 
(DLMs), see Table 1. Supervised MLMs encompass a range of techniques 
including multiple linear regression (Bocchetti et al., 2013), random 
forest (Coraddu et al., 2017), least absolute shrinkage and selection 
operator regression (Wang et al., 2018), support vector regression 
(Uyanık et al., 2020), extreme gradient boosting (Papandreou and Zia-
kopoulos, 2022), adaptive boosting (Uyanık et al., 2020) and decision 
trees (Yan et al., 2020). Unsupervised MLMs involve Gaussian process 
regression (Hu et al., 2019) and Gaussian mixture model (Jeon et al., 
2018). DLMs consist of artificial neural networks (Kim et al., 2021), long 
short-term memory network (Yan et al., 2020a), and gated recurrent 
units (Yan et al., 2020b). 

All methods have been employed to predict the SFC of different ships 
by utilizing diverse data sources such as voyage reports, Automatic 
Identification System (AIS) data, as well as hydrometeorological and 
other sensor data (Dai et al., 2022a; Li et al., 2022a; Li and Yang, 2023; 
Li et al., 2023b). Understandably, these diverse data sources provide 
valuable information that enables the accurate predictions and enhances 
the understanding of the factors that may impact the evaluation of SFC. 
Nevertheless, statistical analysis reveals that the existing MLMs may be 
sensitive to the varying numbers of influencing factors (inputs), appar-
ently ranging from 7 to 75 (Chen et al., 2023). 

MLM and DLM algorithms can be used to predict SFC on the basis of 

Table 1 
The existing machine leaning methods for ship fuel consumption.  

Methods Number 
of ships 

Ship type Literature 

Machine 
learning 
methods 

Adaptive boosting 
(AB) 

1 Container 
ship 

Uyanık et al. 
(2020) 

Decision trees 
(DT) 

1 Dry bulk 
ship 

Yan et al. (2020) 

Gaussian process 
regression (GPR) 

1 Container 
ship 

Hu et al. (2019) 

Extreme gradient 
boosting 
(XGBoost) 

1 VLCC Papandreou and 
Ziakopoulos 
(2022) 

Least absolute 
shrinkage and 
selection operator 
(LASSO) 

1 Container 
ship 

Wang et al. 
(2018) 

Multiple linear 
regression (MLR) 

2 (Sister 
ships) 

Cruise ship Bocchetti et al. 
(2013) 

Random forest 
(RF) 

2 (Sister 
ships) 

Tuna seiner Zhou et al. 
(2023) 

Support vector 
regression (SVR) 

1 Container 
ship 

Uyanık et al. 
(2020) 

Deep 
learning 
methods 

Long short-term 
memory networks 
(LSTM) 

1 Inland 
cargo ship 

Yuan et al. 
(2020) 

Gated recurrent 
units (GRU) 

1 Inland 
cargo ship 

Yuan et al. 
(2020) 

Artificial neural 
networks (ANN) 

1 Container 
ship 

Kim et al. (2021) 

The term " sister ships " typically refers to a ship that has an identical or nearly 
identical sister ship. These sister ships are often built using the same design and 
specifications, making them very similar or nearly identical in terms of size, 
shape, and functionality. 
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well-defined scenarios for a specific ship (e.g., Chen et al., 2023; Yan 
et al., 2020; Du et al., 2022a,b). However, they often fail to accurately 
predict SFC in real time or for an entire ship voyage or a fleet in complex 
or extreme conditions. This could be attributed to the following reasons.  

(i) Existing models tend to omit key operational factors under 
complex or extreme operational conditions (Chen et al., 2023). A 
key objective of the existing SFC prediction models should be to 
accurately account for the effects of intricate ship energy systems 
during operations. Subsequently, a trained model should function 
as a digital twin. Results may then be used in aiding routing and 
OPEX (operational expenditure) optimization.  

(ii) Existing models do not consider the taxonomy of influencing 
factors and their combined or retrospective effects on SFC pre-
diction. For example, certain big data analytics may introduce 
noise to data patterns and result in overfitting issues that 
compromise the performance of a trained model (Zhou et al., 
2022; Fiskin et al., 2021).  

(iii) MLM and DLM models struggle to effectively deal with the 
complexity of big data patterns and their combinations. The se-
lective use of information on the basis of attention mechanisms 
entails limitations. Thus, more sophisticated methods should be 

developed to improve model performance and big data inter-
pretability (Zhang et al., 2023). 

To address the above limitations, this paper proposes an AI informed 
method for the prediction of SFC in real operational conditions. The 
method accounts for complex big data patterns, combinatorial influ-
encing factors, and DLM using a Bi-LSTM method with attention 
mechanisms. The practical application of the proposed approach is 
exemplified through the utilization of big data records collected over sea 
trials of a bulk carrier operated by Laskaridis Shipping Co. Ltd. The new 
approach is validated by comparison against current methods. The 
paper concludes on the perspective potential of the ideas developed to 
contribute toward environmentally sustainable shipping operations. 

2. Methods 

In this paper, a decision tree (DT) is used to evaluate the importance 
of factors encompassed on extensive big data analytics records and 
consequently select key influencing factors with impact on SFC. A Bi- 
LSTM with attention mechanism method is employed. The methodol-
ogy presented comprises of the following three steps (see Fig. 1). 

Fig. 1. The attention-based Bi-LSTM framework for the prediction of ship fuel consumption.  

Fig. 2. Data collection and multisource-information fusion.  
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• Step I: Data collection and the importance evaluation of influ-
encing factors. 

To collect streams of big data analytics from sea trials, numerous 
sensors are deployed. These sensors encompass a range of functional-
ities, including GPS, gyrocompass, anemometer, torque meter, flow 
meter, thermometer, echosounder, density meter, etc. In this study, the 
sensors used collectively measured 266 parameters including navigation 
data (i.e., speed, heading, course, etc.), ship operational status (i.e., 
draft, trim, etc.), the functionality of engineering systems (i.e., fuel oil 
volumetric flow, fuel oil density, fuel oil temperature, propeller revo-
lutions, engine power), Metocean data (i.e., air pressure and tempera-
ture, hydrometeorological data, etc.). Subsequently, a DT method is 
employed to assess the significance of big data parameters on SFC in real 
operational conditions.  

• Step II: A DLM for the prediction of ship fuel consumption. 

The DLM incorporates attention mechanisms into a Bi-LSTM network 
(Lin et al., 2019; Li et al., 2023). The network focuses on specific parts of 
the data streams and assigns varying degrees of importance to different 
parts of the training data. During training, the network can capture in-
formation from both past and future data sequences. Consequently, the 
model developed is capable to capture long term dependencies from ship 
energy systems in real operational conditions.  

• Step III: Cross validation, comparison, and applications. 

The trained model is validated using a k-fold cross-validation pro-
cedure. This ensures accuracy and reliability (Ma et al., 2022; Zhang 
et al., 2023). Comparative studies are then conducted to assess the 
performance of the method against MLMs used in existing studies. 
Finally, the generalisation of the model is tested by direct application to 
new long-period ship voyages (see Section 3.3). 

2.1. Data collection and feature importance evaluation 

To gain a comprehensive view of the performance of ship energy 
system in real operational conditions, sensors were installed on a 
Kamsarmax bulk carrier and big data streams were collected during 

extensive sea trials. Sensors included a GPS for position tracking, a gy-
rocompass for heading measurements, an anemometer and a torque 
meter for wind speed and torque monitoring, a flow meter for fuel flow 
assessment, thermometers for temperature measurements, an echo- 
sounder for water depth monitoring, a density meter for assessing the 
fuel oil properties, etc., see Fig. 2. The combined deployment of this 
hardware enabled the simultaneous measurement of 266 parameters 
(see Fig. A1 in appendix A) related to ship navigation, engine, ship 
condition and operational conditions. The data collection interval was 
60 s and big data were classified as follows.  

• Navigation data including parameters such as ship speed, heading, 
course, and position. These data streams are crucial for route plan-
ning and speed optimization.  

• Ship operational status data, such as draft, trim, ballast, cargo load, 
and hull fouling. These parameters may impact ship hydrodynamic 
performance and fuel efficiency. 

• Engineering systems data, e.g., fuel oil volumetric flow, fuel oil den-
sity, fuel oil temperature, propeller RPM, and engine power. This 
information can provide improved insights into engine performance 
and fuel consumption.  

• Metocean data including information related to atmospheric and 
oceanic conditions such as air pressure and temperature, sea tem-
perature, wave height, and current speed. Such data streams are 
crucial for understanding the influence of environmental conditions 
on ship safety and performance (Zhang et al., 2023a,b). 

Whereas the data collection system captures a comprehensive an 
extensive set of time domain parameters, not all of those are equally 
important to determine SFC. They also do not contribute equally to the 
accuracy of results derived from models. On this basis, it was considered 
useful to derive a variable selection model to effectively reduce data 
dimensions. 

A DT method has been used to examine the significance of variables 
with respect to operational targets (Karabadji et al., 2014; Kazemitabar 
et al., 2017; Perner and Apte, 2004). By definition, a DT model has a 
hierarchical structure comprising of nodes, branches, and leaves, each 
serving a specific purpose, see Fig. 3 and (Abreu et al., 2023; Zhou et al., 
2021). The fundamental principle of decision tree involves the recursive 
division of datasets based on selected variables. Such process may lead 

Fig. 3. Variable importance calculation for inputs selection of deep learning method.  
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to the generation of big data subsets. The process may ultimately lead to 
the formation of decision rules (Cai et al., 2018). A notable advantage of 
the method is that it captures intricate relationships between the input 
and the output nodes (Kazemitabar et al., 2017; Abreu et al., 2023). 
Unlike other modelling techniques, such as logistic regression and cor-
relation methods (Hall, 1999), it may also handle complex interactions 
and nonlinear relationships between variables (Wu et al., 2023). This is 
because it considers the importance of different variables by examining 
their splits and hierarchy. Last but not least it produces interpretable 
results (Sagi and Rokach, 2021). 

The process of constructing the DT regression model was based on 
the idea of evaluating the importance of variables that may involve 
attribute selection measures, tree growth, pruning, etc. (Kotsiantis, 
2013; Zhou et al., 2021). Generally, attribute selection measures are 
utilized to identify the most informative features and for partitioning the 

data streams. In this paper, the Mean Absolute Error (MAE) is used for 
attribute selection, see Eq. (1). 

i2 =
1
n

∑n

i=1
⌊yi − ŷi ⌋ (1)  

where, n is the number of predictions, yi is the actual value, ŷi denotes 
the predicted value. 

A dataset can be recursively partitioned using the selected variables. 
This leads to the creation of DT branches until termination conditions 
are met, e.g., maximum depth, minimum number of instances, random 
states, etc. (Rajagopal et al., 2020). To prevent overfitting (i.e., imple-
mentation of unnecessary branches or nodes), cost complexity pruning is 
applied (Raghavan, 2010; Karabadji et al., 2014) as denoted in Eq. (2). 

Fig. 4. The schematic of the deep learning method architecture for ship fuel consumption prediction.  

Fig. 5. The architecture of Bi-LSTM with attention mechanism for ship fuel consumption prediction.  
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J(θ) = L(θ) + α⋅R(θ) (2)  

In Eq. (2) J(θ) represents the objective function, L(θ) is the loss function 
that measures the model performance on the training data, R(θ) denotes 
the regularization term that penalizes the complexity of the model, α is a 
hyperparameter that controls the trade off between the loss and regu-
larization term. 

The critical attribute of a node with children is denoted as U(Nj) in 
Eq. (3). Thus, when the MAE of the children node is small, see Eq. (1), 
the importance of the node, particularly its feature for splitting, becomes 
significant. 

U
(
Nj

)
= wji2

j − W
(
Nl

k

)
i2(

Nl
k

)
−W

(
Nr

k

)
i2(

Nr
k

)
(3)  

In Eq. (3) j denotes the number of nodes of the developed tree, 
Nj, j ∈ {1, 2, …, J} presents all the nodes of the decision tree. Each Nj has 
a left child Nl

k and a right child Nr
k, W(Nj)= wj ∈ (0, 1] and denote the 

weight of node Nj. I2(Nj) represents the mean absolute error of Nj. 
The DT model can capture the complex relationships between nav-

igation conditions, engine, and ship condition data, hydrometeorologi-
cal conditions, and their impact on SFC. By evaluating the significance of 
features within the DT such as the frequency of feature usage for split-
ting and the resulting variance reduction, the importance of these pa-
rameters can be determined. Variables with high importance values 
indicate a strong influence on SFC, while those with low values may 
have minimal impact. The selection of the top k variables is based on 
their demonstrated ability to yield the highest prediction accuracy when 
used as input for the deep learning model (see Section 2.2). It is worth 
noting that the analysis of big data records demonstrated that modifying 
(increasing or decreasing), the number of variables may have a negative 
effect on the accuracy of the model. Thus, the top k variables were set as 
inputs in DLM, see Fig. 3. 

2.2. A DLM for the prediction of ship fuel consumption 

To predict SFC the paper introduces a DLM based on Bi-LSTM with 
attention mechanism, see Fig. 4. Since the fuel consumption prediction 
model can capture both past and future dependencies, and attention 
mechanisms are considered, the model introduced has by definition the 
potential to demonstrate good performance in terms of effectively 
capturing and utilizing historical information. 

The architecture of the SFC prediction model as illustrated in Fig. 5, 

consists of four main components namely: (i) input layer, (ii) Bi-LSTM 
layer, (iii) attention mechanism layer, and (iv) output layer. Table 2 
summarizes the algorithm, i.e., it outlines the step-by-step procedure 
followed, including data pre-processing, model architecture setup, 
training process, and prediction generation. Details about the four main 
components can be summarised as follows.  

(i) Input layer 

The model input includes key variables obtained from navigation 
data, engineering systems, ship status, and hydrometeorological condi-
tions using the DT regression model, see Fig. 5. These selected variables 
are then pre-processed and fed into the subsequent layers, see Section 
2.1.  

(ii) Bi-LSTM layer 

Each Bi-LSTM layer consists of two LSTM sub-layers. In turn, each 
LSTM unit comprises of 4 interconnections that encompass the input and 
control signals for the input, forgotten, and output gates (Staudemeyer 
and Morris, 2019; Gao et al., 2020). These components work together to 
regulate memory storage, retention, and output. Fig. 5 depicts the in-
ternal structure of the LSTM unit (see red box). The input xt at a time 
increment t and the output ht−1 of the hidden layer neuron at a time 
increment t-1 represent the joint inputs to the hidden layer. These inputs 
are then multiplied by distinct weight vectors, and upon application of 
the activation function, the control signals ft , it , ot, of the forgotten gate, 
input gate, and output gate are generated. The mathematical basis is 
denoted by Eqs. (4)–(6), where the weight vector is represented by w and 
the activation amount by b. The biases for different connection weights 
are represented by bf , bi, and bo, while σ (⋅) is the sigmoid activation 
function. 

ft = σ(wf [ht−1, xt] + bf
)

(4)  

it = σ(wi[ht−1, xt] + bi) (5)  

ot = σ(wo[ht−1, xt] + bo) (6) 

The state of a cell C̃t is presented as per Eq. (7). The value of the 
memory unit Ct is updated according to Eq. (8). 

Table 2 
Algorithm 1- Bi-LSTM with attention mechanism for ship fuel consumption prediction. 
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Fig. 6. Capturing and utilizing information from both forward and backward directions.  

Fig. 7. Attention mechanism for ship fuel consumption prediction.  
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C̃t = tanh(wC[ht−1, xt] + bc) (7)  

Ct = ft*Ct−1 + it*C̃t (8) 

The output of hidden layer neurons ht is defined as: 

ht = ot*tanh(Ct) (9)  

where tanh (⋅) represents a hyperbolic tangent activation function. 
Ships are systems of systems that navigate through complex opera-

tional conditions (Zhang et al., 2021). To effectively capture the 
complexity of ship systems using real operational data for SFC predic-
tion, it is essential for the DL model to learn from both past and future 
information in the data streams. While a standard LSTM model only 
considers information from past time frames in the data stream, the 
Bi-LSTM layer overcomes this limitation by addressing the problem of 
disregarding relevant past information (Ma et al., 2020; Xu et al., 2022; 
Gao et al., 2023). This is possible as it comprises of both forward and 
backward LSTM sublayers, see Fig. 5. 

Forward sublayers process the input stream in a forward fashion, i.e., 
from the beginning tb to the end te. The sublayers operate conversely to 
this (i.e., in a backward direction: from the end te to the beginning tb), 
see Fig. 6. 

Given an input data stream X = [x1, x2, ..., xn], a Bi-LSTM generates 
hidden states in both forward and backward directions as per Eqs. 10 
and 11. Then, the hidden states from both directions are concatenated to 
obtain a comprehensive representation at each time step see Eq. (12). 

ht
⇀

= LSTM
(

xt, ht−1
⇀ )

(10)  

ht
↼

= LSTM
(

xt, ht−1
↼ )

(11)  

ht =
[
ht
↼

; ht
⇀ ]

(12)  

where t represents the time step, and ht
⇀ 

is the hidden state in the for-

ward direction. ht
↼ 

is the hidden state in the backward direction, [; ]

denotes the concatenation.  

(iii) Attention mechanism 

The attention mechanism allows the model to dynamically focus on 
different parts of the input data streams as well as assign varying levels 
of importance to different time steps (Zhang et al., 2023). This enhances 
its ability to emphasize critical information on the basis of the data 
streams available. This feature may be useful in terms of capturing 
extreme scenarios. The attention layers calculate attention scores and 
weights for each time step based on the hidden representations from the 
Bi-LSTM layers, see Fig. 7. 

Given a specific time step t, the attention weight αtj of other hidden 
layers for the current input of xt is calculated as given in Eq. (13). 

αtj =
exp

(
etj

)

∑n
j=1exp

(
etj

) (13) 

The attention score etj computed using an additive attention model is 
defined according to Eq. (14), where wμ and ww represent the weights of 
the fully connected layers. The bias for different connection weights is 
represented by bw. Consequently, the information is used to compute the 
attention weights for the attention mechanism (Chorowski et al., 2015). 

etj = wμ
T*tanh(wwht + bw

)
(14) 

The context vector ct is the weighted sum of the hidden states. It 
reflects the attended information at a time step, see Eq. (15). 

ct=
∑n

j=1
αtjhtj (15) 

The final output SFCt at a time step t is generated by passing the 
context vector ct through linear transformation and an activation func-
tion, see Eq. (16). 

SFCt=softmax (wcct+bc) (16)  

In the above expression, wc, and bc are parameters (weight matrices or 

Fig. 8. k folds cross-validation for model evaluation.  

Table 3 
Ship specification of the KAMSARMAX class bulk carrier.  

Information Real 
IMO 9843405 
Vessel Type Bulk Carrier 

DWT 81,600.0 t Digital Twin 
Length x Breadth 229.0 x 32.0 m 
Year Built 2020  
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Fig. 9. Ship trajectories of sea trial data of a bulk carrier from 01.2021 to 02.2023.  

Fig. 10. Visual representation of the collected data samples.  
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Fig. 11. The relationship between ship fuel consumption and external conditions (speed, draft, wind).  
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vectors) that are typically trained and determined during the process of 
model training.  

(iv) Output layer 

The output layer receives the context vector, which is the weighted 
combination of the hidden representations obtained from the attention 
mechanism process. In turn, the context vector captures the most rele-
vant information from the input data stream. The output layer processes 
the context vectors and predicts SFC for a given time step, see Fig. 7. 

2.3. Model evaluation and applications 

To evaluate the performance and quantify the errors between the 
real and the predicted SFC, Root Mean Square Error (RMSE), Mean 
Square Error (MSE), and error rates en were evaluated, see Eqs. 17–19. In 
addition, the R2 value (coefficient of determination) was used to mea-
sure the generalization potential of the method, see Eq. (20). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N

∑N

n=1
(yn − yn

∧
)

2

√
√
√
√ (17)  

MSE =
1
N

∑N

n=1
(yn − yn

∧
)

2 (18)  

en = (yn − yn
∧

) / (yn) (19)  

R2 = 1−
∑N

n=1
(yn − yn

∧
)

2

/
∑N

n=1
(yn − yn

−
)

2 (20)  

In the above expressions, yn is the actual value, yn
∧

denotes the predicted 
value, yn

−
is the mean value. 

The so-called k-fold cross-validation is a widely employed machine 
learning method that can be used for the evaluation of model perfor-
mance (Zhang et al., 2023). It involves partitioning the dataset into k 
equally sized subsets or folds, see Fig. 8. The evaluation process is then 
conducted k times, with each fold serving as the validation set once. The 
remaining k-1 folds as the training set which allows for a comprehensive 
assessment of model performance by iteratively rotating through all the 
folds. After each iteration, performance metrics such as accuracy or 
error are calculated. Eventually, results are averaged to obtain a robust 
estimation of a model’s generalization potential. 

To compare the adopted model with existing machine learning 
models, a series of comparisons were conducted using the same data 
streams. To assess the practical applicability and use the trained model, 
new input data streams encompassing records from the entire voyages 
were collected and used for the prediction of SFC. Key findings are 
summarised in Section 3. 

3. Case studies 

To validate the adopted deep learning method, big data records from 
extensive sea trials of a Kamsarmax bulk carrier of Laskaridis Shipping 
Co. Ltd. were used, see Table 3. Fig. 9 illustrates the voyages undertaken 
over a period of two years (February 2021 to January 2023). The big 
dataset used comprised of more than 1 million data records, each con-
sisting of 266 parameters as indicated in the parameter word cloud 
provided in Appendix A. The data collection interval was 60 s. 

Fig. 12. Visualization of the decision tree model with the best-performing hyperparameters obtained from the grid search (the tree includes 90 levels (depths), and 
only the first five levels of the tree are displayed here). 
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3.1. Decision tree model for key variables selection 

Big data analytics involved acquiring information on ship naviga-
tion, engine and ship operational conditions as well as metocean data, 
see Fig. 2. At first instance, anomalous data points were carefully 
identified, and data streams were included if the recorded speed 
exceeded 1 knot, the SFC exceeded 0 L/h but remained below 2000 L/h, 
or the main engine shaft were greater than 10 rpm. Approximately 7.5% 

of the dataset available for the analysis was deemed aberrant and was 
subsequently removed. After filtering, the data presented the ship per-
formance during actual operations at sea, provided a realistic repre-
sentation of the ship performance rather than being limited to periods 
when the ship was at anchor or in port. A visual representation of the 
collected data instances is given in Fig. 10. 

This comprehensive dataset facilitated for a detailed analysis of SFC 
encompassing the influences of navigational patterns, engineering sys-
tems performance, operational conditions, and the prevailing hydro-
meteorological conditions. Fig. 11 illustrates the relationship between 
SFC and external factors, such as speed, draft, and wind conditions. 

To tackle the challenge of identifying the key influencing factors 
while disregarding irrelevant data, the study employed the DT regres-
sion method outlined in Section 2.1. The method accounted for 266 sets 
of variables that specifically comprised of 265 parameters and SFC. The 
main aim has been to use time domain signals and extract meaningful 
insights on predictors that may impact SFC. To achieve this, 265 vari-
ables were designated as the X database, while SFC served as the Y 
database. The X database and Y database were split into training and 
testing sets, with the training set accounting for 80% of the available 
data streams and the testing set encompassing the remaining 20%. 
Eventually big data sets were normalized to facilitate for the training of 
the DT model. 

To determine the most effective combination of hyperparameters for 
the DT model and assess its performance, the DT regression model was 
optimized and evaluated using a grid search with cross-validation 
(Krstajic et al., 2014). Specifically, a hyperparameter grid was con-
structed with different values for max depth (d), min number of in-
stances per leaf (m), and random state (r) of the DT model. 
Subsequently, a DT regressor was initialized to serve as the base 

Fig. 13. The correlation relationships between the selected key influencing factors on ship fuel consumption using the collected data streams.  

Fig. 14. The relationship between hydrometeorological factors and ship mo-
tions in real operational conditions (Zhang et al., 2023b). 
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estimator for the grid search. 
The grid search was performed using the grid search cross validation 

function (Ranjan et al., 2019), that uses a cross-validation scheme with 
five folds for the hyperparameters of maximum depth (d), minimum 
number of instances per leaf (m), and random state (r). During the grid 
search, the negative MAE was used as key evaluation metric, see Eq. (1). 
The DT model was trained and evaluated using various hyperparameter 
combinations. The main aim of the process has been to select the model 
that achieved the lowest negative MAE. 

The best DT model was obtained for d = 90, m = 4, and r = 1, see 
Fig. 12. Notably, the subsequent evaluation using MAE allowed for an 
assessment of the model’s performance on both the training and test 
sets. The results indicated a MAE of 0.61 on the training set and 1.21 on 
the testing set. This suggests that the developed model did not experi-
ence overfitting. 

The optimized DT model and collected dataset helped to assess the 
importance of variables, see Section 2.1. For example, Fig. 13 illustrates 
the correlation among key influencing factors and SFC. These findings 
reveal a robust positive correlation between propeller shaft RPM, main 
engine shaft RPM, and main engine shaft torque with SFC. A moderate 
correlation is evident between speed, engine temperature, trim, and 
SFC. It is noteworthy that ship course, heading, and hydrometeorolog-
ical factors demonstrate no relevance or even negative correlation 
against SFC (Yan et al., 2023). This could be attributed to the disparity 
between the coordinate systems associated to the hydrometeorological 
factors and ship motions, see Fig. 14. The combination of hydrometeo-
rological factor values (e.g., wave height, wind speed, current speed, 
etc.) and their absolute directional components (i.e., absolute wave, 
wind, and current directions) is of key importance for the determination 
of weather routing and not necessarily forecasting. Notwithstanding 
this, it is important to note that Fig. 13 employs a correlation method 
exclusively designed to assess linear relationships between the selected 
key influencing factors and SFC. To account for potential nonlinear re-
lationships the use of a DT model is critical. 

The hydrometeorological conditions data used is provided by a 

Fig. 15. The deep learning processing of ship fuel consumption prediction for model training, testing and application.  

Table 4 
The model characteristics and the optimal hyperparameters.  

Model Input 
variables 

Output 
variable 

Layers 

Bi-LSTM with attention 
mechanisms 

14 1 7 

Hidden units per layer Optimizer Batch Size Early stopping 
128 Adam 48 Patience = 10 
Dropout rate Leaning rate Epochs Regularization 

param 
0.2 5e-05 178 0.1  

Fig. 16. The model performance evaluation.  
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weather provider and represents absolute directions. This is because the 
primary goal of the SFC prediction model is to optimize routing and 
absolute directions are more useful for weather routing based on 
weather forecasting. Furthermore, a DLM can capture the relationship 
between ship heading and absolute directions of weather conditions as 
well as the combined effects on SFC. Therefore, it is not necessary to 
adjust them by subtracting the ship heading to make them relative in 
DLM. 

3.2. Ship fuel consumption prediction using the deep learning method 

Based on the collected data streams (see Fig. 2), a DT model was 
utilized to rank the variables and identify the key influencing factors on 
ship fuel consumption (Fig. 12). In this section, an attention mechanism- 
based Bi-LSTM architecture was designed to train a DLM. 

During maritime operations, ship navigation information (speed, 
course, heading), ship operation condition information (draft, trim), 
engine operation information (propeller and main engine shaft RPM and 

torque), and external operational conditions serve as the primary con-
trol parameters or influencing factors for managing the ship energy and 
navigation systems. The propeller and main engine shaft RPM, and 
torque are closely related and exhibit interdependencies, see Fig. 13. 
Hence, they are not included as input parameters (see Fig. 15). 

To train the DLM, the paper employed an architecture consisting of 
an input layer, three bi-LSTM layers, three attention layers, and an 
output layer. The Bi-LSTM layer had 128 hidden units. To optimize the 
hyperparameters of the Bi-LSTM with an attention mechanism model. 

(e.g., regularization parameter, dropout rate, and learning rate), a 
grid search was conducted using the grid search cross Validation func-
tion with a 5 -fold cross-validation scheme (Ranjan et al., 2019; Krstajic 
et al., 2014; Zhang et al., 2023). The best parameters were then deter-
mined based on the lowest MSE obtained during validation. The model 
characteristics and the selected hyperparameters are summarised in 
Table 4. 

The dataset was divided using 5-fold cross-validation. The training 
and validation losses were computed based on the basis of training 80% 

Fig. 17. The results of ship fuel consumption prediction (In the upper figure, the red line represents the real values of ship fuel consumption, while the green line 
represents the predicted results. In the bottom figure, the blue line represents the error rate in the time domain.). 

Fig. 18. The analysis of prediction errors using the adopted model.  

Table 5 
The accuracy evaluation for ship fuel consumption prediction using various tools.  

Methods MSE: Mean Square Error 

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean 

Machine learning methods Ada boosting 0.0340 0.0217 0.0326 0.0264 0.0275 0.0283 
DT 0.0275 0.0263 0.0287 0.0279 0.0268 0.0272 
GPR 0.0302 0.0288 0.0295 0.0281 0.0299 0.0291 
XG Boost 0.0305 0.0281 0.0292 0.0287 0.0286 0.0288 
LASSO 0.0315 0.0310 0.0302 0.0308 0.0305 0.0307 
MLR 0.0226 0.0240 0.0238 0.0233 0.0229 0.0338 
RF 0.0230 0.0239 0.0237 0.0233 0.0235 0.0234 
SVR 0.0272 0.0259 0.0276 0.0261 0.0269 0.0264 

Deep learning methods LSTM 0.0245 0.0238 0.0241 0.0237 0.0243 0.0240 
GRU 0.0227 0.0219 0.0222 0.0220 0.0223 0.0221 
ANN 0.0273 0.0276 0.0272 0.0273 0.0275 0.0274 
Bi-LSTM 0.0258 0.0263 0.0260 0.0262 0.0260 0.0261 
LSTM with attention 0.0222 0.0223 0.0219 0.0221 0.0220 0.0220 
Bi-LSTM with attention (The adopted method) 0.0198 0.0206 0.0202 0.0203 0.0205 0.0204  
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and 20% of the dataset records respectively. The curves displayed in 
Fig. 16 demonstrate that both the training and validation losses 
decreased and stabilized around the 178th epoch. Consequently, if no 
improvement in the validation performance is observed beyond this 
point, the training process can be terminated early to mitigate over-
fitting. For the case study considered upon the completion of 178th 
epochs, the deep learning model achieved a state of optimal fitting. This 
suggests balanced convergence between the model’s performance and 
the training data. Optimal fitting also implies that the model neither 
exhibits symptoms of overfitting, nor is characterized by excessive 
complexity. In this sense, it attains a desirable equilibrium between 
capturing any big data intricacies. 

As shown in Fig. 16, the training process suggests that the DLM may 
chieve an optimal fit, by effectively mitigating both over- and under-
fitting. Moreover, the MSE obtained by 5-fold cross-validation was 
2.04e-2. To further validate the model, new inputs were selected from 
the testing database illustrated in Fig. 15 and error rates were computed 
by using Eq. (19), see Fig. 17. These findings signify that the trained 
DLM can effectively capture the ship energy system’s characteristics 
under real operational conditions. Additionally, errors are depicted in 

Fig. 18. The analysis revealed that over 90% of the prediction errors are 
below 4%, and the average error rate was 0.98%. Perhaps it is crucial to 
highlight that the adopted model bears some limitations in terms of 
effectively capturing abnormal fluctuations present in sensor collected 
data, see the peak values on the blue line outlined in Fig. 17. Ideally, 
such onerous effects should be removed during data collection. 

3.3. Validation and comparisons 

A comparison of the method with existing models is presented in 
Table 5. The average MSE was calculated for the prediction of SFC using 
the methods, i.e., Ada boosting, DT, GPR, XG Boost, LASSO, GRU, MLR, 
RF, SVR, GRU, LSTM, Bi-LSTM, ANN, LSTM with attention mechanism, 
see Table 1. Whereas most DLMs demonstrate superior performance in 
predicting SFC as compared to traditional MLMs, and the errors of the 
new method appear to be the lowest. Possible reasons behind this 
observation are.  

• The big data collection system onboard the vessel provided high 
quality data streams over long-term sea trials, while the importance 
evaluation model of influencing factors selects the key features for 
the development of deep learning model.  

• The utilization of the attention mechanism and Bi-LSTM enhanced 
the DLM learning capability. This is because it allows for the long 
term bi-directional and simultaneous processing of multiple data 
streams.  

• By effectively capturing the dependencies and important information 
available in data streams, the adopted method can be used to better 
understand and represent the complex relationships involved in ship 
energy systems. 

3.4. Generalization assessment 

To generalise the applicability of the method, the trained model was 
tested by big data streams from operational data corresponding to the 
period from February 2023 to June 2023. The new data encompassed of 
8 worldwide voyages, see Fig. 19. The longest and shortest trajectories 
were 7223.9 nautical miles and 980 nautical miles respectively, see 
Table 6. 

As shown in Fig. 19, the SFC over the total number of voyages was 
predicted by using the profile of the trained model in the time domain. 

Fig. 19. Ship fuel consumption prediction by calling the trained model.. (Ship trajectories of new data of a bulk carrier from 01.2023 to 06.2023.)  

Table 6 
The general information of 8 whole voyages.   

Condition Departure/ 
destination 

Voyage 
lengths 

Number of 
data 

Voyage 
1 

Laden 
condition 

Vancouver/Yantai 7223.90 nm 28,479 

Voyage 
2 

Ballast 
condition 

Yantai/Hong Kong 980.22 nm 6081 

Voyage 
3 

Laden 
condition 

Hong Kong/Sarina 3035.639 nm 17,347 

Voyage 
4 

Ballast 
condition 

Sarina/Singapore 3764.36 nm 19,545 

Voyage 
5 

Laden 
condition 

Singapore/Pouad 4724.23 nm 19,749 

Voyage 
6 

Laden 
condition 

Pouad/Rotterdam 3954.41 nm 8299 

Voyage 
7 

Ballast 
condition 

Rotterdam/Belem 4230.67 nm 19,930 

Voyage 
8 

Laden 
condition 

Belem/Rotterdam 4197.65 nm 21,206  
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Fig. 20. The error analysis of ship fuel consumption prediction for a whole voyage 1 (In the upper figure, the red line represents the real values of ship fuel 
consumption, while the green line represents the predicted results. In the middle figure, the blue line represents the error rate in the time domain. The bottom figure 
presents the prediction error distributions.). 

Table 7 
Generalization ability evaluation for different global voyages.   

Voyage 1 Voyage 2 Voyage 3 Voyage 4 Voyage 5 Voyage 6 Voyage 7 Voyage 8 

R2 0.84 0.73 0.88 0.71 0.94 0.94 0.92 0.80 
RMSE (L/h) 53.24 38.99 61.02 72.72 29.09 57.33 42.14 86.14 
MAE (L/h) 39.99 28.19 42.54 58.05 19.89 41.50 28.47 59.67 

Average error rate −0.51% 2.64% −2.68% 5.56% 2.53% 1.36% 2.48% −3.59%  

Fig. 21. The comparison of the real and the predicted ship fuel consumption.  
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Fig. 20 highlights that more than 90 % of the prediction errors were 
below 10 %, and the average error for voyage 1 was 0.51%. The eval-
uation metrics R2, RMSE, MAE and the average error rate were used to 
present the differences between the real and the predicted SFC values, 
see Table 7, Fig. 21 and Fig. B1 in Appendix B. The analysis indicated 
that the R2 values range from 0.71 to 0.94. Voyage 2 exhibits the 
smallest MAE at 28.19 L/h, and the RMSE for voyage 2 is also the lowest 
at 38.99 L/h. The average error rate values range from −0.51% to 5.56% 
and, the smallest average error rate of −0.51% is observed in voyage 1, 
see Fig. B1. 

These findings affirm the viability of deploying the trained model as 
an efficient tool for forecasting SFC during comparable voyages. 
Consequently, the application of the trained model holds the potential to 
furnish valuable insights and facilitate efficient fuel management and 
optimization endeavours in real operational conditions. 

4. Future works 

The SFC prediction model presented in this paper may be further 
developed to inform intelligent decision support tools for use in fuel 
efficient shipping operations of new build or retrofitted ships (Lu et al., 
2015; Wang et al., 2021; Vitali et al., 2020). SFC is influenced by various 
interconnected factors, including ship operational conditions, naviga-
tion information, engine performance, and weather conditions (Vinayak 
et al., 2021; Wang et al., 2021). Hence, optimization when the analysis 
accounts for only an individual ship or limited operational factors may 

be hard to achieve (see Section 3.1). It is envisaged that future work 
should aim to (i) determine optimal ship operation commands, (ii) 
identify the optimal routing and (iii) suggest decision support criteria for 
realistic SFC when different green ship technologies are retrofitted or 
introduced at new building stage (see Section 3 and Fig. 22). Within this 
context a multi-objective optimization process could be developed to 
ensure unification of criteria and methods for use in advanced decision 
support systems. 

5. Conclusions 

This paper presented a DLM that may be used for the prediction of 
SFC in real operational conditions. The proposed framework considered 
(1) evaluating the importance of influencing factors and identifying key 
factors that may impact SFC, (2) the training of deep learning neural 
networks to effectively capture the energy system characteristics of ships 
operating in real operational conditions, and (3) long-term shipping 
operations. To validate the method, big data records of two years of 
operation for a Kamsarmax bulk carrier of Laskaridis Shipping Co. Ltd 
were used. Subsequently, a comprehensive comparison with existing 
methods was conducted to demonstrate the effectiveness of the DLM 
using a Bi-LSTM with attention mechanism. A more recent dataset 
encompassing data from 8 international voyages over February to June 
2023 was also employed to assess the generalization potential of the 
model. Key conclusions can be summarised as follows. 

Fig. 22. A flowchart of multi-objective optimization method for ship fuel consumption reduction based on prediction model.  
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• The innovative use of a high frequency data driven method that 
combines DT and Bi-LSTM models with attention mechanism for 
predicting SFC in the time domain is promising.  

• DT methods are valuable in terms of capturing potentially nonlinear 
relationships between influencing factors and SFC. Notwithstanding 
this, it is critical to appreciate that shipping operations may involve 
uncertainties associated with the quality and availability of naviga-
tion data, operational conditions, engine parameters, and other un-
known external factors.  

• A comprehensive comparison of existing methods suggested that, in 
most cases, DLM may outperform traditional machine learning 
methods, see Table 5. The latter could be attributed to the complex 
and nonlinear nature of the relationships of data that can be pro-
cessed by modern methods.  

• The Bi-LSTM model with attention mechanisms stands out as the best 
choice for predicting SFC. This is because it can effectively capture 
ship energy system characteristics, while accounting for real opera-
tional conditions over long term operations, see Fig. 21 and B1 and 
Table 7. 

Leveraging of big data records and DLM may assist with ship voyage 
optimization, fuel savings and emission reductions. This may benefit the 
environment but also contribute to the environmentally sustainable 

operations of new-build vessels or ships retrofitted with green and 
renew-able technologies. 
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Appendix A. Word cloud of 266 parameters of the collected data streams

Fig. A1. Word cloud of 266 parameters of the collected data streams from sea trials.  

Appendix B. The error analysis of ship fuel consumption prediction for 8 whole voyages 
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Fig. B1. The error analysis of ship fuel consumption prediction for 8 whole voyages.  
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and machine learning for ship fuel efficiency modeling: Part I–Voyage report data 
and meteorological data. Communications in Transportation Research 2, 100074. 

Lin, J.C.W., Shao, Y., Zhou, Y., Pirouz, M., Chen, H.C., 2019. A Bi-LSTM mention 
hypergraph model with encoding schema for mention extraction. Eng. Appl. Artif. 
Intell. 85, 175–181. 

Liu, S., Papanikolaou, A., 2020. Regression analysis of experimental data for added 
resistance in waves of arbitrary heading and development of a semi- empirical 
formula. Ocean Eng. 206. 

Liu, S., Shang, B., Papanikolaou, A., Bolbot, V., 2016. Improved formula for estimating 
added resistance of ships in engineering applications. J. Mar. Sci. Appl. 15 (4), 
442–451. 

Liu, Z., Liu, W., Chen, Q., Luo, F., Zhai, S., 2020. Resistance reduction technology 
research of high speed ships based on a new type of bow appendage. Ocean Eng. 206, 
107246. 

Lu, R., Turan, O., Boulougouris, E., Banks, C., Incecik, A., 2015. A semi-empirical ship 
operational performance prediction model for voyage optimization towards energy 
efficient shipping. Ocean Eng. 110, 18–28. 

Luo, S., Ma, N., Hirakawa, Y., 2016. Evaluation of resistance increase and speed loss of a 
ship in wind and waves. J. Ocean Eng. Sci. 1 (3), 212–218. 

!"count(.//sb:host[1]//child::*//sb:date)">Ma, J., Jia, C., Yang, X., Cheng, X., Li, W., 
Zhang, C., . A data-driven approach for collision risk early warning in vessel 
encounter situations using attention-BiLSTM. IEEE Access 8, 188771–188783. 

Ma, J., Xia, D., Wang, Y., Niu, X., Jiang, S., Liu, Z., Guo, H., 2022. A comprehensive 
comparison among metaheuristics (MHs) for geohazard modeling using machine 
learning: insights from a case study of landslide displacement prediction. Eng. Appl. 
Artif. Intell. 114, 105150. 

Min, K.S., Kang, S.H., 2010. Study on the form factor and full-scale ship resistance 
prediction method. J. Mar. Sci. Technol. 15, 108–118. 

Molland, A.F., Turnock, S.R., Hudson, D.A., 2017. Ship Resistance and Propulsion. 
Cambridge university press. 

Papandreou, C., Ziakopoulos, A., 2022. Predicting VLCC fuel consumption with machine 
learning using operationally available sensor data. Ocean Eng. 243, 110321. 

Perner, P., Apte, C., 2004. Empirical evaluation of feature subset selection based on a 
real-world data set. Eng. Appl. Artif. Intell. 17 (3), 285–288. 

Probha, N.A., Hoque, M.S., 2018. A study on transport safety perspectives in Bangladesh 
through comparative analysis of roadway, railway and waterway accidents. In: 
Proceedings of the Asia-Pacific Conference on Intelligent Medical 2018 & 
International Conference on Transportation and Traffic Engineering 2018, 
pp. 81–85. 

Raghavan, B., 2010. Neyman-Pearson and Minimax Cost Complexity Pruning of 
Classification Trees. Purdue University. 

M. Zhang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0952-1976(23)01609-3/sref1
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref1
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref1
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref2
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref2
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref2
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref2
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref3
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref3
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref4
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref4
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref4
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref5
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref6
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref6
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref7
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref7
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref7
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref8
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref8
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref8
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref9
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref9
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref10
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref10
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref11
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref11
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref11
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref12
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref12
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref12
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref13
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref13
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref13
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref14
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref14
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref15
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref15
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref15
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref16
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref16
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref17
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref17
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref18
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref18
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref19
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref19
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref20
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref20
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref21
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref21
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref21
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref22
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref22
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref22
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref23
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref23
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref23
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref24
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref24
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref25
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref25
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref25
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref26
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref26
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref26
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref26
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref27
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref27
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref28
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref28
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref28
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref29
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref29
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref30
https://greenvoyage2050.imo.org/wp-content/uploads/2021/01/GIA-just-in-time-hires.pdf
https://greenvoyage2050.imo.org/wp-content/uploads/2021/01/GIA-just-in-time-hires.pdf
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref32
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref32
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref33
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref33
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref34
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref34
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref35
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref35
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref36
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref36
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref36
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref37
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref37
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref38
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref38
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref38
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref38
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref39
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref39
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref39
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref40
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref40
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref41
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref41
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref42
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref42
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref43
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref43
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref43
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref44
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref44
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref44
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref45
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref46
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref46
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref47
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref47
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref48
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref48
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref49
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref49
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref50
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref50
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref50
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref51
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref51
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref51
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref52
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref52
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref52
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref53
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref53
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref53
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref54
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref54
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref54
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref55
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref55
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref55
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref56
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref56
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref56
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref57
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref57
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref57
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref58
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref58
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref58
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref59
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref59
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref60
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref60
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref60
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref61
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref61
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref61
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref61
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref62
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref62
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref63
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref63
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref64
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref64
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref65
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref65
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref66
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref66
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref66
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref66
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref66
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref67
http://refhub.elsevier.com/S0952-1976(23)01609-3/sref67


Engineering Applications of Artificial Intelligence 130 (2024) 107425

21

Rajagopal, S., Hareesha, K.S., Kundapur, P.P., 2020. Performance analysis of binary and 
multiclass models using azure machine learning. Int. J. Electr. Comput. Eng. 10 (1), 
2088–8708. 

Ranjan, G.S.K., Verma, A.K., Radhika, S., 2019. K-nearest neighbors and grid search cv 
based real time fault monitoring system for industries. In: 2019 IEEE 5th 
International Conference for Convergence in Technology (I2CT). IEEE, pp. 1–5. 

Sadat-Hosseini, H., Wu, P.C., Carrica, P.M., Kim, H., Toda, Y., Stern, F., 2013. CFD 
verification and validation of added resistance and motions of KVLCC2 with fixed 
and free surge in short and long head waves. Ocean Eng. 59, 240–273. 

Sagi, O., Rokach, L., 2021. Approximating XGBoost with an interpretable decision tree. 
Inf. Sci. 572, 522–542. 
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