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Abstract. The aim of this study is to deploy machine learning (ML) classification methods to

detect defective regions in additive manufacturing, colloquially known as 3D printing,

particularly for the laser-based powder bed fusion process. A custom-designed test specimen

composed of 316L was manufactured using EOS M 290 machine. Multinomial logistic

regression (MLR), artificial neural network (ANN), and convolutional neural network (CNN)

classification techniques were applied to train the ML models using optical tomography infrared

images of each additively manufactured layer of test specimen. Based on the trained MLR, ANN,

and CNN classifiers, the ML models predict whether the manufactured layer is standard or

defective, yielding five classes. Defective layers were classified into two classes for lack of

fusion and two classes for keyhole porosity. The supervised approach yielded impeccable

accuracy (>99%) for all three classification methods, however CNN inherited the highest degree
of performance with 100% accuracy for independent test dataset unfamiliar to the model for

unbiased evaluation. The high performance and low cost of computing observed in this work can

have the potential to detect and eliminate defective regions by tuning the processing parameters

in real time resulting in significantly decreased costs, lead-time, and waste. The proposed quality

control can enable mass adoption of additive manufacturing technologies in a vast number of

industries for critical components that are design- and shape- agnostic.

1.  Introduction
Additive manufacturing (AM), colloquially known as 3D printing, is a novel and disruptive mode of

manufacturing that allows creation of parts on a layer-by-layer basis using digital 3D model data [1].
The layer-by-layer mechanism of the additive process enables tool-less production of parts with

unprecedented geometric freedom in one build cycle [2]. Comparatively, the subtractive process
involves selective removal of material via a tool and formative process involves pressurizing a body of

raw material into a mould to obtain a part [3]. In both cases, part-specific tools and moulds favour
economies of scale and limit design freedom. On the other hand, the tool-less layer-by-layer mechanism

is emerging into a general purpose technology akin to computers and dynamos serving a plethora of

applications [4]. AM can be categorized into seven group of technologies [1] depending on the layer-
wise addition and fusion mechanisms of feedstock material. Today, it is used for tooling [2,5],
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prototyping [6,7], and end-use part [8–11] applications in a wide range of industries, e.g., medical,

industrial machines, defence, automotive, and aerospace industries.

More specifically, the laser-based powder bed fusion (PBF-LB) process has been gaining traction
within the industrial landscape to create lightweight metallic parts on demand [4,12] using generative
design, topology optimization, and lattice formation [2,7]. During the PBF-LB process, the impinging

laser energy selectively fuses regions of powder bed [2] to create the intended part on a layer-by-layer
principle. The underlying process dynamics are complex and not fully understood [13]. The process is

inherent to large thermal gradients, heat absorption, local melting and re-solidification of particles, phase

change, plumes, spatter, and Marangoni convection [14]. To mitigate these inherent characteristics, the

parts are manufactured using support structures for heat dissipation and anchoring the parts to the build
platform [10].

Nevertheless, the process is highly sensitive to energy density, i.e., laser power, scan speed, hatch

distance, and layer thickness, which can cause under- or over- heating. A slight deviation from the
thresholded volumetric energy density caused by process and environment uncertainties can induce lack

of fusion and keyhole porosity resulting in structural defects, i.e., porosity, support rupture, warpage,

residual stresses, cracking, balling and geometric defects, in the part [15]. Further, the under- or over-
heating can cause disturbances in powder bed, recoater crashes, and eventually premature failure of
intended parts.

The aim of this study is to create PBF-LB process variation-dependent defective regions on a layer-

by-layer basis and to use three machine learning (ML) methods for detection. This study overcomes the
lack of understanding in the transitional phase of process parameters and temporal thermal fingerprint

emitted during the process. This allows for engineering functional end-use parts by reducing the

uncertainty in passing stringent quality standards and easing the widespread adoption in various
applications in a wide range of precision industries.

2.  Methods

2.1.  Additive manufacturing
The EOS M 290 (EOS Gmbh, Krailling, Germany) machine was used to manufacture a tailor-made test

specimen using the PBF-LB process. The volumetric energy density (VED) function is the critical
independent variable for the design of experiment, which is formulated as follows:

��� =
��

� × � × 	


(1)

where �� is the laser power [W], � is the exposure scan speed [mm/s], � is the hatch distance [mm], and

	
  is the layer thickness [mm]. The design of experiment involving five volumetric energy densities is
shown in Table 1. EOSTATE Exposure optical tomography (OT) monitoring system (EOS Gmbh,

Krailling, Germany), comprising of a scientific complementary metal-oxide-semiconductor (sCMOS)
sensor, was used to capture near-infrared images of each layer. The test specimen was manufactured

using 316L as feedstock powder (Dv(25)=24μm, Dv(50)=37μm, Dv(75)=56μm) at the centre of the build
platform using the EOS 316_SurfaceM291_1.10 parameter set. Argon was used as inert shielding gas.

Table 1 shows the number of OT images as a function of exposure nomenclature for hatch infill adopted

in this study. The test specimen and the segmented exposure strategies are shown in Figure 1. Owing to
such a small selectively melted cross-section region per layer of the build, a minimum exposure time of
18 s was added to ensure the likelihood of a successful print.
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Table 1. Additive manufacturing parameters

Exposure
Nomenclature

Power
[W]

Scan speed
[mm/s]

Hatch
Distance

[mm]

Layer
Thickness

[mm]

Energy Density
[J/mm3]

No. of OT
Images

[-]
�-20% VED 156 1083 0.09 0.02 80.02 249

�-10% VED 175.5 1083 0.09 0.02 90.03 247

Standard VED 195 1083 0.09 0.02 100.03 1248

�+10% VED 214.5 1083 0.09 0.02 110.03 249

�+20% VED 234 1083 0.09 0.02 120.04 247

Figure 1. Dimensions and exposure strategies of the test specimen.

2.2.  Machine learning

2.2.1.  Dataset. The data comprises of 2238 OT images in JPG format after removing the first ten and
the last two OT images owing to the variation in the light emissions. For the first ten layers, the variation

can be caused by for example reduced layer thickness of first layer, reflectivity of the build platform,
and double exposure of the first two layers. For the last two layers, the variation is caused by up-skin

parameters. Each image represents process radiation in the near infrared spectrum of the laser-based

selectively melted layer over the entire build platform. Each image corresponds to the thermal history

of one layer. The original dimension of each image is 2000 x 2000 pixels. After visualizing the dataset,
the insignificant regions of the OT images were removed. Subsequently, each OT image is cropped to

focus on the region of interest resulting in 100 x100 pixels (width x height) and 10000 pixel squared.

Each pixel represents a shade of grey as a 24-bit integer (range 0-255). The number of OT images as a
function of exposure nomenclature are shown in Table 1.

2.2.2.  Features. This study uses deep learning in which features of each OT image can be depicted as a

vector ��   ������ composed of integers, where every i-th entry represents a grayscale value in the

range of 0 to 255. A grayscale value of 0 depicts black and 255 denotes white. Further, OT images were
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mapped with RYB colour model for visualization. To assist the activation function in deep learning, this

range is normalized between 0 and 1 [16]. Each image corresponds to the 100 x 100 tensor format

containing multidimensional feature input. The first 100 entries of the feature vector depict the top row
of each OT image, the second 100 entries denote the second row from top, and similarly the remaining
entries are filled until the bottom-most row with an index of 100. This is the prescribed tensor format

for Tensorflow [16] which is adopted in this work.

2.2.3.  Labels. The label of each datapoint, i.e., each OT image, is a multi-class classification, � 

{0,1,2,3,4} , denoting a �-10% VED layer ��� = 0, a �-20% VED layer ��� = 1, a �+10% VED layer

��� = 2, a �+20% VED layer ��� = 3, and a Standard VED layer ��� = 4. Supervised approach is used to

manually label the datapoints yielding five classes.

2.2.4.  Classification methods. This study adopts three ML classification methods, i.e., multinomial

logistic regression (MLR), artificial neural network (ANN), and convolutional neural network (CNN),
to classify five classes of OT images as shown in Table 1. Open-source Jupyter Notebook (6.4.8, Project

Jupyter) operating on Python (3.9.12, Python Software Foundation) was used to build the architecture

of the ML models using an off-the-shelf mobile workstation.
The MLR applies the parameters of the linear map h(x)=wTx that classifies datapoints, i.e., OT

images, into label value ���. Sparse categorical cross-entropy loss is used to quantify the performance of
the linear map because the five label classes comprise of integers. A dense layer (fully connected layer)

is created with 5 neurons. Softmax is used to transform logits to valid probabilities [16].
The ANN architecture is built on a feedforward neural network that classifies datapoints, i.e., OT

images, into label value ���. In this case, two dense layers, comprising of 2048 and 5 neurons

respectively, are created with rectified linear unit (ReLU) as an activation function. Further, a dropout
layer (regularization layer) is added with a rate of 0.2 to prevent overfitting. The model also uses sparse

categorical cross-entropy as the loss function.

Finally, the CNN architecture adopts a feedforward neural network that classifies datapoints, i.e., OT

images, into label value ���. It consists of a convolutional base, which includes convolutional layers (i.e.,
spatial convolutional over each OT image), and pooling layers (i.e., to produce lower resolution of the

feature map) [17]. Finally, two dense layers, comprising of 64 and 5 neurons respectively, are added to

perform classification using ReLU. Sparse categorical cross-entropy loss is used to quantify the
performance of the network.

2.2.5.  Data splitting. For this supervised approach, OT images were manually sorted into five classes,
�  {0,1,2,3,4}, as shown in Table 1. The dataset is randomly split in a manner that represents 70%

for training the ML models and 20% for validating them. This means 1571 OT images are used to train

the ML models and 442 OT images are used for validating. The remaining 10% of the dataset were used

for testing the ML models. The five classes were split identically, representing similar percentages. This
training, validation, and testing ratio is within the range suggested by empirical studies obtaining the

optimal results [18].

3.  Results and discussion

The additively manufactured test specimen with segmented exposure strategies according to Figure 1 is
shown in Figure 2. When observed closely, the segmentation regions are visible on the surface of the

manufactured test specimen. A highlight of processed OT image for each VED is shown in Figure 3.
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Figure 2. Additively manufactured test

specimen (316L) with segmented exposure

strategies.

Figure 3. A processed OT image for a) �-20%,

b) �-10%, c) Standard, d) �+10%, and e)

�+20% VED layers.

The accuracy and loss functions of MLR, ANN, and CNN are shown in Figure 4. The MLR model was

able to obtain a 100% training and validation accuracy at the 57th epoch with loss values of 0.026 and

0.035 respectively. Comparatively, the CNN model was able to achieve 100% training and validation
accuracy at the 5th epoch with loss of 0.007 and 0.004. On the other hand, the ANN model was not able

to converge training and validation accuracy to a value of 100%. In this case, the highest values observed

were 96% for training and 98% for validation with 0.146 and 0.081 as loss values. As depicted in Figure
5, the CNN model was able to train and validate the model 42% faster than MLR and 66% faster than

ANN.
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a) b)

c) d)

e) f)

Figure 4. Accuracy as a function of epoch for a) MLR, c) ANN, and e) CNN, and results of loss
function with respect to epoch for b) MLR, d) ANN, and f) CNN.

Figure 5. Training and validation performance of the ML models.



NOLAMP- Nordic Laser Materials Processing Conference (19TH-NOLAMP-2023)
IOP Conf. Series: Materials Science and Engineering 1296  (2023) 012013

IOP Publishing
doi:10.1088/1757-899X/1296/1/012013

7

Confusion matrices of each ML classification method for test dataset are shown in Figure 6. As observed

from Figure 6a and 6c, the MLR and CNN models yielded impeccable accuracy of 100% for evaluating

the test dataset. Considering that the test dataset was not used for training nor validating the ML models,
this is a remarkable outcome. The loss values for MLR and CNN were 0.023 and 0.002 respectively. In
contrast, the ANN model yielded 99.6% accuracy for the test dataset with a loss value of 0.082. As

observed from Figure 6b, the ANN model predicted one �+10% (Pos-10) VED layer as Standard VED
layer. The testing performance of each ML model is denoted in Figure 7.

a) b)

c)

Figure 6. Confusion matrix of a) MLR, b) ANN, and c) CNN models for test dataset.



NOLAMP- Nordic Laser Materials Processing Conference (19TH-NOLAMP-2023)
IOP Conf. Series: Materials Science and Engineering 1296  (2023) 012013

IOP Publishing
doi:10.1088/1757-899X/1296/1/012013

8

Figure 7. Testing performance of the ML models.

Extant literature has identified that a slight deviation from the thresholded VED can induce structural

defects in the part [13,19–22]. This is also evidenced in this study as shown in Figure 8, which includes
micrographs of polished cross-section with a magnification of 3.15x, highlight of OT images and their

mean gray values as a function of each exposure strategy (Figure 1) in the build direction (Z-height).

Figure 8. Micrograph (3.15x), OT image, and mean gray values of each exposure strategy in the build

direction of the test specimen.
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This study created defective regions using build parameter manipulation that are concomitant to lack of

fusion and keyhole porosity. Two classes of keyhole porosity were created by an increase in Standard

VED by 10% (Figure 8ii) and 20% (Figure 8iv). Similarly, two classes of lack of fusion were created by
a reduction in Standard VED by 10% (Figure 8vi) and 20% (Figure 8viii). Generally, the micrographs
presented in Figure 8 yielded higher defect percentage for deviated VED compared to the preceding

Standard VED. The �-20% VED yielded the highest defect percentage of 0.24% compared to the
average Standard VED defect percentage of 0.096% observed in this study. Additional samples

representing a statistically sound dataset should be collected for conclusive outcome. Compared to the

literature [13,22–24], this study develops and evaluates the accuracy and performance of three ML

classification methods for detecting four defective classes and one standard class. The outcome confirms
high performance (up to 100% accuracy) for training, validation, and test datasets. No indications of
over- or under- fitting were observed because the validation error was similar to the training error. The

high speed of detection (within 100s of millisecond for test dataset of 225 OT images) observed in this
study enables opportunities to detect defective regions in real time and even compensate them in the

current or subsequent layers by tuning the VED using a closed feedback loop. Considering such a high

performance outcome for detecting layer-based defective regions with conventional computing power,
this study opens opportunities to detect multiple vector-based defective regions in real-time for future
work. Future studies should focus on further destructive and non-destructive testing for verifying the

degree of defect generation and compensation also considering the degree of self-healing phenomena.

4.  Conclusion
Additive manufacturing is shifting towards general-purpose manufacturing technology analogous to

dynamos and computers that offer a vast number of applications in a wide range of industries. However,
uncertainty in passing stringent quality standards hinders its adoption. To assist this transition, this study

leverages the layer-by-layer mechanism of PBF-LB to develop three ML classification methods to detect

defective regions inside the parts. A tailor-made test specimen is additively manufactured with five

segmented exposure strategies emulating defective regions composed of two classes of lack of fusion
and two classes of keyhole porosity. The artificial intelligence-based classifiers yielded flawless

accuracy (up to 100% accuracy for MLR and CNN) for classifying OT images of each exposure strategy
composed of independent test dataset for unbiased evaluation metrics. The high performance and low
cost of computing of this layer-based approach opens a direction for detecting and compensating scan-

based anomalies in real time for shifting the paradigm of uncertainty in quality of additively

manufactured parts.
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