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The type-II Weyl and type-II Dirac points emerge in semimetals and also in relativistic systems.
In particular, the type-II Weyl fermions may emerge behind the event horizon of black holes. In
this case the horizon with Painlev�e-Gullstrand metric serves as the surface of the Lifshitz transition.
This relativistic analogy allows us to simulate the black hole horizon and Hawking radiation using
the fermionic super
uid with supercritical velocity, and the Dirac and Weyl semimetals with the
interface separating the type-I and type-II states. The di�erence between such type of the arti�cial
event horizon and that which arises in acoustic metric is discussed. At the Lifshitz transition
between type-I and type-II fermions the Dirac lines may also emerge, which are supported by the
combined action of topology and symmetry. The type-II Weyl and Dirac points also emerge as
the intermediate states of the topological Lifshitz transitions. Di�erent con�gurations of the Fermi
surfaces, involved in such Lifshitz transition, are discussed. In one case the type-II Weyl point
connects the Fermi pockets, and the Lifshitz transition corresponds to the transfer of the Berry 
ux
between the Fermi pockets. In the other case the type-II Weyl point connects the outer and inner
Fermi surfaces. At the Lifshitz transition the Weyl point is released from both Fermi surfaces. They
loose their Berry 
ux, which guarantees the global stability, and without the topological support the
inner surface disappears after shrinking to a point at the second Lifshitz transition. These examples
reveal the complexity and universality of topological Lifshitz transitions, which originate from the
ubiquitous interplay of a variety of topological characters of the momentum-space manifolds. For the
interacting electrons, the Lifshitz transitions may lead to the formation of the dispersionless (
at)
band with zero energy and singular density of states, which opens the route to room-temperature
superconductivity. Originally the idea of the ehancement of Tc due to 
at band has been put forward
by the nuclear physics community, and this also demonstrates the close connections between di�erent
areas of physics.

PACS numbers:

I. INTRODUCTION

Massless Weyl fermions1 are the building blocks of Standard Model. In the chiral gauge theory of weak interactions,
the fundamental elementary particles are Weyl fermions with a pronounced asymmetry between the SU(2) doublet
of left-handed Weyl fermions and the SU(2) singlet of right-handed Weyl ferrmions. The masslessness of the Weyl
fermions is topologically protected.2 The corresponding topological invariant { the Chern number { has values N3 = �1
and N3 = +1 for the left and right particles respectively.3 The gapless Weyl fermions are at the origin of the
anomalies in quantum �eld theories, such as chiral anomaly, and the coresponding symmetry protected Chern numbers
characterize the anomalous action.3 The Dirac particles, which emerge below the symmetry breaking electroweak
transition, are the composite objects obtained by the doublet-singlet mixing of Weyl fermions with opposite chirality.
The topological invariants N3 = �1 of left and right Weyl fermions cancel each other, and without the topological
and symmetry protection the Dirac particles become massive.

The areal of Weyl fermions is not restricted by the Standard Model of elementary particle physics in general.
Investigations in condensed matter reveal abundant and novel physics originating from the Weyl fermionic excitations,
that live in the vicinity of the topologically protected touching point of two bands.4,5 Such diabolical (conical)
point represents the monopole in the Berry phase 
ux,6,7 and it is described by the same momentum-space Chern
number N3.3 Weyl fermionic excitations are known to exist in the chiral super
uid 3He-A, where the related e�ects
{ chiral anomaly3,8 and chiral magnetic e�ect9,10 { have been experimentally observed, and in electronic topological
semimetals.11{22 The Weyl points supported by the higher values of the Chern number, jN3j > 1, are also possible.23

In this case instead of the conical point with linear spectrum of fermions, one has the higher order band touching
point, when for example the spectrum is linear in one direction and quadratic in the other directions.3 These are the
so-called semi-Dirac or semi-Weyl semimetals.24,25

Recently the attention is attracted to the so-called type-II Weyl points.26{32 A remarkable property of this type of
Weyl point is that it is the node of co-dimension 3 in the 3D momentum space, which is accompanied by the nodes of
the co-dimension less than three: the nodes of co-dimension 1 (Fermi surfaces) or nodes of co-dimension 2 (Dirac lines).
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The transition between the type I and type II Weyl points is the quantum phase transition, while the symmetry does
not necessarily change at this transition. The quantum phase transitions with the rearrangement of the topology of
the energy spectrum, at which the symmetry remains the same, are called Lifshitz transitions. Originally I.M. Lifshitz
introduced the topological transitions in metals, at which the connectedness of the Fermi surface changes.33 Many
new types of Lifshitz transition become possible, where the topologically protected nodes of other co-dimensions are
involved.34. There is a variety of topological numbers, which characterize the momentum space manifolds of zeroes.
Together with the geometry of the shapes of the manifolds, this makes the Lifshitz transitions widespread in fermionic
system.

In relativistic theories there are several scenarios of emerging of the type-II Weyl points. In particular, the transition
from the type-I to the type-II Weyl points occurs at the black hole event horizon.3,35 The type II Weyl point may
also emerge as the intermediate state of the topological Lifshitz transition, at which the Fermi surfaces exchange
their global topological charge N3.36,37 This Weyl point also naturally appears if the relativistic Weyl fermions are
not fundamental, but emerge in the low energy sector of the fermionic quantum vacuum, for example, in the vacuum
of the real (Majorana) fermions.38 These scenarios will be discussed here in connection to the topological materials.
Some of these considerations suggest that the inhomogeneous Weyl semimetal can serve as a platform for simulating
the black hole with stationary metric and Hawking radiation before the equilibrium is reached. Situations when the
topological invariants are transported between the Fermi surfaces through type II Weyl point will be considered.

The plan of rest of the paper is as follows. Sec. II describes the transformation of the type I to type II Weyl fermions
through the intermediate Dirac line. Such transition may occur not only in semimteals, but also in chiral super
uid,
where the transition is regulated by super
ow due to Doppler e�ect experienced by Weyl excitations. The symmetry
protected topological number of Dirac line appearing at Lifshithz transition is discussed. In Sec. III, we consider
the behavior of the spectrum of Weyl fermions across the event horizon using the Painlev�e-Gullstrand space-time.
Behind the horizon the Weyl fermions with type II spectrum emerge. The Fermi surfaces, which touch each other at
the type-II Weyl point, become closed when the Planck scale physics is involved. Simulation of the event horizon and
Hawking radiation in Weyl and Dirac semimetals is dicussed. In Sec. IV we consider Lifshitz transitions, which are
governed by the interplay of di�erent topological invariants, on example of the transfer of global topological invariants
between the Fermi surfaces. In Sec. V the formation of the 
at band in the vicinity of the topological transtion is
considered. Finally in Sec. VI we review our results and discuss some open questions, in particular in relation to the
possibility of room-temperature superconductivity in exotic topological materials.

II. DIRAC LINE AT THE TRANSITION BETWEEN TYPE-I AND TYPE-II WEYL POINTS

A particular example of emergence of the type-II Weyl fermions in relativistic theories is when the relativistic
Weyl fermions are not fundamental, but represent the fermionic excitations in the low energy sector of the fermionic
quantum vacuum.3,39,40 The type-I and type-II Weyl fermions may emerge, for example, in the vacuum of the real
(Majorana) fermions.38 The general form of the relativistic Hamiltonian for the emergent Weyl fermions is obtained
by the linear expansion in the vicinity of the topologically protected Weyl point p(0) with Chern number N3 = �1:

H = ej
k(pj � p(0)

j )�̂k + ej
0(pj � p(0)

j ) : (1)

This expansion suggests that the position p(0) of the Weyl point, when it depends on coordinates, serves as the U(1)
gauge �eld, A(r; t) � p(0)(r; t), acting on relativistic fermions. The parameters ej

k(r; t) and ej
0(r; t) play the role of

the emergent tetrad �elds, describing the gravity experienced by Weyl fermions.
The energy spectrum of the Weyl fermions depends on the ratio between the two terms in the rhs of Eq.(1 ), i.e.

on the parameter jej
0[e�1]kj j.38 When jej

0[e�1]kj j < 1 one has the conventional Weyl point. The Weyl cone is tilted,
if ej

0 6= 0. At jej
0[e�1]kj j > 1 the cone is overtilted, and two Fermi surfaces appear, which touch each other at the

Weyl point. In condensed matter this regime is called the type-II Weyl, as distinct from the conventional Weyl point,
which is called type-I.26 The Lifshitz transition between the two regimes occurs at jej

0[e�1]kj j = 1. In the relativistic
regime, the spectrum of Weyl fermions at the transition contains zeroes of co-dimension 2 { the Dirac line. In general,
the existence of the nodal lines requires the special symmetry: they are protected by topology in combination with
symmetry.

There are indications that in some materials the maximum of the superconducting transition temperature occurs
just in the vicinity of the Lifshitz transitions (see also Sec. V). In particular, the enhancement of Tc at the type-I to-
type-II topological transition in Weyl semimetals has been discussed in Ref.41.
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A. Relativistic system

To reveal properties of this Lifshits transition, let us start with considering the topological charge of the nodal line
using a simple choice of the tetrads for the relativistic Weyl fermions in the gravitational �eld:

H = c� � p̂ � fcpz : (2)

For f 6= 0 the Weyl cone is tilted, and for f > 1 the type-II Weyl point takes place when the titled Weyl cone crosses
zero energy. At the boundary between the two regimes, with f = 1, the Hamiltonian has the form

H =
�

0 c(px + ipy)
c(px � ipy) �2cpz

�
; (3)

and the energy spectrum has the nodal line on the pz-axis, i.e. E(p? = 0; pz) = 0 for all pz. We consider several
approaches to characterize stability of the nodal Dirac lines in relativistic systems, which could be extended to
condensed matter systems.

In the �rst approach we take into account that the matrix in Eq.(3) belongs to the class of the 2n � 2n matrices of
the type:

H =
�

0 B(p)
B+(p) C(p)

�
; (4)

and the topological properties of the considered nodes in the spectrum are characteristics of this class. Of course, it
is di�cult to expect such matrices in real physical systems, except for the case of n = 1, which naturally emerges at
Lifshitz transition. But it is instructive to consider the general n case. The determinant of such matrix is the product
of the determinants of matrices B and B+:

D(H) = �D(B)D�(B) : (5)

The nodal lines { zeroes of co-dimension 2 { are zeroes of D(B) and are described by the winding number of the phase
� of the determinant D(B) = jD(B)jei�:

N2 =
I

C

dl
2�i

D�1(B)@lD(B) = tr
I

C

dl
2�i

B�1(p)@lB(p) ; (6)

where C is the closed loop in momentum space around the line. The line in momentum space with the non-zero
winding number of the phase � is the momentum-space analog of the vortex line in super
uids and superconductors,
which is characterized by the winding number of the phase of the order parameter.

For the particular case of 2 � 2 matrix in Eq.(3), where D(B) = B = c(pX + ipy), the invariant can be written as

N2 = tr
I

C

dl
4�i

� [�zH�1
f=1(p)@lHf=1(p)] ; (7)

where the Dirac line corresponds to the pz-axis.
The form (7) of invariant N2 is somewhat counterintuitive, since the integral of this type represents the true

integer-valued invariant only if �z commutes or anticommutes with the Hamiltonian. The latter does not happen
here, nevertheless the integral is stiil integer-valued, which can be shown in a straightforward way. For pz = 0 the
Hamiltonian anticommutes with �z, and the integral is the well de�ned topological invariant with N2 = 1 for any
f . At pz 6= 0 the Hamiltonian does not anticommute with �z . However, Eq.(7) remains integer for the general pz if
f = 1.

To see that we apply the second approach. Let us consider pz as parameter and the arbitrary loops around the line
p? = 0 with �xed pz. Taking into account that

H�1(f = 1) =
1

p2
?

(c� � p̂ + cpz) ; (8)

one obtains that the variation of N2 over pz is zero:

dN2(pz)
dpz

= 0 ; N2(pz) = tr
I

C(pz)

dl
4�i

� [�zH�1
f=1(p?; pz)@lHf=1(p?; pz)] : (9)
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FIG. 1: Type-I and type-II Weyl points (black dots) across the Lifshitz transition. When the super
uid velocity
exceeds the pair-breaking velocity("speed of light"), the type-I Weyl points in the original chiral super
uid are converted to the
type-II Weyl points. The process of this Lifshitz transition is shown for Eq.(12) describing quasiparticles in the chiral super
uid
3He-A in the presence of super
uid current with velocity v = vx̂. Green arrows depict the vector con�gurations in the py = 0
plane of the momentum space monopole located at Weyl points.
(top left): Two original type-I Weyl points at v < c.
(top right): At the critical speed v = c, two Dirac lines are formed, by which two Weyl points are connected. The red and blue
lines correspond to the Dirac nodes in the hole and particle spectrum of Eq.(12) respectively.
(bottom): Particle and hole Fermi pockets connected via the type-II Weyl points appear when v > c.

Thus the integral N2(pz) = 1 for any pz at f = 1.
Finally, the stability of the vortex line in momentum space can be understood through consideration in terms of

the determinant of the Hamiltonian matrix, i.e. D(H), in a way somewhat similar to that in Ref.42

D(H) = c2p2
z(f2 � 1) � c2p2

? : (10)

D(H) is nonzero for 0 < f < 1, is zero on line at f = 1, and has zeros on the conical Fermi surface at f > 1. For f = 1
one can de�ne the generalized root q(H) of det H { a polynomial function of the matrix elements of the Hamiltonian
{ in such a way that jq(H)j2 = jD(H)j. So q(H) is our D(B) in Eq.(5). The corresponding polinomial is

q(Hf=1) = D(B) = c(px + ipy) : (11)

It has zero on the line p? = 0 which is protected by 2� winding of the phase of q around the line. This gives rise
to the topologically stable zero in the determinant D(H) and thus to topologically stable zero in the quasiparticle
spectrum. For f 6= 1, the integral Eq.(7) depends on pz and on the radius of the closed loop C.
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B. Chiral super
uid

It should be pointed out that the Dirac line emerges for the relativistic fermions mainly due to the Lorentz invariance
of the linear spectrum. In principle, the nodal line may disappear when the higher order nonrelativistic corrections are
taken into account, such as the Planckian quadratic term of momentum discussed in Sec.III A, if there is no additional
symmetry, which could support the stability of the nodal line. The nonlinear terms are natural in condensed matter
systems, and we consider the energence of the Dirac line at Lifshitz transition, which can be realized in chiral super
uid
system, such as super
uid 3He-A. The simple model Hamiltonian with the Dirac lines existing at Lifshitz transition
is:

H = pxv + �3
p2 � p2

F
2m

+ �1cpx + �2cpy : (12)

Here the Weyl points are in positions �pF ẑ; the super
uid velocity with respect to the heat bath v = vx̂ is transverse
to the direction towards the Weyl points. The �rst term in the rhs of Eq. (12) comes from the Doppler shift produced
by super
ow;3 �i are the Pauli matrices in the Bogoliubov-Nambu space; in 3He-A vF = pF =m � c. Here c is the
maximum speed of quasiparticle propagating in the plane (px; py) in vicinity of the Weyl points, where the spectrum
is relativistic in the linear expansion of the Hamiltonian.

The transition between the type-I Weyl fermions and the type-II Weyl fermions tales place, when the 
ow velocity
v reaches the "speed of light" c, see Fig. 1. For v < c there are two Weyl points at p(0) = �pF ẑ with opposite
topological charges N3 = �1, and thus with opposite chiralities of the relativistic Weyl fermions living near the Weyl
points, Fig. 1 (top left). At v > c there are two banana shape particle and hole Fermi surfaces, which contact each
other at the type-II Weyl points, see Fig. 1 (bottom). Exactly at the Lifshitz transition, at v = c, one has Dirac lines,
which connect the Weyl points in Fig. 1 (top right). At v = c the matrix Hamiltonian belongs to the class of matrices
in Eq.(4). The corresponding determinant D(B) describing the topology of the line at f = 1 in Eq.(5) is:

D(B) =
p2 � p2

F
2m

+ icpy : (13)

It has the topologically protected lines of zeroes at py = 0, p2
x + p2

z = p2
F in Fig. 1(b). These are the vortex lines

in momentum space with the winding numbers N2 = �1 of the phase of the determinant D(B) in Eq.(6), where the
contour C is along closed loop surrounding the Dirac lines.

C. Lifshitz transition with crossing of Dirac lines and Hopf linking

This type of transtion can be seen on example of the modi�cation of the model describing the rhombohedral
graphite43, with

B = (px + ipy)
�
px + ipy + t+eipza + t�e�ipza�

: (14)

This model has two nodal lines { the straight one along the z direction and the spiral around the straight one. Due
to the lattice periodicity originating from the layers type construction along z direction, the spectrum of quasiparticle
along pz direction can be described in terms of the one dimensional Brillouin zone. As a result the nodes in the
spectrum are the closed loops. From the viewpoint of knot theory, these two nodal lines form a Hopf link { the
simplest nontrivial link consisting of two unknots.44. The Hopf link with t+ > t� is the mirror image of the one
with t+ < t�, and these two con�gurations cannot be connected with combination of Reidemeister moves.44 This
means that they are not ambient isotopic, and the may transform to each other only via the special type of Lifshitz
transition, which in our case occurs at t+ = t�. To characterize the di�erence between these kinds of two Hopf linked
nodal lines, we assign a �xed direction and calculate the linking number via Nl = (

P
p �p)=2, where p is the crossing

in the diagram of Hopf link of nobal lines, and �p is the sign of the oriented crossing.44 From Fig.(2), we can �nd that
Nl = 1 for t+ > t�, while Nl = �1 for t+ < t� respectively.

On other examples of knotted nodal lines see e.g. in Ref.45.

III. TRANSITION BETWEEN TYPE-I AND TYPE-II DIRAC/WEYL VACUA AND EVENT HORIZON

The section II B demonstrated the scenario of Lifshitz transition between type-I and type-II Weyl points, when
the 
ow velocity of the chiral super
uid liquid exceeds the \light speed" of an emergent Weyl quasiparticles. In Sec.
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(a) + � (b) + = � (c) + < t�

FIG. 2: Topological Lifshitz transition of Hopf linked nodal lines. (a) Hopf link with linking number Nl = 1. (b)
Lifshitz transition. (c) Hopf link with linking number Nl = �1.(a) and (c) are not ambient isotopic so that are topologically
distinguished.

III A we shall see that analagous transition occurs for the relativistic fermions when the event horizon of the black
hole is crossed and the frame drag velocity exceeds the speed of light. This analogy suggests a route for simulation
of an event horizon in inhomogeneous condensed matter systems, which is accompanied by the analog of Hawking
radiation. This will be discussed in Sec. III B.

A. Type-II Weyl fermions behind the black hole horizon

In general relativity the convenient stationary metric for the black hole both outside and inside the horizon is
provided in the Painlev�e-Gullstrand spacetime46 with the line element:

ds2 = �c2dt2 + (dr � vdt)2 = �(c2 � v2)dt2 � 2vdrdt + dr2 : (15)

This is stationary but not static metric, which is expressed in terms of the velocity �eld v(r) describing the frame
drag in the gravitational �eld. The Painlev�e-Gullstrand is equivalent to the so-called acoustic metric,47{49 where v(r)
is the velocity of the normal or super
uid liquid.

For the spherical black hole the frame drag velocity �eld (the velocity of the free-falling observer) is radial:

v(r) = �r̂c
r

rh

r
; rh =

2MG
c2 : (16)

Here M is the mass of the black hole; rh is the radius of the horizon; G is the Newton gravitational constant. The
minus sign in Eq.(16) gives the metric in case of the black hole, while the plus sign would characterize the gravity of
a white hole.

Let’s us consider a Weyl particle in the Painlev�e-Gullstrand space-time. The tetrad �eld corresponding to the
metric in Eq.(15) has the form:50

ej
k = c�j

k and ej
0 = vj ; (17)

which leads to the following Hamitonian:

H = �c� � p � prv(r) +
c2p2

EUV
; v(r) = c

r
rh

r
: (18)
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Here the plus and minus signs correspond to the right handed and left handed fermions respectively; pr is the radial
momentum of fermions. The second term in the rhs of (18) is the Doppler shift p � v(r) caused by the frame drag
velocity (compare with Eq.(12) for chiral super
uid).

The third term in Eq.(18) is the added nonlinear dispersion to take into account the Planckian physics, which
becomes important inside the horizon. The parameter EUV in the third term is the ultraviolet (UV) energy scale,
at which the Lorentz invariance is violated. The UV scale is typically associated with but does not necessarily
correspond to the Planck energy scale.51,52 For the interacting fermions such term can arise in e�ective Hamiltonian
H = G�1(! = 0; p) even without violation of Lorentz invariance on the fundamental level:53 the Green’s function
G(!; p) may still be relativistic invariant, while the Lorentz invariance of the Hamiltonian is violated due to the
existence of the heat bath reference frame. In this case the UV scale is below the Planck scale.

In Fig. 3, we present the Fermi surfaces, which appear behind the horizon at di�erent positions r < rh. Behind
the black hole horizon, the Weyl point in the spectrum transforms to the pair of the closed Fermi surfaces with the
touching point: the type-II Weyl point. The p2 term in Eq.(18) makes the Fermi surfaces attached to the type-II
Weyl point closed, while it provides only a small correction when cp � EUV. The latter is valid if the spectrum inside
the black hole is considered in the vicinity of the horizon, where rh � r � rh, see Fig. 3, at positions r = 0:95rh
and r = 0:9rh. Similar o the situation in section II, near the horizon the Dirac(Weyl) cone is tilted, and behind the
horizon it crosses zero energy and forms the Fermi surfaces corresponding to the type-II Weyl points. But there is
no Dirac line at the horizon, where Lifshitz transition occurs: as we mentioned in section II B this is because of the
quadratic term, which violates the Lorentz invariance. Instead, the Fermi pockets start to grow from the Weyl point
with jprj < pUV(v(r) � c)=c � pUV, when the horizon is crossed.

In the full equilibrium the Fermi pockets must be occupied by particles and "holes". One of the mechanisms of the
�lling of the Fermi pockets in the process of equilibration will be observed by external observer as Hawking radiation.3
The Hawking temperature is determined by e�ective gravitational �eld at the horizon:

TH =
~
2�

�
dv
dr

�

r=rh

(19)

If the Hawking radiation is the dominating process of the black hole evaporation, the lifetime of the black hole is
astronomical. However, the other much faster mechanisms involving the trans-Planckian physics are not excluded.

B. Arti�cial black hole and Hawking radiation from Lifshitz transition

Based on the discussion in Sections II B and III A, one can suggest a new route through which the black hole horizon
and ergosurface can be simulated using the inhomogeneous condensed systems with emergent type-I and type-II Wely
fermions. The interface which separates the regions of type-I and type-II Weyl points may serve as the event horizon,
on which the Lifshitz transition takes place. In general case, such an arti�cial horizon may have the shape di�erent
from the spherical surface. The shape of the horizon is not important if we are interested in the local temperature of
Hawking radiation, which is determined by the local e�ective gravity at the horizon.

Let us consider the completely 
at arti�cial event horizon on example of Eq.(2). We assume that the parameter f
depends on z, and f(z) crosses unity at z = zhor. The plane z = zhor separates the region with type-I Weyl fermions
(f(z) < 1) from the region with type-II Weyl fermions (f(z) > 1). This plane corresponds to the event horizon,
while the ergoplane can be obtained for the other orientations of the plane with respect to the axis z (review on
arti�cial horizons and ergoregions in acoustic metric see in Ref. 54). Fig. 4 demonstrates the Weyl cones in the
energy-momentum space (bottom) and the analogues of the light cone (top) for quasiparticles on two sides of the event
horizon. Behind the horizon the Weyl cone is overtilted so that the upper cone crosses the zero energy level, and
the Fermi surfaces (Fermi pockets) are formed, which are connected by the type-II Weyl point. Correspondingly the
future light cone is overtilted behind the horizon so that all the paths fall further into the black hole region.

The �lling of the originally empty states inside the Fermi surfaces causes the Hawking radiation. For the 
at horizon
the Hawking temperature determined by the e�ective gravitational �eld at the horizon is:

TH =
~c
2�

�
df
dz

�

z=zhor

(20)

Note that in the Weyl semimetals the mechanism of formation of the arti�cial event horizon (and its behavior
after formation) is di�erent from the traditional mechanism, which is based on the supercritical 
ow of the liquid or
Bose-super
uids.3,47,48,54 In the latter case the e�ective metric (the so-called acoustic metric) is produced by the 
ow
of the liquid and thus represents the non-static state. Due to the dissipation (caused, say, by the analogue of Hawking
radiation) the 
ow relaxes and reaches the sub-critical level, below which the horizon disappears. On the contrary,
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FIG. 3: Type II Weyl point behind the Black hole event horizon. Contours of Fermi surfaces attached to the type-II
Weyl fermions of Standard Model at di�erent radial positions r inside the black hole horizon. Here pr is the radial component
of the momentum p; p? =

p
p2 � p2

r and p0 = ~=rh, where rh is the radius of spherical black holes. The contours with pr > 0
correspond to the Fermi pockets of particles, and those with pr < 0 are the hole Fermi pockets (Fermi surfaces of anti-particles).
For each position r only one of the two Fermi surfaces is shown. The process of the �lling of particle and hole Fermi pockets
inside the horizon is observed as the Hawking radiation outside the horizon.3

in semimetals the tilting of the Weyl cone occurs without the 
ow of the electronic liquid, and thus the state with
the horizon is fully static. The dissipation after the formation of the horizon (caused, say, by analogue of Hawking
radiation) leads to the �lling of the electron and hole Fermi pockets. After the Fermi pockets are fully occupied
the �nal state is reached, but it still contains the event horizon, though the Hawking radiation is absent. Similar
mechanism takes place in the fermionic super
uids, such as super
uid 3He, where depending on the parameters of
the system the 
ow may or may not remain supercritical after the Fermi pockets are occupied, see Fig. 26.1 in Ref.3.

IV. LIFSHITZ TRANSITIONS WITH TYPE-II WEYL AND DIRAC POINTS AT THE TRANSITION

As we mentioned in Sec. I, with the multiplicity of topological invariants for the manifolds of nodes in the fermionic
spectrum, Lifshitz transitions become diverse and complex. This can be seen on examples of the Lifshitz transitions
with the reconstruction of the Fermi surfaces, where several topological invariants may interplay. In Sec. II and Sec.
III we discussed how the Dirac lines and Fermi surfaces emerge in the Lifshitz transition between two types of the
Weyl point. Here we discuss the opposite case, when the type-II Weyl and type-II Dirac points emerge during the
Fermi surface Lifshitz transitions. By the type-II Weyl point the topological invariant N3 is transported between the
Fermi surfaces.

In general, topological invariants which are involved in the complex topological Lifsihitz transitions are: (i) the
invariant N1, which is responsible for the local stability of the Fermi surface;3 (ii) the invariant N3, which is the global
invariant describing the closed Fermi surface: when the Fermi surfaces collapse to a point, it becomes the type-I Weyl
point with the topological charge N3; and (iii) the N2 invariant in Eq.(7) which characterizes the Dirac line. All three
topological invariants are involved in the complex Lifshitz transition. For Fermi surfaces with non-vanishing N3, there
is the type-II point attached to the Fermi surfaces at the critical point of Lifshitz transition. This type-II point has
also the nontrivial N2, with the contour C chosen as the in�nitesimal loop around the cone, see also reference [22].27

This is the consequence of the � Berry phase along the in�nitesimal loop around the Weyl point. And of course, the
invariant N1 supports the local stability of the Fermi surface and does not allow to make a hole in the Fermi surface
and disrupt it.
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Here, we present three models, each with its own characterstics, which exhibit complex topological Lifshitz transition
induced by the interplay between N1, N3 and N2 invariants.

A. Lifshitz transitions via marginal Dirac point

Fig. 5 demonstrates the Lifshitz transition, where the intermediate state represents the type-II Dirac point. Such
transition has been discussed in relativistic theory with the CPT-violating perturbation.36,37 The corresponding

z < zhor z > zhorz = zhor

FIG. 4: Weyl cone and light cone of arti�cial black hole. The arti�cial event horizon can be simulated in Weyl semimetals
using the interface between type-I Weyl material (z > zhor) and type-II Weyl material (z < zhor). With decreasing z, the Weyl
cones (lower row) and the corresponding "light cones" for Weyl quasiparticle (upper row) are gradually titled. In the upper
row the light cone is overtilted behind the horizon, so that quasiparticle can move only away from the horizon into the black
hole region. The lower row demonstrates the process of Lifshitz transition at the horizon. Behind the horizon the Weyl cone
is overtilted and two Fermi surfaces appear (red lines correspond to zero energy), connected by type-II Weyl point. Filling of
the Fermi surfaces by particles and holes behind the horizon corresponds to the Hawking radiation, if the electrons and holes
come from the region outside the horizon. The process of tunneling of quasiparticles from outside the horizon to inside the
horizon55,56 is seen as Hawking radiation with temperature in Eq.(19) for the black hole or by Eq.(20) for the 
at horizon.
After the particle and hole states in the Fermi surfaces are fully occupied, the Hawking radiation stops. While in the black
hole the shapes of the horizon and ergosurface are determined by Einstein equations, in semimetals they can be designed.
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