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We propose a single-photon-by-single-photon all-optical switch concept based on interference-localized states
on lattices and their delocalization by interaction. In its “open” operation, the switch stops single photons
while allows photon pairs to pass the switch. Alternatively, in the “closed” operation, the switch geometrically
separates single-photon and two-photon states. We demonstrate the concept using a three-site Stub unit cell and
the diamond chain. The systems are modeled by Bose-Hubbard Hamiltonians, and the dynamics is solved by
exact diagonalization with Lindblad master equation. We discuss realization of the switch using photonic lattices
with nonlinearities, superconductive qubit arrays, and ultracold atoms. We show that the switch allows arbitrary
“ON”/“OFF” contrast while achieving picosecond switching time at the single-photon switching energy with

contemporary photonic materials.
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I. INTRODUCTION

All-optical devices have the potential to change data trans-
mission and processing, having faster speeds and lower power
consumption compared to their electronic counterparts [1-3].
The switch is an essential component that allows the control
and the manipulation of signals in circuits, representing a
logical AND gate, namely allowing a signal to pass only if
a control signal is present. The implementation of all-optical
switches can lead to the development of integrated and com-
pact circuits [4].

Performing switching of light with only a single control
photon allows operation at minimal energy, but it requires
strong photon-photon interaction, a long-standing goal of
quantum optics [5]. Nonlinear elements in an optical cavity
can confine light and prolong the interaction time, allowing
for larger effective photon-photon coupling [6]. Examples
of such cavity systems realizing switching of many-photon
light beams using only few control photons include organic
molecules [7,8], rubidium-87 atoms [9-11], quantum dots
[12-15], and ultracold Rydberg or cesium atoms [3,16—
19], among others. Switching a single-photon signal with
a control light made of many photons is a complementary
challenge, which was realized by exciton depletion at semi-
conducting quantum dots [20], for single-photon transport
of transmission-line-resonator arrays [21], and plasmon in
nanowires [22]. Switching a single-photon signal with a single
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control photon represents a fundamental quantum limit, which
has been proposed using a cavity QED system [23].

We approach single-photon-by-single-photon switching
using interference-induced single-particle localized states,
which have received interest in recent years in the context
of flat bands [24]. In these systems, the single-particle ki-
netic energy is suppressed while other energy scales, such
as interaction, are relevant even if they are weak compared
to single-particle ones. Importantly, the interaction can allow
propagation of many-particle states while single particles re-
main localized [24-27], which can lead to superconductivity
in flat band systems [28-32].

The interference-localized states are also at play in the con-
text of Aharanov-Bohm cages, where the (artificial) magnetic
flux localizes the single particles and leads to the emergence
of a flat dispersion. The dice lattice [33] and the diamond
chain [34] are examples of Aharonov-Bohm cages that have
been studied and realized in superconducting nanowires [35],
circuit QED lattices [36—39], photonic lattices [40—44], and
also in ultracold atoms [45,46].

In this article, we propose a switching concept based on
single-particle localization and interaction-induced delocal-
ization of pairs of particles in photonic lattice models. Figure 1
illustrates the concept using a three-site model described with
a Bose-Hubbard model. The signal photon enters the sys-
tem and remains localized in a state around the input site,
representing the “OFF” state of the switch. If also a control
photon is present, then the photon pair can delocalize due to
interaction, representing the “ON” state of the switch. The
switch can be operated as an closed or a open system. In the
closed operation of the switch, the dynamics of the system
is conservative, i.e., particle number is conserved, and solved
using exact diagonalization techniques. The photons are geo-
metrically separated from the initial state and can be collected
once the maximal separation is reached. In the open operation
of the switch, a sink is introduced to continuously deplete the

Published by the American Physical Society
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FIG. 1. The switching concept illustrated with a system consist-
ing of three sites, labeled A, B, and C. The wiggly arrow from the
C site represents the presence of a sink with a decay rate y. Empty
circles denote empty sites while filled circles correspond to photon
presence. The three-site system has an interference-localized state
around the A site. If the control photon is “OFF,” then the signal
photon is trapped in the localized state, as shown in the left column
representing the switch being “OFFE.” If the control photon is “ON,”
then the two photons can delocalize due to interactions, as shown in
the right column representing the switch being “ON.” The first row
represents the input of the switch while the second and third rows
depict the output in the closed (y = 0) and open (y # 0) operation,
respectively, see main text for more information.

photons from the system, and the corresponding dynamics is
modeled by a Lindblad master equation. We consider the unit
cell of a Stub lattice and a diamond chain as notable models
offering localized single-particle states with alternative advan-
tages.

The proposed switch operates inherently at the single-
photon-by-single-photon limit, meaning that the input and
control signals consist of no more than a single photon,
respectively. In other words, the operation is at the purely
quantum mechanical limit at the minimal switching energy
in terms of the control signal and does not work in the clas-
sical (mean-field) level. We show that the switching can be
realized in principle at arbitrarily small interaction strengths
between photons at the cost of increasing the switching time.
Given the state-of-the-art Kerr nonlinearities in photonic ma-
terials, we show that the switching time can be as fast as
picoseconds.

The article is structured as follows. First, in Sec. II,
we discuss general conditions for localization in a three-
site model and demonstrate the switching concept by using
the notable special case of a single Stub lattice unit cell. We
compare the single and the two-particle dynamics in both
the closed and the open operation of the switch. Section III
illustrates the switch in the diamond chain, which is known
for its Aharonov-Bohm cages, and Sec. IV discusses potential
experimental platforms to realize the switching concept. In
Sec. V, we compare the switch to nonlinear Mach-Zehnder

interferometer and other switching paradigms. We discuss the
results and conclude in Sec. VI.

II. SWITCHING WITH A THREE-SITE MODEL

A minimal switching scheme can be realized using the
localized eigenstates of a three-site model. The general nonin-
teracting Hamiltonian corresponding to the three-site model,
shown in Fig. 1 with sites labeled A, B, and C, is Ho tnree sitc =
Zij Hy three site. i ,-13‘}‘3 ;» where b;, 131’ are annihilation and cre-
ation operators of particles at sites i € {A, B, C} and the
matrix is

€A —IaB  —IAC
HO,three site = | —IBA €B —Ipc |- @))
—fca —IcB €c

Without loss of generality, we set g = 0. First, we see that
single-site localization, for instance at the A site, yields dis-
connected sites, i.e., tga = ftca = 0. Second, we find that the
two-site localized state has the form |loc) = (toc, Bioc, 0), if

IBc  Iac
€A = IAB (— - —) (2)
Iac  IBC
and the amplitudes fulfill the condition
Uloc IBC
AB = =——. 3
:3100 Iac

Such localized state satisfies Hy threesite [10¢) = Ejoc [loc) with
energy

Eope = —. (€]
Iac
Similar processes to construct localized states are used in flat-
band lattice construction [47]. Destructive interference on a
three-state system is also behind the formation of dark states
in the electromagnetically induced transparency phenomenon
[48], which is relevant for all-optical switching by slowing
light down or enhancing optical Kerr nonlinearities [6,49].
The three-site model contains notable solutions. The unit
cell of the sawtooth lattice is obtained by setting €4 = fac =
IAB /ﬁ = tgc/ /2. The sawtooth lattice case is discussed in
Appendix B. Furthermore, the unit cell of the Stub lattice is
obtained by setting €ex = 0 and 7ag =0, i.e., A and B are
disconnected. This case and its eigenstates are illustrated in
Fig. 2(a) and further discussed in the following due to its
simplicity, positive hoppings, and zero on-site energies.

A. The closed-operation dynamics

The system is described by a Bose-Hubbard model,

A =" Homeeseb[b; + > Ui — 1)/2, (5
ij i

where U is the on-site interaction strength.

The closed-operation dynamics of the switch is demon-
strated with the Stub unit cell in Fig. 2. The input is located
at site A while the output is comprised of the B and C sites.
The single-particle localized state [loc) has energy Ejo =
0 and the two delocalized states |+) have energies Ey =

+tacvVrig + 1 = £A; see Fig. 2(a).
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FIG. 2. Switching in the closed operation with the Stub unit cell. (a) The Stub unit cell, where A is the input site and B and C are the
output sites. The single-particle eigenstates |loc) and |1) are also represented, with the sizes of the filled circles corresponding to the relative
sizes of the wave-function amplitudes. (b) The site-resolved normalized particle number as function of time with two and one initial photon
at the input site respectively in the upper and lower panel. Single photon remains stuck in the localized state but the interacting photon pair

undergoes a Rabi-type oscillation between the input and the output sites. Parameters are rag = —5 and U

n={0,1

= tac. (c) The probability to observe

, 2} photons at the output sites with respect to time. Parameters as in (b). (d) The probability of finding one or two photons at the

output sites at time Zyj, in the “ON” and “OFF” state with respect to rap for U = tac (upper panel), and the switching contrast, defined as the

“ON” versus “OFF” signal (lower panel). (e) The switching time #;., With respect to the ratio rag at U

dependence of fyich at rap = —35.

We start by analyzing the “ON” state of the switch, that
is, when the initial state has two photons on the input A site.
The initial state expanded in the single-particle states, is
|A’ A> 2 +1 (rAB |10C 10C> + raB |10C +> + raB |10C _> +

% [+, +)+ 5 | ,—) + ﬁ |+, —) ). For interactions U that
are small compared to the energy gap A, we obtain that
|loc, loc) and |+, —) describe a two-level system, with other
eigenstates being stationary. In the limit of large rap, the state
|loc, loc) is a good approximation of the input state, while
|+, —) is the output state. From this two-level description, the
state dynamics consists of Rabi oscillations with frequency
Q=23 _Uris
2 A+ )2 ’
The Rabi oscillations of the photon pair is visible the upper
panel of Figs. 2(b) and 2(c). The half-period of such oscilla-

tion defines the switching time,

; see Appendix A 5.

7(1+1%y)°
Tswitch = YT (6)
3Urig
We notice that the switching time is only dependent on the
interaction strength U and the ratio rap.

The probability to find one or two photons at the output
sites in the output state |+, —), i.e., the “ON” state of the
switch, is given by Pon = 8/9, see Appendix A 5 for details.
This theoretical prediction is shown in Fig. 2(d) as orange
solid line, together with numerical data as green dots.

We now analyze the noninteracting one-photon case, i.e.,
the “OFF” state of the switch. The dynamics of a single
photon starting from the input A site shows clear localization,

= tac. (f) The interaction strength U

see the lower panel of Figs. 2(b) and 2(c). There is, however,
a finite probability over time to find the photon at the output
B and C sites, given by

= (1/2+2r%5) /(s + 1)". 7

This expression gives the switch’s “OFF” state leakage
probability, which is shown as a pink solid line in the upper
panel of Fig. 2(d), together with numerical data as violet dots.
Importantly, from Eq. (7), we see that the ratio rag can be used
to minimize the false “OFF” signal. In this way, the “ON”
versus “OFF” switching contrast can be increased; see the
lower panel in Fig. 2(d).

In fact, by increasing the ratio rag, the localized eigenstate
is more weighted on the A than on the B site. However, in this
case also the switching time fyi.ch increases; see Eq. (6) and
Fig. 2(e).

The behavior of the switching time as a function of U is
further shown Fig. 2(f), where we see that fyicn is optimal
for intermediate values of the interaction U = fac. A more
thorough dependence of fyich (U ) at large interactions is given
in Appendix AS.

{(PorF)

B. The open-operation dynamics

The open-operation dynamics is modelled with a Lindblad
master equation,

{LiL,, ﬁ)}>, (8)

: i AUV |
p=——[H,p § o\ LapLt — =
P h[ p]+ny( pLy =3
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FIG. 3. Switching in the open operation with the Stub unit cell. (a) The switch input is at site A and the output is at site C with losses y.
(b) The site-resolved normalized particle number with two (upper panel) and one (lower panel) initial photons at the input site with respect to
time. Parameters are y = 0.1¢ac, rap = —5, and U = t5c. (c) The probability to observe n = {0, 1, 2} photons in the system for one (upper
panel) and two (lower panel) photons with respect to time. Parameters are the same as in (b). (d) The switching time with respect to the
interaction strength U. We define fin as the time after which the probability to observe two particles in the system is below a certain
threshold € = 1073, Parameters are as in (b). (¢) Switching time and the “ON” versus “OFF” contrast as a function of r,g. (f) The switching

time dependency on the decay rate y .

where L, are the ladder operators and y, are the rates corre-
sponding to the connection to an external reservoir. For a sink
on the C site, [ = Ec, and y is the decay rate, and A is the
input site, see Fig. 3(a).

The open-operation dynamics of the switch with the Stub
unit cell is illustrated in Figs. 3(b) and 3(c). Similarly to
the closed-operation dynamics, in the “OFF” state the single
photon remains mostly confined around the A site and only
slightly at B; see the lower panel in Fig. 3(b). Therefore, there
is a very high probability P, of the single photon being found
in the system, as it does not reach the sink; see the lower panel
in Fig. 3(c).

In the “ON” state, the pair delocalizes due to the interac-
tion, evolving according to the two-state dynamics, as in the
close-operation case, where Rabi oscillations are dampened
by the decay rate y. However, when the pair reaches the
sink, the system gets depleted, as shown in the upper panel
of Fig. 3(b). Consequently, the probability P, of finding two
photons in the switch goes to zero over time, while there is
obviously an increasing probability Py of finding zero photons
in the system, i.e., the switch is empty; see the upper panel
of Fig. 3(c). We also notice that probability P; of finding a
single photon in the system plateaus due to a finite possibility
of being stuck in the localized state.

In contrast to the closed operation, the success of the
switching, i.e., a single photon exiting the system in the
presence of the control photon, can be made as high as
needed. The “OFF” signal can be limited by utilizing the
ratio rap to focus the initial state to the localized state. In
fact, we observe that the “ON” versus “OFF” contrast in-
creases with increasing rag, as illustrated in the lower panel of
Fig. 3(e).

In Figs. 3(d), 3(e) and 3(f), we show the dependence of
the switching time on the interaction strength U, the ratio rag,
and the decay rate y, respectively. The switching time #yich 1S
defined as the time it takes for a photon to exit the system with
probability above a certain threshold 1 — €, withe = 1073, In
this open operation, the switching time depends quite a lot on
the decay rate y, opposed to the closed operation, where fyitch
is determined by the Rabi oscillations.

It can be shown that #in has two opposing behaviors
depending on the decay rate y being small or large in com-
parison to the delocalization timescale, see Appendix A 6.

In the small-y limit, it can be shown that the switching time
is independent on the interactions,

fewiteh = —91In(e)/4y,

see Appendix A 6 for details.

When y is large compared to the two-particle delocaliza-
tion timescale, one can approximate the sink site to be empty
at all times. In Appendix A 6, we show that this approximation
leads to the following expression for the switching time, valid
for small interactions:

€))

In(e)y (1 + "/2\13)4

10
8rizU? (10)

Iswitch = —
This result is shown as the solid pink line in Fig. 3(d) and
in Fig. 3(e). We see that increasing y at this limit actually
increases the switching time. The reason is that the sink op-
erates so fast that all the photons ending up at the sink site
get directly out from the system, while also the coherence
between the two states decays, slowing the delocalization in
direct proportion to y.

043259-4



ALL-OPTICAL SWITCHING AT THE TWO-PHOTON LIMIT ...

PHYSICAL REVIEW RESEARCH §, 043259 (2023)

g .
g 0.8 50.5
= 75 PSS

? 0.6 F, RIS
Q7 S .1
= (») 04 6 right edge
U)? Qs: — R

i 02 Plrlgh‘r edge

i 0

0 200 400 0 100 200 300 400

Time <1/J%d Time (1/J)

® Data
Small U

—
o
A

ts\\'itch <1/ J )
=

100U )

FIG. 4. Closed operation of the switch with a diamond chain.
(a) The diamond chain, consisting of two rhombi with a 7 flux. We
show the bulk eigenstates |£) and |0) with energies £, = £2J and
Ey = 0, respectively, while the edge states |L/R+) have energies
Eijr+ = +2J. (b) The site-resolved normalized particle number
with two (upper panel) or one (lower panel) initial photons at the
left edge state |L£). Here U = J. (c) The probability of finding
n = {0, 1,2} photons at the right edge, consisting of sites 5, 6,
and 7, over time. Parameters are the same as in panel (b). (d) The
interaction strength U dependence of the switching time fy;.cn. One
sees monotonous decrease with increasing U.

When analyzing the switching time behavior as a function
of the interaction, we find that #yjch is inversely propor-
tional to U? at small interactions, see Eq. (10), but is directly
proportional to U? at large interactions, see Fig. 3(d) and
Appendix A 6. Thus, the optimum is in the intermediate in-
teraction range and the decay rate y is the limiting factor.

III. SWITCHING WITH THE DIAMOND CHAIN

We now briefly consider the switch in the diamond chain,
as it is a notable model that has been extensively studied
for its interference-localized states known as Aharonov-Bohm
cages [38,40—44,46,50-55]. The diamond chain is illustrated
in Fig. 4(a) together with its eigenstates. When a 7 flux
is inserted through the plaquette, the system supports only
purely localized eigenstates. The bulk eigenstates are |+) and
|0), with energies E = £2J and E = 0, respectively, where
J is the hopping amplitude between the sites in the chain. In
addition, due to finite length of the chain, there are edge states
|L+) and |R=) at energies E = ++/2J.

The closed operation of the switching for the diamond
chain is illustrated in Figs. 4(b) and 4(c). For a successful

switching, the input is prepared in the left edge state [L+£). The
single photon remains perfectly localized in the left edge state
while the photon pair oscillates between the opposite edge
states. Two rhombi are needed to obtain perfect geometric
separation of the edge states. Note that, in the diamond lattice,
the switching contrast is perfect: The “OFF” state does not
have any contribution at the output. However, in comparison
to the three-site system discussed above, the switching time is
longer as the chain is longer. Figure 4(d) depicts the switching
time dependence on the interaction strength. The switching
time is decreasing with interaction, being proportional to U ~2.

The open operation of the switching with the diamond
chain is shown in Fig. 5. In contrast to the closed operation,
the open operation needs only a single rhombus. Furthermore,
the switching is successful already if the photons enter from a
single site, e.g., site 1, rather than the edge state. This is due to
the fact that the site only overlaps with the edge state localized
around the site, and the photon remains stuck. This is seen in
Fig. 5(b) as an oscillation between site 1 and sites 2 and 3,
while site 4 remains empty. With two photons, instead, the
photons delocalize towards the right edge, where they enter
the sink and exit the system. A noteworthy difference to the
Stub unit cell behavior shown in Fig. 3 is that both photons
exit the system and do not remain stuck in the localized
states. This highlights that, in the presence of interactions,
photons move in pairs from one localized state to another. The
switching contrast is perfect; see Fig. 5(c). The switching time
is inversely proportional to the interaction strength and the
decay rate in the small U and y limit, respectively, as shown
in Figs. 5(d) and 5(e). For large U and y, the switching time
increases with U and y, and thus the optimal #gjp is found
for the intermediate values.

IV. EXPERIMENTAL REALIZATION

Main limiting factors in the realizations of a switch are
the accurate realization of the interacting models and the
achievement of sufficiently large optical nonlinearities. Pio-
neering works on how to enhance photon-photon interactions
for switching include the use of dipolar gases and Ryd-
berg blockade [16,56-58] as well as electromagnetic-induced
transparency [17,48,49,59] and ways to interface atoms with
optical fibers [60,61]. While extensive efforts have been made
in the ultracold gases community, miniaturized on-chip real-
izations in all-optical devices are in high demand and are only
emerging. The switching concept proposed in this work can
be realized in all-optical systems that allow simulating the
Bose-Hubbard physics with various interaction strengths in
the two-photon limit.

In order to utilize tight-binding models based on the
interference-localized state, small deviations from the exact
flux condition have a detrimental effect on the single-photon
states, as shown in Appendix C. Advances in the realization
of synthetic fluxes have made possible to study and real-
ize Aharonov-Bohm caging models in circuit-QED lattices
[36-38,62], photonic lattices [42,44,63,64], and ultracold lat-
tices [45,46,65,66], However, the requirement of a flux can
be avoided by using, e.g., the Stub unit cell lattice instead of
the diamond chain. Nevertheless, a challenge with the Stub
unit cell realization of the switch is to eliminate the hopping
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FIG. 5. The open operation of the switch with a single rhombus of the diamond chain. (a) The site 1 acts as the input, and the site 4 as the
output, where the sink with decay rate y is located. (b) The site-resolved normalized particle number with two (upper panel) and one (lower
panel) initial photon at the input site with respect to time. Here U = y = J. (¢) The probability to observe n = {0, 1, 2} photons in the system
with respect to time for two initial photons (upper panel) and one initial photon (lower panel). (d) The switching time ;. dependence on the
interaction strength U. The threshold is set at € = 1073. (e) The decay rate y dependence of the switching time.

amplitude between the A and B sites, as illustrated further in
Appendix C. However, the Stub unit cell is not sensitive to
other hopping amplitude imperfections.

On the one hand, control of single microwave photons
in circuit-QED devices is already a standard, and Fock state
photon dynamics have been observed in Bose-Hubbard mod-
els [38,62,67]. On the other hand, various down-conversion
techniques exist for producing single photons in the opti-
cal domain and their performance is constantly improving
[68,69]. These techniques can be used to realize the single-
photon-by-single-photon switch for example in cavity-QED
arrays [70], coupled waveguides [71], or micropillar lattices
[63,72].

In the long run, provided that the single-photon manip-
ulation is within reach, the switching concept presented in
our work could be attainable in photonic crystals at arbi-
trarily low interaction strengths. In fact, since the localized
states strongly confine the single photons, the switching is
successful at any interaction if the interaction-induced delo-
calization time is shorter than the lifetime of the photons in
the system. Moreover, the single-particle hopping parameters
and the lattice geometry can be freely tuned in micro- and
nanostructured optical materials. Therefore these systems of-
fer a promising and flexible platform for implementing the
models for the all-optical switch based on single-particle lo-
calized states. Besides photonic systems, ultracold atoms in
optical lattices [46,73—75] can also implement the switch, as
the dynamics of single atoms and interacting atom pairs can
be observed and manipulated by a quantum gas microscope
[76,77].

To estimate the reachable switching times, let us evalu-
ate the Hubbard interaction parameter using state-of-the-art
Kerr nonlinear refractive index values. The Hamiltonian cor-
responding to the Kerr nonlinearity has the same form of the

interaction term in Eq. (5) and is given by x#(7i — 1), where 71
is the input photon number operator at the Kerr nonlinearity.
The constant yx, equivalent to U/2 in Eq. (5), is given by [78]

3h2w2)((3)
X =t (11)

9
4€0€%Veff

where o is the angular frequency of the photons, x® is the
third-order nonlinearity of the Kerr material, €, is the permit-
tivity of vacuum, €, is the relative permittivity of the material,
and V. is the mode volume in the cavity. The connection
between the third-order nonlinearity x® and the nonlinear
refractive index n, is given by n, = x©®)/(e,€pc), where c is
the speed of light.

Nonlinear refractive indexes up to 7o = 107" m?/W have
been reported for GaAs/GaAlAs quantum wells [79] and
graphidyne/graphene heterostructures [80]. Using Eq. (11)
with the value of the GaAs/GaAlAs quantum wells at A =
1343 nm laser with relative permittivity of 13 [79] and mode
volume V. = A3, we obtain y ~ 1073 eV. For the Stub lattice
unit cell in the closed operation where tgyich =~ 1/U in Eq. (6),
this translates into a switching time fgyien ~ 10712 s, i.e., in
the order of picoseconds. This value is substantially faster than
the rate of single-photon sources [68,69,81]. Similar estimates
for the switching time from the interaction U can be made for
circuit QED and ultracold atom systems.

V. COMPARISON TO OTHER TYPES OF SWITCHES

The Mach-Zehnder interferometer (MZI) is a renowned
switch concept based on the destructive interference between
two different optical paths [82]. Due to its widespread usage,
we now compare our switch concept to the MZI one and
illustrate the key differences.
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The core principle of the MZI relies in using a control beam
of intensity / to induce a phase shift between two arms of
the interferometer via Kerr nonlinearities. Such phase shift is
quantified as A¢ = kLn,I for light of wave vector k traveling
along an arm of length L with nonlinear refractive index n,,
relatively to the other arm. The switch is on when A¢ = 7,
because the signal is not transmitted due to destructive inter-
ference. Conversely, when the control beam is off, no phase
difference is acquired and the signal is transmitted.

There are fundamental limitations for operating a MZI
switch in the few-photon limit with coherent light [83]. In
fact, the intensity fluctuations of coherent light, relative to the
mean intensity, are significantly larger in the few-photon limit.
These fluctuations have dramatic consequences on the phase
matching and hence the switching mechanism [84]. In the low
mean photon-number limit, the nonlinearity only allows for
a phase shift that is at maximum equal to the mean photon
number [83,84].

The MZI switch could work in the few-photon limit with
Fock states of light, provided that the necessary & phase shift
is achievable. We now illustrate such principle, calculating the
action of the MZI on Fock states. We model each stage of the
MZI as quantum operators; the photon can either be in arm
1 or 2, and the corresponding annihilation operators are b,
and b,. The beam-splitter is described by the unitary operator
B= explim (IA)J{ZA)Z + l;;f)l )] [84]. The nonlinear Kerr element
operator is K = exp[—ix' (73 + 12) — 4ix iy ], where x' =
xL/finc and y is given by Eq. (11), and i, = b}, and A, =
ELIA)L is the photon number operator of the control beam [84].
The allowed Fock states are |1, 0, 0) and |0, 1, 0) for a photon
inarm 1 and 2, respectively, when the control photon is absent.
In the presence of the control photon, the states are |1, 0, 1)
and |0, 1, 1) for a photon in arms 1 and 2, respectively. In the
basis spanned by these four states, the beam-splitter operator
B is represented by

1 1 0 O
. If-1 1 0 0
B=71o0 o 1 1 (12)
0 0 -1 1
and, similarly, the Kerr nonlinearity operator is given by
1 0 O 0
5 0 1 0 0
E=1o 0o 1 o | 13

0 0 0 e

where the phase shift caused by the self-modulation terms
Xﬁ%, Xﬁg is not included, as it can be compensated by the
other arm. The overall effect of the MZI, where the phase shift
is 4y = m, is given by the following operator:

0 1 0 0

o |1 0 0 o0

BRE=|") o | o (14)
0 0 0 -1

By acting this operator onto the Fock states |1, 0, 0) and
10, 1,0), the MZI switches the output paths, while in the
presence of the control photon for |1, 0, 1) and |0, 1, 1), the
output ports are the same, up to a phase. Since the evolution

is necessarily conserving, one can treat one of the outputs as a
scrap-collector while the other acts as the primal output of the
switch.

The remaining question is what would the required features
of the Kerr nonlinearity be to achieve the appropriate phase
shift. In the Kerr operator K given above, we have required the
effective phase shift A¢ = 4x’ to be . Using x ~ 10~ ob-
tained above for the heterostructure material GaAs/AlGaAs
with the high Kerr parameter n, = 10~° m?/W [79], the nec-
essary length L = hncm /(4)) is in the order of millimeters.
Such a lengthscale represents, for state-of-the-art materials, a
fundamental limit for on-chip all-optical switches based on
MZI.

Both the MZI and the single-particle localized switch dis-
cussed in this work are based on using destructive interference
but in a different way. In the MZI, one uses light-light effective
interaction to attain a relative phase between its arms that real-
izes a destructive interference. However, in the localized-state
switch, the interactions are used to break the destructive in-
terference that localized the photons. On the one hand, due to
the localization, even a weak nonlinearity allows switching in
the single-particle localized switch if the delocalization time
is faster than the system losses by other means, since the in-
teraction time is limited only by the losses. On the other hand,
in the MZI the interaction time is limited by the length of the
bulk nonlinear component and the speed of light, requiring
instead large intensity and aligning of the control pulse with
the signal to sufficient precision. These facts render the MZI
at the single-photon limit unpractical with currently existing
materials, while the localized state switch can be realized as
such with circuit QED systems and microstructured optical
materials, as discussed above.

Other types of single-photon switch discussed in the In-
troduction rely on different realizations of the photon-photon
interaction, usually enhancing the effect by placing the nonlin-
ear system in an optical cavity. However, our proposed switch
paradigm is not dependent on the particular realization of the
photon-photon nonlinearity but is more a way to use these
nonlinearities in an effective way. Instead of having a non-
linear element in a cavity and increasing the interaction time,
one can realize the localized states of the flat-band system and
allow photons to delocalize in a controlled way by interaction.

Our proposed switch is inherently single-photon-by-single-
photon, since the input and the control signals can consist of
no more than a single photon, respectively. If the signal or
control beam consists of many photons, then the interaction
would delocalize them from the lattice, resulting in a false
signal. Even if the interaction could be turned on or off by
other means, the delocalization timescale would be much
longer for many particles, see Appendix D. With the Stub unit
cell, the photons delocalize to the output but do not perform a
full population oscillation. Similarly, the seven-site diamond
chain with odd photon number does not show population
oscillation, while the even photon numbers do to some extend.
However, even partial delocalization would lead to successful
switching in the open operation but with the technical problem
that a control photon is no longer effective in operating the
switch. At the classical limit of many photons, considered in
Appendix E, the delocalization does not occur or occurs very
weakly, depending on the model.
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VI. CONCLUSION

In this article, we have introduced a switching concept
based on the single-particle localization in a lattice by destruc-
tive interference with coincident delocalization of correlated
two-particle state. In other words, single photons remain
trapped in a part of the system while a pair delocalizes. The
proposed switching concept is purely quantum mechanical
and operates only at the quantum limit of few photons. One
can either continuously extract the photons from outside the
localized state via a sink, which we call the open operation of
the switch, or one can wait for photons to geometrically sep-
arate from the initial state and collect them instantaneously,
which we call the closed operation.

We have demonstrated the switching scheme using the
minimal three-sites Stub unit cell model and the diamond
chain. Based on analytical two-level models, we have found
expressions for the switching time in terms of the Rabi os-
cillation frequency of the two interacting photons between
opposite edges. Furthermore, we have found that the “ON”
versus “OFF” contrast in the Stub unit cell is limited, whereas
it is perfect for the diamond chain. However, the contrast in
the Stub unit cell can be improved by tuning a geometric
parameter that increases the overlap of the localized state on
the input site.

We discussed how to realize the switching concept in
various experimental platforms and compared with existing
switches at the single-photon limit. We have estimated the
achievable switching times in photonic systems to be in the
order of picoseconds. This estimate is at par with most of
the existing all-optical single-photon switch proposals, being
limited by the photon-production rate of the existing single-
photon sources. Nonetheless, as most proposals use light of
many photons either as the control or the signal, there are
limited direct comparisons for our single-photon-by-single-
photon switch concept.
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APPENDIX A: SUBSPACE PROJECTIONS
OF THE TWO-PHOTON HAMILTONIAN

In the simple lattice systems we are considering, the non-
interacting two-particle eigenstates appear in degenerate sets
separated from other states by finite energy gaps. For instance,
the Stub unit cell has the single-particle eigenenergies Ejo. =
0 and Ei = dtaca/r?2 + 1, which result in two degenerate
two-particle eigenstates |loc, loc) and |+—) and other states
at separate energies. At the low interaction limit, to first order
in the interaction, the dynamics can be understood by divid-
ing the initial state to its various noninteracting two-particle

eigenstate components and considering evolution of the com-
ponents independently.

1. Schrieffer-Wolff transformation

The projection to a noninteracting Hamiltonian
subeigenspace is accomplished by the Schrieffer-Wolff
transformation. The following review is based on Ref. [85].
Let us assume that the system Hamiltonian is written as
H = Hy + €Hyer, for some nonperturbed Hamiltonian Hy and
a perturbation I:Ipert. Furthermore, let us assume that we have a
subspace of the unperturbed Hamiltonian Ay with a collection
of eigenenergies separated from others by a gap A. We denote
the projection to this subspace by Py (P§ = Py, the subscript 0
is to differentiate from the projection with respect to the total
Hamiltonian) and the projection to the orthogonal subspace
by Qo = 1 — Py. Furthermore, for a general operator X in the
Hilbert space, we define operators O(X) = PoX Qg + QoX Py
and D(X) = PyX Py + QoX Qp, which give the components of
the operator X between the orthonormal subspaces and within
them, respectively.

The central result behind the Schrieffer-Wolff transforma-
tion is the existence of a one-to-one correspondence between
unperturbed and perturbed states, and the subspaces they span,
when e||I:1pert|| < A/2. Here ||I-7pm|| is the norm of the per-
turbation operator defined as the maximal factor by which
it scales the norm of a state it operates on. The result is
physically intuitive: If the perturbation is small enough, then
it cannot mix the states belonging to the orthogonal subspaces
separated by a larger energy than twice the perturbation.
The one-to-one correspondence is given as a unitary trans-
formation U, called the Schrieffer-Wolff transformation, from
perturbed to unperturbed subspace, such that the perturbed
subspace Hamiltonian can be expressed exactly in the basis
of the respective nonperturbed eigenstates by

Heir = PoU (Hy + €Hper ) U Py. (AD)

Oftentimes, the exact transformation U is difficult to deter-
mine but one can express it using a perturbation expansion.
It can be shown that the Schrieffer-Wolff transformation can
be written as U = exp(iS’), where S is a block-off-diagonal,
Hermitian operator, that is, § = O(S8) and § = §. One de-
velops the perturbation series by expanding § as a power
series § = > "8, and utilizing Baker-Campbell-Hausdorff
formula exp(A)Bexp(—A) =), %[A,"B], where [A," B] =
[A, [A,...,[A, B]...]] denotes that the commutator of B with
A is taken n times in succession. We obtain

eXp(lS)(ﬁo + Eﬂpen) eXp(—lS)
"o A
= —I8." Hy + €Hper
n:

l‘i’l

" e n o & np
= 2 €S ol € S el (A2)
nm ' ’

The operators S, are solved recursively by putting Sy = 0 and
demanding at every order of € that the expression is block-
diagonal. Block-diagonality means that the submanifolds
are not mixed—the very requirement of the Schrieffer-Wolff
transformation. The zeroth order satisfies the condition
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automatically. At the first order, we  obtain
i[8y, 1-70]+(9(I:Ipen)=0 where, by taking the matrix
elements with respect to the H, eigenbasis |n), we find
(n|811m) = i (n|O(Hper)m) /(E, — E,,).  Inserting  this
expression back to the expansion, we have I-LHJ = PoﬁpertPo.
Thus, the first-order perturbation is just the perturbation
Hamiltonian projected to the subspace. Similarly, we have
I-?efm = %Po[iS' 1» O(ﬁpert)]Po, which, represented in the basis
of the subspace Py eigenstates, is

. 1 1 1
Haralm) = — =) -
et 2lm) = = 5 (E "E, En— Em>

n'e€Qy

x (n|Hper 1) (1| Hpere|m) (A3)

where n’ is summed over the orthogonal complement of the
subspace Py. In this work, we do not use higher order than
two terms but they can be obtained in a similar manner.

2. Two-particle basis

In a system with single-particle quantum numbers « (e.g.,
orbital, location in an array of sites or single-particle eigen-
state index), the two-particle states can be labeled by a list
of the occupied quantum numbers and taking into account
the indistinguishability by |af) = Nugbb}, |0), where |0) is
the vacuum state, 52, l3a are creation and annihilation op-
erators, and Nyg =1 if o # B and Nyp = 1//2 if a = B.
We are interested in a second-quantized Hamiltonian H =
ﬁo + H,,, where ﬁo = — Za ty ﬁlA)Zt 135 is a single-particle term
and Him = Za By Uaﬁy(glall;;@ylsg is is a two-particle interac-
tion term. By using the Wick’s theorem, one finds the matrix
elements of single-particle term as

Hoapys = (aBlHoly5)
= —NupNys(tasdpy + taydps + 1y 0as + 1850y )
(A4)
and for the interaction term as
Hingapys = NapNys(Uggys + Upays + Unpsy + Upasy)-
(AS5)

In the site basis 13,~,13,T, where i is a site in an array,
we consider site-local interaction Hi, = > UiBlTElTl;iI;i/Z,
whose matrix elements in the two-particle basis are Hiy ;jx; =
8ij0u8yU;. It is useful to consider the interaction in the
eigenbasis of the single-particle Hamiltonian instead, defined
by b, = > V,-:IQI-, where V;, diagonalizes the single-particle
Hamiltonian matrix Hy,;; =), \/i,lA,1n\/j’;. In this basis, we
have

Unmop = Z Ul‘/LZ‘/l:/l‘/l()‘/lp/zv (A6)

which can be inserted in Eq. (AS5) to obtain the two-particle
state matrix elements.

3. Effective two-particle models at small interactions
a. Stub lattice unit cell

In Sec. ITA, we have seen that for small enough U,
the interaction acts as a perturbation to the noninteracting

eigenstates, given by |loc, loc), |+, —) at E =0, |loc, &) at
E = HtacVrig + 1 and |, £) at E = £215cvVrig + 1. If
U < tacV ’"/sz + 1, then the states |+, —) and |loc, loc) de-
scribe a two-level system, isolated from the other eigenstates,
which remain stationary. The interacting Hamiltonian can be
projected onto the subspace spanned by the two states |+, —)
and |loc, loc) through the Schrieffer-Wolff transformation. In
this way, we get the following effective two-level Hamilto-

nian:
2 4 2
FEtU<tre _ U L+ rig+ris  V2r3g (A7)
1+ r;‘;B

Stub (] + rf‘\B)z ﬁr%B

where the energy offset of the two states § and the overlap
between the states #, are

2
Urip

_ \/EUriB
(1 +r/2m)2’

5= -
(1‘}""/%3)

2 (AB)

b. Single rhombus diamond chain

The eigenstates |L+, L+), |L£, R+), and |R+, R+E) are
degenerate at energies E = ++/2t for + and —, respec-
tively. Also, the states |L+,L—), |R+, R—), and |R%t, LF)
are degenerate with each other at the energy £ = 0. One can
directly show that the terms, which split a photon pair at
an edge to two photons at the opposite edges are forbidden:
(L%, L 4 |Hin|L%+, R+) = (R+, R £ |Hin|R+, L+) = 0 and
(R+, L F |Hin|R+, R—) = (R+, L F |Hi(|lL+,L—) = 0. In
other words, the interaction allows only pairs to move
from one edge to the another. Hence, at small interac-
tion, Hamiltonian subspaces at E = ++/2¢ consist of two
interaction-connected states |L+, L+) and |[R+, R+) and a
single interaction-disconnected state |L+, R+). Similarly,
the subspace at E = 0 is formed by two mutually indepen-
dent two-level systems: pairs of photons at the same edge,
|L+, L—) and |R+, R—), and at the opposite edges, |L+, R—)
and |L—, R+) . The effective two-level projections of the in-
teraction Hamiltonian onto these subspaces are given by

. 3U/8  UJ8
= (U ) @

and HL+L7,R+R7 —

L+R—,L—R+ __ LEL+ ,RE+R+
int,rhombus =2H,

int,rhombus int,rhombus

c¢. Two-rhombi diamond chain

The single-particle eigenstates |L &= L=+) and |R &= R+)
are degenerate similar to the single-rhombus system, form-
ing an effective two-level system at small interactions. Since
these states do not overlap directly, we need to calculate the
second-order term in the Schrieffer-Wolff transformation to
obtain an effective Hamiltonian. We note that, despite the state
|L%, R%) being degenerate with |L &= L+) and |R &+ R%), the
former is disconnected from the latter two states, because the
interaction prevents splitting of the photon pair. The projected
Hamiltonian is

(A10)

U>J,2 rhombi — 256\/5.] 6 _23 .
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4. Large interaction limit of two-particle lattice model

Let us assume a lattice model with hopping elements
Zl il jb b and onsite Hubbard interaction Hi, =

Zl Uib! bl b;b; /2. The two-particle eigenstates of the Hubbard
term are the states |ij) where one particle is at the site i and
another at the site j with energy E = U;§;;. If the interaction
is large in comparison to the hopping, then we utilize the
Schrieffer-Wolff transformation as in Appendix A 1 to project
to the subspace spanned by states |ii), consisting of a dou-
blon [85,86]. Importantly, we observe that (ii |I-70|i Jj) = V2t >
where the factor +/2 arises due to normalization. The terms
between different |ii), up to first order in 1-70, vanish since
they require two-particle operations, whereas there are single-
particle terms. The second-order terms in the projection are

1 1
2
A = t”'(U,» + E) (Al1)

fori # j and

HPYOJ

int,ii,ii

(A12)

Zzlt’jlz,
;U

At the lowest finite order, the Hamiltonian projected to the
doublon states is the hopping Hamiltonian with modified hop-
ping amplitudes and additional on-site potential.

a. Stub unit cell

In the limit of large interaction, the hopping is a per-
turbation to the interaction Hamiltonian eigenstates. The
interaction Hamiltonian for the three-site system has two
sets of three degenerate eigenstates: |AA), |BB), and |CC)
at energy £ = U and |AB), |AC), and |BC) at E = 0. The
Hamiltonian of the full system can be projected to the sub-
space spanned by on-site pairs by using the second-order
Schrieffer-Wolff transformation. Assuming further that U >
|raBtac| > tac, one obtains the effective two-state model

( 23c/U ﬁt/ic/U>

Heff
V23 /U B U

U>tac,Stub —

(A13)

In Eq. (A13) the energy offset of the two states § and the
overlap between the states #,, are

fac o = ﬁtﬁc
U 9 12 — U .

(A14)

b. Single rhombus system

At large interaction, a two-particle doublon moves in a
lattice with the same geometry as the original one but with
modified hopping amplitudes J — 2J?/U and on-site ener-
gies €, = ) ;2 2/U. While the on-site energies do not have
any significant effect, the hopping amplitudes become real
and positive so that the flux condition is lost. The system has
degenerate single-particle eigenstates that are localized on the
opposite corners.

5. Closed-operation switching time from
two-state model dynamics

With the localized states, we often find that the noninteract-
ing two-photon states form collections of (nearly) degenerate
states. In this work, especially two-state behavior is found to
be prominent. Here we repeat the standard two-state system
calculation in order to introduce our notation and for easy
reference.

Let us consider a two-level system spanned by states |1)
and |2) with Hamiltonian

5 - (€1 M2
H=/|, , AlS
() (A15)
whose eigenenergies are
EL=¢€+4+8/21Q, (A16)

where we have defined the “detuning” 6 = €, — €; and the
Rabi frequency € = /(8/2)? + |t12|>. We label the eigen-
states as |[+) , |—) for the plus and minus energy, respectively.
The eigenstates components (x4, S+ ) are obtained as

712
= (A17)
Viml> +(8/2 £ Q)
and
t 6/2£Q
_ ol / ) (A18)
2 el + (/2 £ Q)2

Let us assume that at time ¢ = 0, the system is in the state
[1). General time dependence is given by

((1 W(ﬂ)) — expli(e1+8/2)1] (Cos(Qt.) +i8 sin(Qt)/ZQ)

2ly@)) —it}, sin(Q1)/Q
(A19)
and the probabilities are
Pi(1)) _ (1= Inal?sin®(Q1)/2°
(Pw)) = ( 1o sin?(Q0)/22 )" (A20)

The resulting behavior is Rabi oscillations with Rabi fre-
quency € = /(8/2)? + |t12|>. The maximum probability of
observing state |2), provided that the initial state is |1) is
I112/Q2 = 1/01 + (3/2)/ 112 2],

The switching time can be extracted from the dynamics
by noting that the Rabi oscillation separates photons from the
input to the output. In other words, the switching time is the
half-period of the Rabi oscillation fsyich = 7 /252.

a. Stub unit cell

At small interaction, the effective two-level model for Stub
unit cell, given by Eq. (A7), results in the Rabi frequency Q2 =
3/2Ur%g /(1 + rXg)*. The half-period of the oscillation gives
the switching time

(1 + rﬁB)z

A21
U riB ( )

T
Tswitch = E

The Rabi frequency of two-state model for Stub lattice unit
cell at large interaction Eq. (A13) is 2 = %t/ic /U, which sets
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the switching time at large interactions
U

—_ A22
312 (A22)

Lswitch =
shown in Fig. 2(f). In contrast to the small interaction limit,
the switching time at large interactions depends on the single-
particle hopping amplitude fac but does not depend on the
ratio rag.

Combining the observations on the interaction strength
dependence of the switching time, we see that the switching
time is optimal around an intermediate U, the optimal value
being dependent on rp.

b. Single-rhombus system with n flux

Solving  this model with the initial state
|AA) leads to density time evolution ns(t) =
cos* (272t /U), np(t) = sin*(2J%t/U), and ng(t) = ne(t) =
sin?(2J% /U ) cos*(2J%t/U). The oscillation of particle
density between the opposite edges is Rabi-like but with
fourth-order sine and cosine functions. This dynamics was
considered in Ref. [38] for a circuit QED experiment, where
simulations agree with our results.

c¢. Two-rhombi diamond chain

The Rabi frequency of the effective two-state model of
two-rhombi diamond chain Eq. (A10)is Q2 = 3U2/(128«/§J),

J

—itipp21 + ity 012
i8p21 — itl5(p11 — p22)
0

—i[A, pl =

where § = €; — ¢;. The Lindblad term is

From these equations, we note that the terms py3, 031, 023,
and p3; will remain zero if they are initially zero. The
equations for the remaining density matrix elements can
be expressed in terms of the Liouville-Fock space consist-
ing of vector representations of the density matrices p =
(p11, P12, P21, P22, p33)7 . The Lindblad equation can be rep-
resented in this basis by the matrix equation j—t p = Lp, where

0 l'tikz —it1 0 0
itin —i§ — )//2 0 —it;p 0
L=|-i 0 is—y/2 ity 0
0 —l'l‘ikz itip -y 0
0 0 0 y 0

(A29)

a. Large-y limit

In the limit y > €2, one can neglect the oy, term since it
decays fast and is initially zero. Similarly, we see from the
above equation that (assuming #;, to be real for simplicity,
but similar argument can be made in general) dRe(p1,)/dt =
8Im(p12) — ¥ /2Re(p12) and, accordingly, due to the fast de-

—p21/2

giving the switching time

_ 64y27) Ao
switch = 3 U2 . ( 3)
6. Open operation switching time from

two-state model with losses

Let us consider the aforementioned two-level system with
an additional third level |3) into which the state |2) decays
according with a decay constant y. The Hamiltonian is repre-
sented by the matrix in such basis by

€1 t, O
H=|t, e 0 (A24)
0 0 0

and, similarly, the jump operator describing the decay is

{0 0 0
i=lo o o (A25)
01 0

The Lindblad master equation for the density matrix p is

dap o A 1 .ia
L - A p 4y (LpET = ETE Y).  (A26)
dt 2
The Hamiltonian term is
—idp1 +iti2(o11 — p22) O
—it},p12 + it12021 0], (A27)
0 0
—p12/2 0
—pn  —pn/2 (A28)
—p32/2 P2

(

cay and small source term, Re(p;y) will remain negligible
since we assume that pj»(¢ = 0) = 0. Effectively, we are left
with two real variables, p;; and Im(p;,), with equations

d( pn \_(0 =212 P11
E(Imm))—(m —y/2)<1m<pu))' (430)

We obtain a second-order differential equation for Im(p1,):
Im(pi2) + SIm(pin) + 2rfIm(p) =0 (A3D)

With an ansatz Im(p;;) = Aexp(rt), we get the equation
for r,

P+ Lreo =0, (A32)
which has the solution
14 14
Vi_—z:l: R—Ztlzz (A33)
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Thus, the solution for the element Im(p5) is, using the initial conditions,

(A34)

Im(p12)(t) =t exp (‘Zf

Accordingly, we obtain the remaining density matrix element
by pi1 = yIm(p12)/2t12 + Im(p12) /112 as

2
p11(t) = exp (—%t) [cosh ( )1/_6 — 2t122t)
y sinh (y/ % — 2@)]

4+
4 2
- kuh

(A35)

and similarly with cos and sin if y2 < 32t122. Howeyver,

since we assumed y 3> f12, §, we can write v/y?/16 — 217, &
y/4 — 4t% /y. Thus, we have

exp(—yt/4)cosh (y/y2/16 — 2t}t)

~ Lexp (—4tht/y) + Sexp (— yt/2+ 4tht[y),
(A36)

and similarly for the sinh but with a minus sign in front of the
second term. Hence, we have the approximate form

4t}
p11(t)=exp| ———=¢ ).
v

We note directly that, given a tolerance €, the decay time is
proportional to y and inversely proportional to t122. In the con-
text of the switch considered in the main text, the switching
time is given by

(A37)

|4

——. A38
412, (A38)

fswitch = — ln(f)
Based on the two-level model for Stub unit cell at small
interaction U < fac, Eq. (A7), the switching time becomes

4
V(l + ”/sz)

fswitch = — In(€) ————F—"—.

8U2r/‘§B

(A39)
Similarly, at the large interaction U > fac, the Stub unit cell
effective model Eq. (A13) gives the switching time

yU?

— A40
8ac (A40)

Lswitch = — 111(6)
For the single-rhombus diamond chain, we find at small
interaction U < J, that

16y

Iswitch = — ln(e)w (A41)

b. Small-y limit

Let us consider the limit where the Rabi frequency is
substantially faster than the decay rate, that is, 2 > y, and
we have damped Rabi oscillations. The probability to find
the system in the states |1) and |2) is P(¢) = Pi(¢) + P»(¢),
which decays over time due to the sink. The decay of P(t)

y ) sinh (/%2 — 262,0) /\/ % — 21 ify? > 326

sin (\/ztlz2 — ) /\/32t122 —r

if y? < 3213,

(

has to be proportional to P(t): % = —y P (t). Moreover,
since the decay is slow, the evolution of the probabilities P,
and P, still follows approximately the undamped dynamics
given by Eq. (A20) but with the decay of the probabil-
ity P(t) taken into account. Then, the ratio P(¢)/P(t) =
[t12|? sinz(Qt)/[((S/Z)2 + |t12]?] leads to the equation

dP Ayl
dt 824 4|tp)?

with the initial condition P(t = 0) = 1. The solution to this
equation is

sin?(Q) P (A42)

2yt sin(29)
P(t) = - t— .
® exp{ 57+ Al 29

From this, the time it takes for the system to deplete beneath
a given threshold € is given as the solution of

sin(292t) 82 +4)ma)?

t—————=—In(e)—————

2Q 2y [ti2]?

For the switch considered in the main text, Eq. (A44) sets

the switching time fgyjch. Since the sine term on the left-hand

side of the equation is small, we can neglect it, giving the

equation

(A43)

(A44)

8% + 422
2y |hal?
where now € represents the switching threshold. This equa-
tion specifies that the switching time is inversely proportional
to y and not dependent on the interaction. In fact, both ¢}, and

8 scale similarly with the interaction strength U'.

Using the two-state model for the Stub unit cell at
small and large interactions strengths U < tac and U > tac,
Egs. (A7) and (A13), respectively, we find the switching time

91n(e)
2y
for both models. Since the switching occurs after many Rabi
oscillation periods due to weak damping induced by the sink,
only the average population at the sink determines the switch-
ing time. Since the average is independent of interaction
strength U and the parameter rap, the switching time is also
independent of these.

The switching time for the single rhombus diamond chain

is given, according to the model Eq. (A9), by
131In(e)

fswitch = — .

2y

—In(e) , (A45)

fswitch =

(A46)

switch = —

(A47)

APPENDIX B: SAWTOOTH LATTICE

Another prominent system that allows the switching con-
cept proposed in this work is the sawtooth lattice. The
sawtooth lattice belongs to the class of flat band systems
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FIG. 6. Switching using the sawtooth lattice. (a) The sawtooth lattice consists of sites of type A (1, 3, and 5) and B (2, and 4). On obtains
the flat-band condition of the lattice by putting fap = ﬁtAA. Furthermore, the edge-states localize if one sets the boundary potential Vg = s
at the edge sites. In the following, time is in units of 1/54. The photon numbers are also normalized to 1. Panels (b) to (h) show the dynamics of
a three-site sawtooth ladder (i.e., a triangle) with sites 1, 2, and 3, with V; at sites 1 and 3; panels (i) and (j) consider the complete system shown
in panel (a). Panel (b) shows the single-photon dynamics starting at the site 1, showing partial delocalization to the site 3. The interaction is
chosen as U = t54 and photons are initially at the site 1. Population oscillation with some high-frequency noise occurs. Panels (e) and (f) show
the same dynamics as (c) and (d) but with photons initially in the localized left-edge state, which reduces the high-frequency noise. Panels (g)
and (h) show the large interaction two-photon dynamics at U = 10¢54 starting with photons at site 1 but otherwise the same parameters as in
panels (c) and (d). The oscillations have higher amplitude and occur at faster frequency than at the smaller interaction. Panels (i) and (j) show
the two-unit cell dynamics with the same parameters and setting as panels (c) and (d). The population oscillation frequency is decreased.

where the tight-binding hopping amplitudes are purely pos-
itive while the destructive interference is due to the eigenstate
itself having relative phases from one site to another. Its
three-site version is among the three-site models with local-
ized states considered in Sec. II. In general, the sawtooth
lattice comprises of unit cells with two sites, labeled A and
B, in a sawtooth formation as shown in Fig. 6(a). If the
direct hopping B sites vanishes and if fag = 2t44, then
the system possesses localized states. As a finite-size effect,
the chain contains exponentially localized edge states, which
become perfectly localized if one adds an edge potential
Vg = taa on the edge A sites of the system. If we use
the sawtooth lattice flat-band condition tag = fgc = v/2fac
in Eq. (2), then we find that €4 = f5oc, which is the bound-
ary potential resonance condition [87]. Indeed, Eq. (4) gives
Ejoc = 2tac, the flat band energy. The localized eigenstate is
[Vioe) = (V2, —1,0)T /4/3. Assuming ec = fac for symme-
try, we find EL = £2f5c, while the eigenvectors are |y ) =
(1,72, =3)"/2/3 and [y) = (1, V2, )T /2.

Figure 6 presents the switching dynamics of the sawtooth
lattice with three and five sites. In both cases, one observes
similar population oscillation between the opposing edge sites
of the system as we observed for the Stub unit cell and the di-
amond chain. The limiting feature is observed in the Fig. 6(b):
The single-photon dynamics starting from the initial state with
the photon the site 1 causes significant part of the population

to delocalize, which is unwanted. This cannot be remedied in
other ways than what we essentially have done with the Stub
lattice, that is, to optimize the hopping parameters to localize
the left edge state more on the input site. Another mitigation
could be to initialize the system in the edge state rather than
edge site, which might be difficult in experiments due to
relative phases of the edge state. However, the population
oscillation to the opposite edge is not perfect even at this case.

The oscillatory nature of the two-photon dynamics hint that
one can understand the system by projecting to a subspace
of the single-particle Hamiltonian eigenstates at small inter-
action or the interaction eigenstates at the large interaction.
In the sawtooth, the noninteracting two-particle states are
[loc, loc), |loc, +), and |[++) at E = 4#ac, |loc, —) and |+—)
at E =0, and |——) at E = —4tac. Gathering these results in
a matrix, and assuming uniform interaction, we can project
the Hamiltonian onto the basis |++), |+loc), |loc, loc) and
obtain

43 1
s —1 1

Hint sawtooth = 3 _411 2 1]. B
1 I 5

We have three states where two are approximately degenerate
while the third one is offset. This explains why the observed
dynamics is more complicated in comparison to the diamond
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FIG. 7. Sensitivity to parameter imperfections. Panels (a)—(d) demonstrate the effect of having offset from the w-flux condition at the
two-rhombi diamond chain. On panels (a), (b), and (c), the flux is put to 0.937, 0.957, and 0.987, respectively, assuming single photon
initially at the left edge state. One observes similar oscillations between the two edges as with finite interaction with two photons. Panel
(d) shows the two-photon dynamics at 0.957 flux at U = J, which, together with Fig. 3, shows that the imperfection on the flux does not have
effect on the interaction if the interaction delocalization time is faster than the flux offset delocalization time. Panels (e)—(h) demonstrate the
effect of having hopping between A and B sites of the Stub unit cell at rag = —5. Panel (e) shows the effect on the single particle dynamics of
tag = 0.1tsc, the effect being small oscillations in the populations but not increasing the average zero-photon probability. Panels (f), (g), and
(h) show the effect of £ag = 0, 0.057ac, 0.124c on the two-photon dynamics. At small 74p the effect is very minute while suddenly at 0.1¢5¢ the
maximal probability of finding particles on the sites B and C reduces significantly.

chain and the Stub unit cell, where one could understand the
dynamics with a two-state model. However, one can extract
the approximate switching time by considering the pair of
states with equal diagonal elements, |++) and |loc, loc), to
obtain the Rabi frequgency. The large-interaction limit of the
dynamics follows similarly.

APPENDIX C: SENSITIVITY ANALYSIS

In the Stub unit cell and the diamond chain models, we
have assumed specific properties for the parameters in order
to have localized states. Specifically, for the Stub unit cell
we required that 74 = 0, i.e., the A and B sites do not have
mutual direct hopping, while for the diamond chain we have
included a 7 flux.

In Figs. 7(a)-7(c) we note that the single-particle dynam-
ics follows a Rabi-type oscillation between the edges if the
flux is slightly offset from s. For successful switching we
need to prepare the flux so that this oscillation is slower than
the interaction-induced delocalization. We show in Fig. 7(d)
that the two-photon dynamics are not sensitive to slight in-
accuracies in the flux if the interaction is strong enough
to cause faster delocalization than the imperfection on the
flux.

The flux-deviation effect can be understood by the fol-
lowing arguments. For the diamond chain, we note that in a
single thombus, deviations from the 7 flux directly couple
the left and right edge states. If the difference to the w flux
is small enough, then the perturbation mixes [L+) and |R+)
together, for instance, but not the other states, up to first order
in the deviation. With direct calculation, we find the coupling
between the states to be [exp(i¢p) — 11J (L + |l32134|R+) ~
|p|J+/2/4, which causes Rabi oscillations between the edges.
Similarly, in the two rhombus case, since the left and right

edge states are not directly coupled, we find that the coupling
is given by the second-order Schrieffer-Wolff transformation
as $p2J/2/8.

For the Stub unit cell, the direct connection between sites
A and B is found to be robust in terms of the single-particle
localization, as shown in Fig. 7(e). However, we find that
the two-particle dynamics delocalization to the other edge
becomes imperfect with increasing hopping between A and
B sites. For instance, at the considered ratio rag = —5, devi-
ation tap = 0.17ac significantly disturbs the delocalization, as
shown in Fig. 7(h). However, the change seems to be abrupt
since 1o = 0.0575p is not causing large difference as shown
in Fig. 7(g).

APPENDIX D: MORE THAN TWO PHOTONS

Here we discuss the behavior of the switch if more than
two photons enter the system. Figure 8 demonstrates the effect
of having more than two photons at the initial state for the
Stub unit cell and the two-rhombi diamond chain. For the
Stub unit cell, the population delocalizes more than in the
single-photon case. However, similar dynamics of all photons
moving together, as found for the two-photon case, is not
present. Nevertheless, the photon number fluctuations over
time increase with photon number.

For the diamond chain, the oscillatory dynamics of photons
moving together from an edge to the opposite one is observed
for even photon number, while the odd photon number resem-
bles the Stub unit cell shown above. However, the timescale of
the oscillation is substantially longer than with the two-photon
oscillations.

The difference between the diamond chain and the Stub
unit cell is that the former strictly allows only pair movement
while in the latter single-particle processes can occur due to
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FIG. 8. Multiphoton dynamics. The panels (a)—(d) present the time evolution of three-, four-, five-, and six-particle dynamics on the Stub
unit cell, starting from all the photons on the A site, labeled site 1. The panels (e)—(h) present the three-, four-, five-, and six-particle dynamics
on the two-rhombi diamond chain. For the Stub unit cell we find that the coherent population oscillatory dynamics observed with two photons
is not present. However, part of the photons delocalize: The photon number fluctuations seem to increase with photon number. In the case of
the diamond chain, we find that the odd particle number does not result in particle oscillation from an edge to another while the even photon
number does.

the presence of nonlocalized states. This, explains the dia- time is quick. However, switching is difficult to arrange with
mond chain odd photon number different behavior. more than one photon signal due to the fact that if there

The dynamics observed at the multiphoton initial states are multiple photons, they tend to delocalize even without
would allow switching since part of the photons can be found  the control photon. Thus, one would need to device another
at the output sites of the systems. Also, the delocalization =~ way to control the switch, e.g., turn the interaction on and

Sawtooth, two unit cells Diamond, two unit cells Diamond, two unit cells  Stub lattice, rap = —4
Initial left edge state Initial left edge state Initial left edge site Initial left edge state
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FIG. 9. Closed-operation dynamics in the classical limit. The interaction does not delocalize the states at all in the either of the initial state
configurations of the diamond lattice. For the sawtooth and stub lattices, the delocalization is exponential, resulting in a weak signal at the
right edge.
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off, which is not experimentally practical. Another issue for
the closed operation of the switching is the large fluctuations
of the expected photon number over time, so one would
need to be very precise when to deplete the system. This
would not, however, be a problem in the open operation of
the switch.

APPENDIX E: CLASSICAL DYNAMICS

In the limit of many photons, the mean-field approximation
becomes valid, where one can replace l;i — b; = (E,-), that is,
the operator with a classical number. The Heisenberg equa-
tion of motion for the operator b; is

d

“ bib;, El
o (E1)

—ih B,‘ = [[‘7, El] = Ztijl;j — U,B:L
J

where we obtain by the mean-field approximation,

. d 2
lhEbi =— ;tijbj + Uilbil“bi, (E2)

which is known as the nonlinear Schrodinger equation. We
solve this equation for the sawtooth edge system, diamond
chain and the Stub unit cell with and without interaction U;
in Fig. 9. It turns out that, in contrast to the quantum limit,
the interaction does not delocalize the light at the diamond
chain, in accordance to Ref. [43], while the sawtooth and
the Stub systems delocalizes weakly. Thus, the presence or
absence of interaction does not lead to successful switching at
the classical limit.
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