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Abstract Stream reasoning is one of the building blocks
giving semantic web an advantage in the race for the
real-time web. This paper demonstrates implementation of
materialisation-based reasoning using an event processor
supporting networks of specification-compliant SPARQL
Update rules. Collections of rules coded in SPARQL leave
the rule implementation exposed for selection and modifica-
tion by the platform user using the same query language for
both the queries and entailment rules. Observations on the
differences of SPARQL and rule semantics are made. The
entailment-category tests of the SPARQL 1.1 conformance
test set are thoroughly reviewed. New rules are constructed
to improve platform pass rate and the test results are mea-
sured. An event-based memory handling solution to the ac-
cumulation of data in stream processing scenarios through
separation of static data (e.g. the ontology) from dynamic
event data is presented and tested. This implementation ex-
tends the reasoning support available in an RDF stream pro-
cessor from RDF(S) to rdf, D*, P-entailment and OWL 2
RL. The performance of the INSTANS platform is measured
using a well-known benchmark requiring reasoning, com-
paring complete sets of entailment rules against the neces-
sary subset to complete each test. Performance is also com-
pared to non-streaming SPARQL query processors with rea-
soning support.
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1 Introduction

The support for finding logical consequences from
a set of facts, rules and axioms – reasoning – has
been built into the foundation of semantic web tech-
nologies. Many reasoners use first-order predicate
logic, with the inference proceeding by forward- or
backward-chaining [Singh and Karwayun(2010)]. Ap-
proach from the side of the query is known as query
rewriting [Pérez-Urbina et al(2012), Imprialou et al(2012),
Bischof et al(2014)] – fusion of the query with ontological
information – and from the side of data as materialisation
[Volz et al(2005)] – synthesis of new facts based on the
application of a set of rules. Entailment regimes are defined
by [Glimm and Ogbuji(2013)] as extensions of basic graph
pattern matching of SPARQL semantics allowing addi-
tional RDF statements to be inferred from explicitly given
assertions.

Core semantic web technologies RDF, SPARQL and
OWL (Web Ontology Language) have reached second gen-
eration1. The complexity of a full-blown OWL inferenc-
ing tool, even for the more restricted OWL profiles like
DL or Lite, or OWL 2 RL [W3C(2012)], can be consider-
able. Many of the entailment rules also produce a consider-
able overhead when used for materialisation2, while bring-
ing both limited and case-specific value to the reasoning pro-
cess. Implementations occasionally ignore entailment rules3

falling into this category. In the current situation:

1. Different entailment regimes partially overlap (illus-
trated in Figure 1)

2. Use of partially overlapping regimes in parallel may in-
troduce problems and unexpected results.

1 RDF and SPARQL as version 1.1, OWL as “OWL 2”
2 quantitatively demonstrated in Section 6
3 e.g. rdfD2, which states that all predicates are properties and

rdfs4, which states that all subjects and objects are resources

The final publication is available at Springer via http://dx.doi.org/10.1007/s13740-017-0076-9
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3. Entailment rules may otherwise appear identical across
regimes, but have different restrictions (e.g. limitations
on data types) depending on the regime.

4. Full-scale entailment regime implementations working
with materialisation produce impractical amounts of
overhead for many tasks.

5. For many tasks only a small subset of the rules is re-
quired.

6. Due to subtle differences in e.g. the triggering conditions
of otherwise identical rules an end-user needs to know
exactly how entailment rules are implemented in order
to correctly interpret results and compare them between
platforms.

7. To repeat experiments (such as old test cases), the en-
tailment rule implementation should be coupled with the
experiment, not the platform.

The need for a combination of entailment regime subsets has
been identified e.g. in [Polleres et al(2013)] in the context of
linked open data. One solution to these challenges is to cre-
ate a flexible reasoning framework, which enables the user
of a platform to be fully informed of the exact implemen-
tation of the various entailment rules, to select and modify
the rules as needed and to package the set of rules with a
particular experiment.

INSTANS4 [Rinne and Nuutila(2014)] is a continuously
executing RDF stream processing platform based on the
Rete-algorithm [Forgy(1982)] implementing SPARQL 1.1
Query [W3C(2013a)] and Update [W3C(2013b)] specifica-
tions. Originating from rule-based expert systems, Rete is
targeted towards supporting a large number of parallel rules,
or in this case, SPARQL queries. The platform allows to ex-
periment with the materialisation of entailment triples us-
ing the same language as users of the platform would use
to write queries - SPARQL. The following contributions to
RDF stream reasoning are made:

– First compliance-tested entailment regime implemen-
tations using networks of specification-compliant
SPARQL exclusively

– Memory handling in stream reasoning through con-
trolled separation of static knowledge from event data

– Extension of RDF stream reasoning beyond RDF(S) en-
tailment (rdf, D*, P-entailment and OWL 2 RL)

– Performance comparison of an RDF stream processor
with non-streaming processors using a benchmark with
reasoning.

Even though stream reasoning has been discussed for a num-
ber of years (e.g. [Barbieri et al(2010a)]), no RDF stream
processor with reasoning capability beyond simple RDF(S)
entailment has been found at the time of writing. As no com-
parison platforms or streaming benchmarks with more com-

4 Incremental eNgine for STANding Sparql,
http://instans.org

prehensive entailment regimes are available, we have used
a non-streaming benchmark to enable performance testing
and comparison with other platforms. The selected bench-
mark has event-like recurring data structures, which en-
able us to demonstrate event-based memory handling. Even
though continuous query processing is an integral part of the
INSTANS platform, the presented approach is not limited to
stream processing. The accompanying rule libraries for dif-
ferent entailment regimes are hereby made openly available
for any use or further development.

In Section 2 the history of relevant RDF, RDFS and
OWL entailment regimes as well as reasoning in RDF
stream processing platforms is reviewed. The incorporated
entailment rules and their SPARQL implementations are ex-
plained in Section 3. The impact of the entailment rules on
the results of the entailment tests in the SPARQL 1.1 test
suite are reviewed in Section 4. The experimental setup for
benchmarking INSTANS with reasoning is explained in Sec-
tion 5. Performance results for full sets of entailment rules
as well as optimised sets are documented in Section 6. Con-
clusions on the results are drawn in Section 7.

2 Background

The basic method of querying data with the SPARQL
query language is to generate a query graph possibly in-
cluding wild cards and find the RDF data graphs match-
ing said query graph. Many W3C standards (e.g. RDF and
OWL) provide semantic interpretations of RDF graphs al-
lowing additional RDF statements to be inferred. These
inferred statements can be generated using semantic
entailment relations. Such a standard set of semantic
web entailment relations is called an entailment regime
[Glimm and Ogbuji(2013)]. All entailment regimes are de-
fined as monotonic extensions of the simple RDF entailment
regime, meaning that a semantic extension cannot cancel an
entailment specified by a weaker regime.

In our work we have covered rule-based imple-
mentations under RDF 1.1 semantics of RDF entail-
ment [W3C(2014b)], RDFS entailment [W3C(2014b)],
and OWL 2 (RL profile [W3C(2012)]) as listed in
[Glimm and Ogbuji(2013)]. Additionally we have experi-
mented with the minimal subset of RDFS denoted rdf
[Muñoz et al(2007),Muñoz et al(2009)] as well as the com-
pletementary D*- and P-entailments specified by ter Horst
[ter Horst(2004), ter Horst(2005a), ter Horst(2005b)], where
the D*-entailment covers a subset of RDFS and P-
entailment a subset of first-generation OWL. The documen-
tation for SWCLOS25 (Semantic Web Common Lisp Object
System) presents - in addition to the P-entailment - a set of

5 https://github.com/SeijiKoide/SWCLOS/tree/master/
Manual

http://instans.org
https://github.com/SeijiKoide/SWCLOS/tree/master/Manual
https://github.com/SeijiKoide/SWCLOS/tree/master/Manual
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“additional entailment rules” as well as a set of “unsatisfia-
bility rules”, which only partially overlap OWL 2 RL, and
have thus been included in the study as SWCLOS2.

An implementation of OWL2 RL with SPARQL has
been previously demonstrated6. That solution makes use of
SPIN7 and built-in Jena8 functions, whereas the solution
presented in this paper consists exclusively of specification-
compliant SPARQL. We were also unable to find either com-
pliance or performance information for that SPARQL imple-
mentation. It targets TopBraid Composer9, which also sup-
ports built-in OWL and RDFS reasoners.

Stream reasoning is used as a term for the
combination of stream processing and reasoning
[Valle et al(2013),Margara et al(2014)], sometimes fo-
cusing on agile, lightweight reasoning on rapidly chang-
ing information [Barbieri et al(2010a)]. C-SPARQL10

[Barbieri et al(2010b),Barbieri et al(2010c)] is a SPARQL
extension and an early platform for RDF stream processing.
It is based on the data stream processing principle, where
the first step of stream processing is to apply a so-called
stream-to-relation (S2R) operator. The S2R operator ex-
tracts a time window of predefined duration or number of
tuples from the stream. All subsequent query operations
are scoped to the extracted window. In C-SPARQL there
is no built-in method for preservation of state between
subsequent windows. The stream reasoning approaches
on C-SPARQL take advantage of this, defining expiration
times for materialised triples based on window durations
[Barbieri et al(2010a)]. The current version of C-SPARQL
supports “simple RDF entailment”.

In Sparkwave entailments have been imple-
mented separately and denoted as the e-network
[Komazec and Cerri(2011),Komazec et al(2012)] to
separate from a- and b -nodes found in the original
Rete-algorithm [Forgy(1982)]. In [Komazec et al(2012)]
it is concluded that “only rules rdfs2, rdfs3, rdfs7

and rdfs9 need consideration at runtime”, but Spark-
wave also adds three rules on owl:inverseOf and
owl:SymmetricProperty to arrive at subsets of both
RDFS and OWL entailments.

In EP-SPARQL/ETALIS [Anicic et al(2011)] an external
library11 is used to transform RDFS ontologies into Prolog
rules and facts.

Outside the stream processing domain there are many
established reasoning and SPARQL query processing plat-
forms which can be used in multiple combinations. For

6 http://topbraid.org/spin/owlrl-all.html
7 http://spinrdf.org/
8 https://jena.apache.org/
9 http://www.topquadrant.com/tools/IDE-topbraid-

composer-maestro-edition/
10 http://streamreasoning.org/resources/c-sparql
11 http://www.swi-prolog.org/pldoc/package/semweb.
html

the performance comparison we have chosen Jena as
a well-known platform with an open and configurable
materialisation-based reasoner and Stardog12 as an example
of a high-performance tool using query rewriting. Another
strong candidate for the high-performance comparison plat-
form would be RDFox [Nenov et al(2015)].

The typical way to support reasoning on an RDF pro-
cessing platform is to make a set of reasoners available for
selection together with a framework for implementing cus-
tom rules. E.g. Jena general purpose rule engine13 has a
custom rule syntax, while Stardog allows custom rule im-
plementation in SWRL14. In these approaches the reasoners
are a part of the platform and new platform versions may up-
date rule implementation, which may impact results. While
ready-made reasoners can often be complemented with cus-
tom rules, on platforms other than INSTANS we have not
come across a documented method for an end-user to make
a local copy of a ready-made reasoner implementation and
remove rules, which are unnecessary for a particular task.
In the approach presented in this paper, reasoners are im-
plemented openly as SPARQL query networks in separate
text files. An end-user can make a local copy, which can be
freely edited with rules added, removed or modified. Up-
dates to the reasoners can be made available, but they are
not tied to platform versions and do not override the local
copy of the end-user. No new syntax needs to be learned
for specifying entailment rules, as everything is written in
specification-compliant SPARQL. Any of the existing rules
can be used as a template for creating a new rule.

3 Entailment rule implementation with SPARQL

Overlaps between the different sets of entailment rules con-
sidered in the study are illustrated in Figure 1. Two rules
have been considered the same, when an identical input pat-
tern materialises an identical output. When multiple trigger-
ing conditions have been listed under one rule (e.g. 7.(b)
in rdf [Muñoz et al(2009)]), the original has been split to
multiple rules. “Rules” omitting a triggering condition have
not been counted, as they have more commonality with
axiomatic triples [W3C(2014b)]. Slight variations in input
filtering, e.g. the condition for parameter p as p 2 U [ B
applied for some rules in D* and P-entailments, have not
been considered a reason to separate the rules from oth-
erwise identical rules in other regimes. This criteria yields
100 unique rules and 21 unique unsatisfiability conditions.
As can be seen in Figure 1, a core set of 6 rules is com-
mon to RDFS, rdf, D* and OWL 2 RL. Outside RDFS a
significant overlap between OWL 2 RL and P-entailment

12 http://stardog.com/
13 https://jena.apache.org/documentation/inference/
14 http://www.w3.org/Submission/SWRL/

http://topbraid.org/spin/owlrl-all.html
http://spinrdf.org/
https://jena.apache.org/
http://www.topquadrant.com/tools/IDE-topbraid-composer-maestro-edition/
http://www.topquadrant.com/tools/IDE-topbraid-composer-maestro-edition/
http://streamreasoning.org/resources/c-sparql
http://www.swi-prolog.org/pldoc/package/semweb.html
http://www.swi-prolog.org/pldoc/package/semweb.html
http://stardog.com/
https://jena.apache.org/documentation/inference/
http://www.w3.org/Submission/SWRL/
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Fig. 1 Overlaps between the different sets of rules considered in the
study. The numbers indicate the number of rules in each set or inter-
section.

can be observed. Beyond the high level view of Figure 1,
there are cases where one rule of a regime (e.g. rdfD1 in
[W3C(2014b)]) overlaps two or more rules of another (lg
and rdf2-D in [ter Horst(2005b)]). One regime may also
implement two inverse variants of a rule (e.g. prp-inv1
and prp-inv2 in OWL 2 RL [W3C(2012)]), while an-
other solution is to implement one of the rules comple-
mented by an explicit inverse rule (inv1 and inv2 in
[Komazec et al(2012)]). It is therefore observed that apart
from D*, P and SWCLOS2, which are intentionally disjoint,
there is no modularity between entailment regimes and they
are not suitable for use in parallel.

3.1 Scope of the implemented entailment regimes

For purposes of this study entailments were generated ex-
clusively through materialisation of triples by means of
SPARQL Update rules. The tested sets of rule implemen-
tations and axiomatic triples as well as more detailed test
results have been made available15 together with sample re-
sults and instructions for repeating the tests described in this
document. The exact scope of the implemented entailment
regimes is:

– RDF(S): As listed and enumerated in the infor-
mative sections 8.1.1 (RDF) and 9.2.1 (RDFS) of
[W3C(2014b)]. Even though the sections are informa-
tive, the rule identifiers in the list are dominantly used to
refer to RDFS entailment rules in the referenced litera-
ture, prompting us to align with this approach for consis-
tency and comparability. Therefore the rules for reflexiv-
ity of subClassOf and subPropertyOf have been ex-
cluded from the implementation of the RDFS regime,
even though they are covered in the normative parts of
the specification.

– rdf: As specified in table 1 of [Muñoz et al(2009)].

15 https://github.com/aaltodsg/instans-reasoning

– D* and P: As specified in tables 416 and 7 of
[ter Horst(2005b)].

– OWL 2 RL: As specified in tables 4-9 of [W3C(2012)].
– SWCLOS2: As specified in tables 13.4 and 13.5 in the

online manual referenced in Section 2.

3.2 Approaches to entailment rule implementation

The majority of entailment rules can be directly expressed
in SPARQL as shown for rdfs9 in Figure 2. The most com-
mon issue to address is the assumption of rule semantics that
two variables with distinct labels do not assume equal val-
ues, whereas the following triples:

?x a owl:Class

?y a owl:Class

When used in a SPARQL query, would by default result in
identical sets of solutions assigned to ?x and ?y. A typical
outcome is that the output of a rule becomes a duplicate of
one of the input conditions. The INSTANS platform does not
re-insert an already existing triple, avoiding eternal loops
in such cases, but they can also be avoided by filtering, as
shown for rdfs7 in Figure 2. Together these simple cases
cover > 84% of all rules and unsatisfiability conditions in
the tested sets.

# rdfs9 (cax-sco in OWL 2 RL, 3.(b) in rhodf)
INSERT { ?a a ?y }
WHERE { ?x rdfs:subClassOf ?y . ?a a ?x } ;
# rdfs7 (prp-spo1 in OWL 2 RL, 2.(b) in rhodf)
INSERT { ?s ?q ?o }
WHERE { ?s ?p ?o . ?p rdfs:subPropertyOf ?q

FILTER (!sameTerm(?p,?q)) } ;

Fig. 2 SPARQL implementations of rdfs9 and rdfs7

The remaining 19 cases present interesting challenges,
which are covered here by examples. OWL 2 RL uses lists in
12 rules. Even though it is possible to match the elements of
a list to a variable by means of property paths17, there are no
means provided in SPARQL for indexed comparisons of the
resulting elements. Therefore we have used a different ap-
proach, converting lists into indexed collections of elements
as shown in Figure 3. As the assumption e.g. in LUBM (ref.
Section 5) is that a list generated on the basis of the ontol-
ogy is traversed multiple times by the instances in the data,
the addition of the first list element is separated in our rules
so that the list initialisation element is not deleted when the
list is traversed. The OWL 2 RL unsatisfiability condition

16 Rule gl not implemented.
17 http://www.w3.org/TR/sparql11-query/
#propertypath-examples

https://github.com/aaltodsg/instans-reasoning
http://www.w3.org/TR/sparql11-query/#propertypath-examples
http://www.w3.org/TR/sparql11-query/#propertypath-examples
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cax-adc, reproduced in Table 1, serves as an example of a
rule which utilises a list with indexing, shown as SPARQL
in Figure 4. This generic list approach was applicable to 9
rules.

PREFIX : <http://instans.org/>
# initiate a new list
INSERT { ?list ?rule_init [ :nexthead ?head ;

:listindex 1 ] }
WHERE { ?rule :listProperty ?lprop .

?list ?lprop ?head
BIND (IRI(concat(str(?rule),"-init"))

AS ?rule_init) } ;
# add the first list element, increment index
INSERT { ?list ?rule [ :nexthead ?nexthead ;

:listindex ?nextindex ; ] ;
:element [ :value ?val ; :index ?index ] }

WHERE { ?rule :listProperty ?lprop .
BIND (IRI(concat(str(?rule),"-init"))

AS ?rule_init)
?list ?lprop ?head ;

?rule_init [ :nexthead ?thishead ;
:listindex ?index ] .

?thishead rdf:first ?val ;
rdf:rest ?nexthead .

BIND (?index+1 as ?nextindex) } ;
# add new list element, increment index)
DELETE { ?list ?rule ?ref .

?ref :nexthead ?thishead ;
:listindex ?index }

INSERT { ?list ?rule [ :nexthead ?nexthead ;
:listindex ?nextindex ; ] ;

:element [ :value ?val ; :index ?index ] }
WHERE { ?rule :listProperty ?lprop .

?list ?lprop ?head ;
?rule [ :nexthead ?thishead ;

:listindex ?index ] .
?thishead rdf:first ?val ;

rdf:rest ?nexthead .
FILTER (?nexthead != rdf:nil)
BIND (?index+1 as ?nextindex) } ;

# add final list element, remove head and index
DELETE { ?list :nexthead ?thishead ;

:listindex ?index }
INSERT { ?list :element [ :value ?val ;

:index ?index ] }
WHERE { ?rule :listProperty ?lprop .

?list ?lprop ?head ;
?rule [ :nexthead ?thishead ;

:listindex ?index ] .
?thishead rdf:first ?val ;

rdf:rest ?nexthead .
FILTER (?nexthead = rdf:nil) } ;

Fig. 3 SPARQL rules for list processing

Table 1 cax-adc from [W3C(2012)]

If then
T(?x, rdf:type, owl:AllDisjointClasses)
T(?x, owl:members, ?y) false
LIST[?y, ?c1, ..., ?cn]
T(?z, rdf:type, ?ci) for each
T(?z, rdf:type, ?cj) 1  i < j  n

The largest gap between rule and SPARQL semantics
was found in prp-key from OWL 2 RL (Table 2). The in-
tention is that iff ?x and ?y have properties matching all the

# declare
INSERT DATA { :caxadc :listProperty owl:members } ;

SELECT DISTINCT ?err ?x ?c1 ?c2
WHERE {

?x a owl:AllDisjointClasses ;
owl:members ?y ;
:element [ :value ?c1 ; :index ?i1 ] ;
:element [ :value ?c2 ; :index ?i2 ] .

?z a ?c1,?c2 .
FILTER ( ?i1 < ?i2 )
BIND ("cax-adc false: AllDisjointClasses have

common subject" as ?err) } ;

Fig. 4 SPARQL implementation of cax-adc utilising the list handler
of Figure 3.

predicates of the list of keys and those properties have val-
ues ?z matching each other, ?x and ?y are declared sameAs.
Direct conversion to a SPARQL query would produce so-
lutions as soon as any common triples between the list of
keys, ?x and ?y are found. Therefore we have used similar
iterative list processing as the one shown in Figure 3 where
predicates from the list of keys, ?x and ?y are matched step
by step until the end of the list of keys is detected. The ex-
act solution is left out of the paper in the interest of space,
but can be found in our referenced github repository under
owl2rl-rules. The complete statistical breakdown of the ap-
proaches used in implementing different rules and unsatisfi-
ability conditions is shown in Table 3.

Table 2 prp-key from [W3C(2012)]

If then
T(?c, owl:hasKey, ?u)
LIST[?u, ?p1, ..., ?pn]
T(?x, rdf:type, ?c)
T(?x, ?p1, ?z1)
... T(?x, owl:sameAs, ?y)
T(?x, ?pn, ?zn)
T(?y, rdf:type, ?c)
T(?y, ?p1, ?z1)
...
T(?y, ?pn, ?zn)

Table 3 Primary approaches used in implementing rules and unsatis-
fiability conditions.

Approach Rules Share
Simple (e.g. Figure 2 rdfs9) 82 67.8%
!sameTerm (e.g. Figure 2 rdfs7) 20 16.5%
Generic list (Figure 3, e.g. Figure 4) 9 7.4%
Custom list (e.g. Table 2) 3 2.5%
Special filtering 5 4.1%
Other (e.g. split to 3 queries) 2 1.7%
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3.3 Treatment of blank nodes

Some rules (e.g. rdfD1 in RDF and lg in D*) pro-
duce blank nodes. SPARQL entailment specification
[Glimm and Ogbuji(2013)] states that “new blank nodes in-
troduced in the saturation process are not to be returned
in the solutions”. As blank nodes only have local scope
(typically a graph), a renaming operation is necessary to
avoid errors in processing input from multiple sources
[W3C(2014a)]. Also INSTANS maintains a graph-specific
list and renames all incoming blank nodes using a local
naming scheme. The same naming scheme is used for blank
nodes generated by the active rules. Therefore it is not pos-
sible to syntactically distinguish between a blank node in-
troduced in the saturation process and a blank node loaded
as input data. In order to fully address the point from
[Glimm and Ogbuji(2013)], a list of either the blank nodes
loaded as input (to be included in solutions) or the blank
nodes materialised in the process (to be excluded) would
have to be maintained and queries would need to filter re-
sults accordingly. For the purposes of this paper the queries
in both the conformance tests and the benchmark have been
kept exactly as-is, and we have not implemented a global so-
lution for blank node filtering. For those conformance tests,
where unwanted blank nodes have been generated, the filter-
ing has been performed in custom rules.

3.4 Event-based memory handling

As pointed out in [Pérez-Urbina et al(2012)], materialisa-
tion works best when both the ontology and the data are
stable. Event processing, working on constantly changing
infinite streams of data, would therefore seem like an espe-
cially bad match for materialisation. Generation of implicit
data on an infinite stream will eventually fill the capacity of
any computer or database.

Even though materialisation causes problems in an un-
limited scenario, most stream processing tasks have limita-
tions of scope also for the purpose of answering queries in
finite time. In data stream processing queries are restricted
to time windows [Barbieri et al(2010a)], enabling expiration
of materialised triples together with the time windows. Also
in event processing scenarios there is typically a maximum
time, after which an old event can no longer impact the re-
sult. Sometimes all queries are event-specific, in which case
materialisations may expire together with each event. When
all the data with equal expiration time (e.g. a time window or
a group of events with associated materialisations) is kept in
a separate named graph, it can be expired and deleted with-
out touching other graphs. To support removal of event in-
formation the separation of semi-static background knowl-
edge (including e.g. all ontological data and materialisa-
tions based directly on the ontology) from the more dynamic

event data is necessary, so that the background knowledge
can be preserved.

Separating static and event data into separate graphs
causes modifications to the entailment rules. For each trig-
gering condition or materialised triple it needs to be known,
whether said triple belongs to static or event data. An exam-
ple of rdfs2 implemented for LUBM is shown in Figure 5.
Covering all possible combinations would explode the com-
plexity of the system, but for many applications - including
LUBM - the scope of each rule element is known from the
context.

BASE <http://instans.org/>
INSERT { ?x a ?c }
WHERE { GRAPH <static> { ?p rdfs:domain ?c }

?x ?p ?y }

Fig. 5 Event-optimised implementation of rdfs2 (prp-dom in OWL
2 RL, 4.(a) in rdf).

To enable the switch of move operations between differ-
ent graphs, the event stream needs to have markers, which
can be matched by SPARQL. These markers can be indi-
vidual triples or longer patterns, as long as they uniquely
identify the necessary switching points. Markers are needed
for switching between static and event data, as well as for
recognising the borders between events.

The LUBM data consists of universities, which are
further split into departments. No LUBM query requires
matching between departments, allowing us to treat depart-
ments as tumbling time windows in a stream. They are
expired and deleted, together with department-originated
materialisations, each time a new department starts in the
incoming data. LUBM does not have dedicated mark-
ers for the purpose, but we use triple pattern ?x a

ub:Department to switch from static to event input and
triple pattern ?x a owl:Ontology, which occurs in the be-
ginning of every department, to switch between events. The
general approach is illustrated in Figure 6, including the fol-
lowing steps:

1. All the SPARQL rules and queries (control rules
[Figure 7], entailment rules, and the application queries
[e.g. a LUBM query]) are loaded onto the platform. A
<control> graph triple is set to <static> (Figure 7 #

Activegraph-init).
2. Input to the main graph is handled as static data. If the

data matches entailment rules, materialisations are writ-
ten into the main graph.

3. Contents of the main graph, including the materialised
triples, are continuously moved into the <static>

graph (Figure 7 # Move-static-input).
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Static 
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Fig. 6 Procedure for event-optimised memory handling.

4. The marker for switching to event input is received (?x
a ub:Department).

5. A control rule switches a <control> graph
triple from <static> to <event> (Figure 7 #

Change-to-event-mode).
6. Data for the first event is received. Entailment rules use

both the <static> and main graphs for input as speci-
fied (e.g. Figure 5). Results are generated by the appli-
cation queries.

7. Event end marker is received (?x a owl:Ontology).
8. A control rule clears the main graph (Figure 7 #

Clean-previous-event).
9. Data for the next event is received.

In current scenarios the complete background knowl-
edge is typically available before any events, in which case
there is no need to switch back to static data input. If there
would be updates to the static data, a marker to designate
switching from event input back to static data input and
a corresponding control rule would be required. The effi-
ciency of the event-based memory handling approach is in-
vestigated in Section 6.

4 Compliance Testing

SPARQL 1.1 Test Suite18 has a separate section for tests on
entailment. The list of entailment tests reported for imple-
mentations19 includes 70 tests, but the 4 tests on RIF (Rule
Interchange Format20) are not available in the actual test
suite. The remaining 66 tests are split as follows:

18 http://www.w3.org/2009/sparql/docs/tests/
19 http://www.w3.org/2009/sparql/implementations/
20 https://www.w3.org/TR/rif-overview/

BASE <http://instans.org/>
PREFIX : <http:instans.org/default#>
PREFIX ub: <http://www.lehigh.edu/~zhp2/2004/0401/

univ-bench.owl#>

# Activegraph-init
INSERT DATA {

GRAPH <control> { :activegraph :address <static> } } ;

# Change-to-event-mode
DELETE { GRAPH <control> { :activegraph :address <static> } }
INSERT { GRAPH <control> { :activegraph :address <event> } }
WHERE { ?x a ub:Department

GRAPH <control> { :activegraph :address <static> } } ;

# Clean-previous-event
DELETE { ?s ?p ?o }
WHERE {

?x a owl:Ontology
GRAPH <control> { :activegraph :address <event> }
?s ?p ?o } ;

# Move-static-input
DELETE { ?s ?p ?o }
INSERT { GRAPH <static> { ?s ?p ?o } }
WHERE {

GRAPH <control> { :activegraph :address <static> }
?s ?p ?o
# Do not eat the change marker
FILTER NOT EXISTS { ?x a ub:Department } } ;

Fig. 7 SPARQL input handler to separate static information from dy-
namic events (LUBM departments).

– 27 (40.9%) produce the reference result without apply-
ing any entailment rules.

– 3 (4.5%) have errors, e.g. different variables in the query
and the sample answer.

– 36 (54.5%) need entailments to produce the reference
results.

Out of 36, 16 tests were found to reproduce the reference
solutions using one or more of the entailment regimes under
study, as shown in Table 4. Test coverage for each regime
is detailed in Table 5. OWL 2 RL shows the highest pass
rate, but due to the large number of rules test set coverage
is low and the number of rules in the regime per passed test
is high. The best match with the test suite is demonstrated
by rdf, which passes a high number of tests with a small
total number of rules. The most popular rule is cax-sco

(Figure 2), which is stressed in up to 7 different tests. We
performed further tests outside the test suite to verify the
functionality of the rules falling outside test coverage.

Custom rules reproducing the reference results for 13
of the remaining tests were implemented. The reasons for
customisation ranged from duplicate results (sparqldl-13) to
requirements for materialisation of properties, which do not
appear in any of the entailment regimes surveyed. As an ex-
ample, a test denoted simple4 expects to find pairs of ele-
ments using unionOf. The employed RDF construct is an
ordered list, implying that instead of all two-element combi-
nations a complete answer requires all ordered two-element
permutations. To enable solution-specific filtering to avoid
duplicating any part of the answer, the relatively complex

http://www.w3.org/2009/sparql/docs/tests/
http://www.w3.org/2009/sparql/implementations/
https://www.w3.org/TR/rif-overview/
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Table 4 SPARQL 1.1 entailment test mapping to regimes

Test RDF(S) rdf D*+P OWL 2
RL

rdfs01 rdfs7 2.(b) rdfs7x prp-spo1
rdfs02 rdfs7 2.(b) rdfs7x prp-spo1
rdfs03 rdfs2 2.(b) rdfs2 prp-dom

rdfs7 4.(a) rdfs7x prp-spo1
rdfs04 rdfs9 3.(b) rdfs9 cax-sco
rdfs05 3.(b) rdfs9 cax-sco

7.(a) rdfp5b eq-ref3
rdfp9 scm-cls

rdfs06 rdfs2 4.(a) rdfs2 prp-rng
rdfs07 rdfs3 4.(b) rdfs3 prp-rng
rdfs09 rdfs9 3.(b) rdfs9 cax-sco
rdfs11 rdfD2 2.(b)

rdfs6 6.(b)
rdfs7

paper- eq-ref-1
sparqldl-Q1 scm-cls
paper- 3.(b) rdfp5a
sparqldl- 7.(a) rdfp9
Q1-rdfs
paper- rdfs9 cax-sco
sparqldl-Q4 rdfp5a scm-cls

rdfp9
sparqldl-02 7.(b) rdfp9 cax-sco

rdfp5a scm-cls
sparqldl-03 7.(b) rdfp9 cax-sco

rdfp5a scm-cls
sparqldl-10 rdfp5a eq-ref
parent3 rdfs9 cls-svf2

rdfp12ab cax-sco
rdfp15 scm-eqc1
rule1
(SWCLS2)

parent9 scm-cls
scm-sco
scm-eqc1
scm-int

parent10 scm-sco
scm-eqc1
scm-int

Table 5 Conformance test set coverages per entailment regime

Regime Rules Rules Test Tests Total
total tested set co- pas- per

verage sed passed
RDF(S) 16 6 38% 8 2.0
rdf 15 7 47% 12 1.3
D* 16 5 31% 7 2.3
D*+P 37 8 22% 13 2.8
OWL2RL 58 10 17% 16 3.6

pair of SPARQL rules shown in Figure 8 was constructed.
For comparison a SPARQL query producing the reference
test result directly from the test data is shown in Figure 9.

INSERT {
?x a [ a owl:Class ; owl:unionOf ( ?c0 ?c1 ) ] }

WHERE { ?c0 a owl:Class . ?c1 a owl:Class .
?x a ?c0 .
FILTER (!sameTerm(?c0,?c1))
FILTER (!isBlank(?c0))
FILTER (!isBlank(?c1))
FILTER NOT EXISTS { ?x a [ a owl:Class ;

owl:unionOf ( ?c0 ?c1 ) ] } } ;
INSERT {

?x a [ a owl:Class ; owl:unionOf ( ?c0 ?c1 ) ] }
WHERE { ?c0 a owl:Class . ?c1 a owl:Class .

?x a ?c1 .
FILTER (!sameTerm(?c0,?c1))
FILTER (!isBlank(?c0))
FILTER (!isBlank(?c1))
FILTER NOT EXISTS { ?x a [ a owl:Class ;

owl:unionOf ( ?c0 ?c1 ) ] } } ;

Fig. 8 SPARQL rules to pass test simple4.

SELECT DISTINCT ?x
WHERE { { ?x a :B } UNION { ?x a :C } } ;

Fig. 9 SPARQL query producing the same result as test simple4.

Utilising test-specific rulesets from both the referenced
entailment regimes and the customised rules INSTANS
passes 58 tests (89.4%). The main reasons for not passing
the final 7 tests were the lack of support for the nonNeg-
ativeInteger type (4 tests) and ASK-queries (2 tests). After
removal of missing and erroneous tests from the published
test results the reported comparison pass rates for Jena, Pel-
let21 and Stardog would be 55.6%, 88.9% and 38.1%, re-
spectively22. It should also be noted that the test suite lists
the same query twice with two alternative answers depend-
ing on the entailment regime, making a 100% pass rate using
a single set of rules impossible.

5 Experimental setup

To compare the performance of complete entailment
regimes with customised sets of rules and the performance
of event-like processing with static memory handling, as
well as the performance of INSTANS with other platforms

21 https://github.com/stardog-union/pellet
22 the results page does not include information on the program ver-

sions used to obtain the results

https://github.com/stardog-union/pellet


User-Configurable Semantic Data Stream Reasoning using SPARQL Update 9

supporting reasoning, a benchmark was needed. We chose
LUBM23 [Guo et al(2004)] because it:

– has been successfully used in benchmarking for 10+
years

– has queries with and without reasoning requirements
– is not based on streaming data and can therefore be used

also on non-streaming platforms
– features independent segments (departments), which can

be used to simulate an event stream for the purpose of
testing event-based memory handling

As LUBM requires entailment support beyond RDF(S)
(Table 7) and is not based on a data stream, no data stream
processors (C-SPARQL, Sparkwave or ETALIS) could be
used for comparison. LUBM generator version UBA 1.7 was
used to generate data for 1, 5, 10 and 100 universities24.
Both the data and the benchmark ontology were converted
and packaged to single Turtle25 files using the rdf2rdf26 con-
verter. Query syntax was aligned with SPARQL 1.1, other-
wise the original queries were not touched.

INSTANS v. 0.3.0.1 was compiled using SteelBank Com-
mon Lisp (SBCL) v. 1.3.8 with a heap size of 32768M and
executed from the command line. Stardog version 3.1.4 with
default settings (“SL” reasoner) was used from the command
line. A reasoner-jena27 wrapper Scala28 v. 2.11.7 applica-
tion was created to support selecting the reasoner from com-
mand line and timing the execution, running Jena v. 3.0.0.
Maximum heap size was set to (Xmx) 32G.

All experiments were executed on a MacBook Pro with
a 2.7 GHz Intel Core i5 processor and 16 GB of 1867
MHz DDR3 memory running OS X Yosemite 10.10.5. All
speed tests were executed four times, output was directed
to /dev/null to mitigate impact of I/O, the first run was
ignored as warm-up and the median value of the three re-
maining runs was recorded as the result. For INSTANS and
Jena the timer was started before opening the data file and
stopped at the end of iterating through the results. Stardog
pre-reads files into a database in a separate step before pro-
cessing. We used the “real” value of the unix-command
“time” to measure the time used by Stardog. An average
delay of running Stardog with no data29 was subtracted as
overhead and the time of loading the data into the database
(Table 6) was added. It should, however, be noted that since
the data is parsed into the database only once, the run-
time experience for the Stardog end-user running individual
queries is 3-63s faster than indicated in the results. Stardog

23 http://swat.cse.lehigh.edu/projects/lubm/
24 seed 0, index 0
25 http://www.w3.org/TR/turtle/
26 http://www.l3s.de/~minack/rdf2rdf/
27 https://github.com/aaltodsg/reasoner-jena
28 http://www.scala-lang.org/
29 ⇠2.2s with reasoning, ⇠1.5s without

suffered from some stability problems, with the server deter-
ministically halting on the 3rd execution of Q6 through the
batch. Re-starting the Stardog server for each trial stabilised
the situation for batches of 5 and 10 universities30.

Table 6 Number of triples and loading time measured by Stardog (U
= University).

Set Triples Stardog
load time [s]

1U 100,545 1.616
5U 624,534 3.086

10U 1,272,577 6.261
100U 13,405,383 63.636

6 Performance results

The LUBM web page provides reference query answers for
one university. Even though LUBM is not an RL ontology,
as it contains existentially quantified axioms, it was veri-
fied that all the platforms and qualifying sets of rules and
reasoners perfectly reproduce the reference answers. A list
of all 14 queries together with the minimum set of OWL
2 RL rules as well as the compliant reasoning frameworks
for INSTANS and Jena are listed in Table 7. Q1-Q3 and Q14
need no reasoning. A maximum of three rules per query are
required, and only eight rules in total are needed to pass all
LUBM queries. The relative execution speed of each frame-
work (reasoner or regime) was verified using five univer-
sities, the lists in Table 7 are ordered fastest first. Entries
in parenthesis are theoretically compliant but failed to com-
plete in practice using the complete regime.

Performance results for queries requiring no reasoning
are shown in Figure 10. Q2 has high run-time memory re-
quirements due to a large number of candidate solutions. For
INSTANS Q2 event-based memory handling was required
to complete a dataset of 5 or more universities, running at
4.2 ktriples/s. Jena Q2 performance was even lower and de-
teriorating for larger datasets at 0.67 (5U) and 0.36 (10U)
ktriples/s. Comparing the 5U and 10U cases over the other
queries we see that INSTANS performance is stable already
at 5U, whereas Jena and Stardog continue to accelerate from
5U to 10U. The optimised reasoner of Stardog shows very
minor impact on performance. Stardog with reasoner per-
forms 34x-40x faster than event-based INSTANS without
reasoning (10U case), indicating an upper limit for what
could be achieved on INSTANS using a query rewriting rea-
soner (assuming no delay from the reasoner).

The impact of event-based memory-handling on
INSTANS must be analysed over all test cases. Figure 11

30 INSTANS and Jena also re-start completely for each execution.

http://swat.cse.lehigh.edu/projects/lubm/
http://www.w3.org/TR/turtle/
http://www.l3s.de/~minack/rdf2rdf/
https://github.com/aaltodsg/reasoner-jena
http://www.scala-lang.org/
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INSTANS 10U Event
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INSTANS 10U Static
Jena 5U
Jena 10U
Stardog 5U reasoning
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Fig. 10 Execution speed results for queries requiring no entailment (ktriple = 1,000 triples).

Table 7 LUBM queries, required rules using OWL 2 RL names, qual-
ifying entailment regimes and Jena reasoners (fastest first, ()=did not
complete in test).

Query Rules INSTANS Jena
Q1-Q3 none
Q4 cax-sco RDFS RDFSSimple

rdf RDFS
D* OWLMicro
(OWL2RL) OWLMini

OWL
Q5 prp-dom RDFS RDFSSimple

prp-spo1 rdf RDFS
cax-sco D* OWLMicro

(OWL2RL) OWLMini
OWL

Q6 cls-int1 (OWL2RL) OWL
- cax-sco (Q7)
Q10 scm-svf1
Q11 prp-trp P-entail OWLMicro

(OWL2RL) OWLMini
OWL

Q12 cls-int1 (OWL2RL) OWL
cax-sco
cls-svf1

Q13 prp-dom D*+P-ent OWLMicro
prp-spo1 (OWL2RL) OWLMini
prp-inv1 OWL

Q14 none

shows the INSTANS memory allocation sampled once per
second for both event-based and static memory handling
approaches using the OS X system utility top running Q9
(1U). The static approach exhausted heap memory and did
not complete, whereas the event-based memory handling
shows much better stability and faster execution. With-
out entailments (Figure 10) the static approach consistently
performs ⇠4.1x faster than event-based (10U). Also with
limited entailment regime queries (Figure 12) static was
3.6x-5.5x faster (5U opt). In other queries (Figure 13 and
Figure 14) the static approach collapses: Q7 and Q9 ran
out of memory, Q12 did not complete in 44 hours (<3.9
triples/s). For the ones that did complete (Q6, Q8, Q10) the
situation reversed and event-based was measured to be ⇠24x
faster in all three cases. This clearly shows how different as-
pects of memory pressure impact performance: in simpler
cases the delay of erasing the main graph after each depart-
ment (event-based approach) is significant and the static ap-
proach is faster, whereas in the more complex cases the large
amount of in-memory bindings in the static case collapse
performance and the event-based approach performs better.

Without entailments (Figure 10) Jena was measured
⇠27x faster than INSTANS (5U Event) with the exception
of Q2, where INSTANS was 6.2x faster than Jena. Mov-
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Fig. 11 INSTANS memory allocation for 1 university in Q9.

ing to queries with smaller entailment regimes (Figure 12)
using the simplest and fastest regimes available on both
INSTANS and Jena (Table 7) producing the correct results,
Jena performed 9.1x-68.3x faster than INSTANS. Using the
best measured performance (static case) with optimised
rules INSTANS performance improves 1.3x-12x, leaving
Jena 4.5x-7.4x faster and Stardog 9x-15x faster.

The situation changes dramatically for Jena with the
queries requiring the most complete OWL reasoner. Q7
failed to complete on a single university, other queries took
1-27 hours. With 5U Q6 did not complete a single iteration
in 59 hours (less than 3 triples/s). The complete OWL 2 RL
on INSTANS (using the static approach) did not complete
any query either. Using only the necessary rules and event-
based processing, INSTANS successfully completed also all
remaining queries (Figure 13, Figure 14 and Table 8). Star-
dog performed 18x-364x faster than INSTANS (10U Event).
As the study focuses on the ease of customisation using
SPARQL vs. pre-existing reasoner frameworks, not a head-
to-head comparison of the platforms, no rule customisation
on Jena or Stardog was performed.

To confirm stability, a batch of 100 universities was also
tested on INSTANS and Stardog. The execution times of the
best results achieved on each platform are shown in Table 8.
All results on INSTANS are with optimised query sets; Q1,
Q3, Q4, Q13 and Q14 with static memory handling and
Q2, Q5-Q12 with event-based memory handling. Perfor-
mance was in line with earlier results and the test confirmed
that event-based memory handling remained stable over a
dataset of 100 universities. Stardog demonstrated excellent
performance in running the queries. The Stardog results are
dominated by the loading time of the data to the database.
Despite server restarts before each query, Q6 (“Unable to
allocate 350.3M bytes, direct memory exhausted”) and Q14
(“GC overhead limit exceeded”) stopped with errors and
Q10 repeatedly froze, leaving some gaps into the results.

Table 8 Fastest processing times [hh:mm:ss] for INSTANS and Stardog
on 100 Universities LUBM.

Query INSTANS Stardog
Q1 00:10:02 00:01:03
Q2 04:45:05 00:01:04
Q3 00:10:15 00:01:03
Q4 00:12:00 00:01:04
Q5 01:28:53 00:01:03
Q6 01:13:00
Q7 01:21:41 00:01:05
Q8 01:12:09 00:01:06
Q9 07:22:30 00:01:06
Q10 01:12:10
Q11 00:50:08 00:01:03
Q12 01:32:15 00:01:03
Q13 00:18:40 00:01:03
Q14 00:10:37

7 Conclusions

The feasibility of supporting reasoning with intercon-
nected SPARQL Update rules has been assessed. Entail-
ment regimes RDF(S), rdf, D*, P, OWL 2 RL, rules from
SWCLOS2 documentation as well as test-focused custom
rules were implemented as a collection of 215 SPARQL
queries and rules, which are hereby made available. Spe-
cial treatment by interconnected SPARQL Update rules was
required for 18 cases, described in this paper through exam-
ples and for every case in the complementary web resources.
The collection is far more complete than seen in ear-
lier documents of stream reasoning [Barbieri et al(2010a),
Komazec et al(2012)]. These rule libraries are usable on any
tool supporting networks of SPARQL Update rules.

The pass rate improvement31 of each regime over the
66 entailment-tests of the SPARQL 1.1 Test Suite was found
to be 24% OWL2 RL, 20% D*+P, 18% rdf, 12% RDF(S)
and 11% D*. The highest result for OWL 2 RL as the most
complete regime was not as surprising as the good test com-
patibility of rdf, which needed only 1.3 rules per passed
test whereas OWL 2 RL used 3.6. Test coverages between
17-47% of the entailment regimes were observed, indicating
that in order to properly test conformance, further develop-
ment of the suite is necessary.

In the introduction the importance for the end-user to
have full visibility and control over the entailment rules be-
ing used was stressed. This assumption was confirmed in
multiple ways by the study:

– No more than four rules out of any regime were required
for passing any single conformance test.

– Test-specific sets of rules were utilised to demonstrate
a pass rate of 89.4%, higher than the reported result for
any other platform at the time of writing.

31 in addition to the 40.9% passable without entailments
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Fig. 12 Execution speed results for queries requiring small entailment regimes.
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Fig. 13 Execution speed results for Q6-Q8.
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Fig. 14 Execution speed results for Q9, Q10 and Q12.
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– Despite commonality between RDF(S), D* and rdf, sig-
nificant differences were discovered in the tests passable
by the different regimes.

– For LUBM a maximum of three rules per query or a total
set of eight OWL 2 RL rules are sufficient to pass.

– No tested pre-packaged reasoner completed five univer-
sities flawlessly on the LUBM queries requiring OWL
entailment: INSTANS OWL 2 RL crashed the heap on all
cases, Jena OWL did not complete any query in reason-
able time and Stardog SL – while delivering impressive
performance – required server re-starts between runs.

– Especially with materialisation-based reasoning the
quantity and type of entailment rules have a critical im-
pact on performance and stability.

The demonstrated solution leaves full control to the end-
user. Entailment rules are written in the same language as
the queries, so the end-user only needs to use one language.
Over 84% of the examined rules and unsatisfiability condi-
tions were shown to have a simple and straightforward con-
version to SPARQL. A generic list processing approach cov-
ered 7% of the remaining cases. The main approaches were
illustrated by examples. All rule implementations are avail-
able in the complementary repository. The rules are not in-
tegral to the platform and can be freely examined, swapped,
edited and packaged together with the queries all the way
to saving both rules and queries into the same SPARQL file.
This ensures platform-independent versioning of rule frame-
works and improves transparency and repeatability of exper-
iments.

Materialisation as a method of reasoner implementation
consumes capacity (whether the inferred triples are stored in
memory or saved to a database). This does not match well
with stream processing, where data is assumed to form an in-
finite stream. Despite that the presence of independent data
segments such as time windows, events or university depart-
ments (LUBM) often enables construction of a case-specific
solution, which separates the more static background knowl-
edge (including the ontology and ontology-based materiali-
sations) from the dynamic data (events and event-based ma-
terialisations) by using named graphs. A solution for this
event-based memory handling on LUBM was demonstrated
and tested to work on all queries up to a dataset of 100
universities. Memory consumption decreased and stabilised,
observed best in the case of Q9, where a single university
crashed 32GB of heap memory without the event-based so-
lution, whereas 100 universities passed without problems
with the solution activated.

Successful reproduction of LUBM reference answers
with all queries both for our rule implementation on
INSTANS and on two non-streaming SPARQL platforms
was verified. Using only the necessary rules on INSTANS
improved performance 1.3x-12.2x compared to the fastest-
performing complete regime on each query. Stardog with

an optimised query rewriting reasoner demonstrated clearly
superior performance. Despite the lower execution speed,
INSTANS with event-based memory handling and optimised
sets of rules was the only tested platform, which success-
fully completed all LUBM queries up to 100 universities.

The optimisation techniques available for non-streaming
platforms like Stardog and RDFox are different from con-
tinuously evaluating stream processors like INSTANS, as are
the target application areas. The measured performance for
INSTANS, 0.5 - 22.3 ktriples/s (over 100 LUBM universi-
ties), would be sufficient to support most examples (traf-
fic monitoring, weather monitoring, manufacturing logis-
tics, social media analysis etc.) used in stream processing
scenarios. The usefulness of a stream processor is ultimately
determined by the real-life use cases it can support.

As a future task a query rewriting reasoner should be
tested over INSTANS. Even though INSTANS performance
was not found to be on par with high-performance non-
streaming platforms, the functionality of a pure SPARQL
reasoner implementation in stream reasoning context was
verified, leaving the door open for further performance im-
provements as required by future real-time streaming appli-
cations.
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