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A.-M. Visuri,"? T. Giamarchi,? and P. T6rma!-3-"

'COMP Centre of Excellence, Department of Applied Physics, Aalto University, FI-00076 Aalto, Finland
2Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland
3 Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
(Received 9 November 2015; revised manuscript received 10 February 2016; published 8 March 2016)

We study analytically and with the numerical time-evolving block decimation method the dynamics of an
impurity in a bath of spinless fermions with nearest-neighbor interactions in a one-dimensional lattice. The bath
is in a Mott insulator state with alternating sites occupied and the impurity interacts with the bath by repulsive
on-site interactions. We find that when the magnitudes of the on-site and nearest-neighbor interactions are close
to each other, the system shows excitations of two qualitatively distinct types. For the first type, a domain wall and
an antidomain wall of density propagate into opposite directions, while the impurity stays at the initial position.
For the second one, the impurity is bound to the antidomain wall while the domain wall propagates, an excitation

where the impurity and bath are closely coupled.

DOI: 10.1103/PhysRevB.93.125110

I. INTRODUCTION

A single particle, or a macroscopic quantum degree of
freedom, coupled to a bath is a paradigmatic problem of
many-body physics. It is naturally described, at least in
three dimensions, as a composite object of the particle
dressed by bath excitations, which is a quasiparticle. Dressing
renormalizes some of the particle’s properties such as the
mass. This concept has been particularly fruitful for the
polaron problem, where the bath consists of phonons [1,2],
and for the Fermi-liquid theory where the collective action
of all the indiscernible particles in an interacting Fermi gas
renormalizes the parameters of a single-particle excitation [3].
In certain cases, such as the Caldeira-Leggett problem, the
renormalization of the parameters can be strong enough to
significantly change the behavior of the particle [4].

Similar effects occur in restricted geometries such as
one-dimensional quantum systems where the effects of
interactions are considerably reinforced. In particular, it was
shown that an impurity can behave quite differently from
a quasiparticle and the interaction with the bath can lead
to subdiffusion [5]. This new phenomenon has triggered an
intense theoretical and experimental activity, in particular
with very controlled experimental realizations by cold atomic
gases. Optical lattices in experiments with ultracold gases are
devoid of phonons, and in order to study similar phenomena as
in condensed matter physics, phonons can be incorporated via
a bath of a different type of particles [6,7]. Mobile impurities
in fermionic and bosonic baths have recently been studied to a
large extent theoretically [8—10] and experimentally [11-13].
In one dimension in particular, interesting time-dependent
phenomena have been predicted, such as a crossover from
a bound molecule to a polaron [14], the damping of Bloch
oscillations [8,15,16], the nonrelaxation of a supersonic
impurity [17], and an intriguing behavior of pair correlations
with slow and fast driven barriers [18].

In the aforementioned studies, the bath is assumed to be
homogeneous, and the only deformations of the bath are caused
by its fluctuations and the interaction with the impurity. This
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restriction is quite natural for systems with a contact interaction
such as cold atoms. In this article, we address the question
of how an impurity behaves if the bath instead possesses an
internal structure, such as a periodic arrangement of the bath
particles. An impurity would see an external periodic potential
but would also be able to create excitations, a situation not
dissimilar to the presence of phonons and the electron-phonon
coupling in a solid. Such baths can for instance be realized by
long-range interactions.

We investigate the dynamics of an impurity interacting
with a bath of fermions with nearest-neighbor interactions.
Using the numerical time-evolving block decimation (TEBD)
method [19,20] and analytic arguments, we show that the dy-
namics of the impurity drastically changes when the impurity
can create excitations in the bath, leading to a bound state of the
impurity and distortions in the bath. Nearest-neighbor as well
as longer-range interactions are currently becoming feasible
in experiments with ultracold bosonic [21-24] and fermionic
[25-28] dipolar molecules, dipolar atoms and Rydberg atoms
[29,30] both in traps and lattices. These advances make
setups available for testing the predictions presented here. The
motion of an impurity in an optical lattice can be recorded by
single-site-resolved imaging [13]. Previous theoretical studies
have considered spinless fermions with nearest-neighbor
interactions in the context of interaction quenches [31], and the
excited states created inside the Mott gap of a one-dimensional
solid by applying a laser pulse [32-34], described by the
extended Hubbard model with nearest-neighbor interactions
among two spin species. Such excitations are delocalized
and have a well-defined energy unlike the initially localized
domain wall excitations studied here.

The model and the numerical method are introduced in
Sec. II. In Sec. III, we show how the number of doublons
evolves in time for different regimes of interactions and
explain the case V > U by an analytic model for the V — oo
limit. The short-time dynamics are modeled by a three-site
Hamiltonian in Sec. IV. Section V discusses the excitation
dynamics in detail. We illustrate different possible excitation
processes which explain the features observed in density
distributions. In order to find a more precise picture of how the
bath evolves in time, we also study the correlation of density

©2016 American Physical Society


http://dx.doi.org/10.1103/PhysRevB.93.125110

A.-M. VISURIL, T. GIAMARCH]I, AND P. TORMA

SLIAVAVA VAVA
Jo
FIG. 1. A schematic figure of the initial configuration where the
total number of doubly occupied sites is (Ny, (t = 0)) = 1.

differences as a function of the distance from the center of the
lattice. These results are presented in Sec. VI. The possible
experimental realization of the model with ultracold dipolar
gases is discussed in Sec. VII. Finally, a brief summary is
presented in Sec. VIII.

II. THE MODEL AND THE NUMERICAL METHOD

The impurity and the bath are described by the Hamiltonian

H=-17) (cl,cjso +He)

jo
+U D njpng +V Y njnjag.
j j

Here, c 4 annihilates a bath fermion and c; the impurity, and

Njs = cj.a Cjs is the number operator. The tunneling energy is
denoted by J. Opposite spins interact on the same site with
energy U > 0, and the bath fermions among nearest neighbors
with V > 0. In the initial state, U = 0 and the impurity is
localized at the center of the lattice (site jj), as shown in Fig. 1.
At half-filling and V > 2J, the ground state of the bath is a
Mott insulator [35]. In order to find a nondegenerate ground
state, we fix the number of lattice sites to L = 2p 4 1, where
p € N, and the number of bath fermions to Ny = p + 1. For
even p, jo is occupied by a bath fermion, and for odd p, jj is
empty. In our TEBD calculations, L varies from 79 to 81, the
Schmidt number in the truncation of the state is fixed to 100,
and a time step 0.02% is used in the real time evolution.

III. THE TIME EVOLUTION OF THE NUMBER
OF DOUBLONS

In the beginning of the time evolution, the on-site interac-
tion is switched to U > 0 and the impurity is released. Due
to energy conservation, the dynamics will be different for U
close to V—at resonance—and for U and V far detuned.
Off resonance, with U > J, the total number of doubly
occupied sites (N4 () = (Y (1)] Zj njsn;jy | (1)) oscillates
with a frequency close to U, while the average value stays
constant, as seen in Fig. 2(a). The behavior agrees well with
the analytic solution for a free particle in a superlattice with
a potential difference U between alternating sites, which is
equivalent to the impurity problem when U > J and V — o0
(see Appendix A). Figure 2(a) shows that the analytic model
describes the impurity problem well for an impurity created at
either an occupied or an empty site. The oscillation frequency
U is also seen for the parameters of Fig. 2(b) when |V — U|
is sufficiently large. In Fig. 2(c), the frequency is very high
and the amplitude small and therefore the oscillation is almost
invisible. It can be seen at a shorter time scale in Sec. IV.

For an impurity created at an occupied site with U and
V far detuned, the energy U cannot be deposited into the
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FIG. 2. (a) The number of doubly occupied sites (N;,(¢))
calculated analytically in the V — oo limit for U = 8/, and by
TEBD for U = 8J and V = 20J. Here, V > U and the number
of doublons is nearly conserved. (b) TEBD results for V = 10J and
varying U . For U sufficiently close to V, (N, (¢)) decays as a function
of time. (c) TEBD results for V = 100/ and varying U.

bath. We find that the impurity propagates on occupied sites

in a second-order process with velocity %, which is the
superexchange coupling obtained from a mapping to the
Heisenberg Hamiltonian at the U >> J limit [36]. Similarly,
if the impurity starts at an empty site, it will not have enough
energy to move to a site occupied by a bath fermion and will
propagate on the empty sites. In contrast, an impurity at an
occupied site with U = V can deposit the energy U into the
bath for example in a process where the bath fermion at jj
moves by one site. This is seen as a decay of (Ny (7)) in
Figs. 2(b) and 2(c).

It is of interest to ask what kind of excitations are created
in this process. To unambiguously investigate the basic types
of excitations in the bath, we focus on the case of Fig. 2(c)
with very large U and V, which suppresses pair tunneling
processes. In Fig. 2(c), V is fixed to 100J and U varied around
this value. Intriguingly, we find that the curves for which
|V — U| > 3.5J saturate to a nonzero constant whereas the
ones for which |V — U| < 2.5J decay to a value close to zero.
For |V — U| = 3J, there is a decay within the simulation time
butitis unclear whether (N, | ) approaches zero at longer times.

125110-2
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FIG. 3. The three-site model comprises of the three central sites
between the vertical lines.

These results are discussed in detail in Sec. V. Essentially the
same behavior is obtained for V = 10J in Fig. 2(b), which
is closer to experimentally realizable values, as discussed in
Sec. VIL

IV. THREE-SITE MODEL FOR
THE SHORT-TIME DYNAMICS

For the large V =100J of Fig. 2(c), the number of
doublons for U = 90J and U = 110J has an initial oscillation

J

u+v 0 0
0 U 0
0 0O U+V
—t —t 0
H = —t —t 0
0 —t —t
0 —t —t
0 0 0
0 0 0

The initial state is a superposition of states |2}, |4), and |7).

In the three-site model, the initial behavior of (N4 (2))
during the first oscillation period is close to the many-body
result, as shown in Fig. 4. For three sites, there is a revival of the
oscillation after damping, which is not seen in the many-body
case. This indicates that the excitations propagating away from
the three central sites play arole in the dynamics after the initial
stage. One can therefore conclude that the bath fermions at sites
beyond the neighboring ones are responsible for the permanent
damping. The average value to which (N, ) saturates agrees
with the three-site model.

V. EXCITATIONS IN THE BATH

A. Particle densities

The decay of (N, ) for U close to V is connected to the
creation of excitations in the bath. The excitations can be seen

1 T T T
=
- 3-site model
0.9 —— TEBD simulation
0 0.2 0.4 0.6

time (units of 1/(27.J))

FIG. 4. The total number of doublons (N;(¢)) for U = 90J and
V = 100J has a similar initial behavior in the three-site model as in
the many-body TEBD simulations.
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with frequency close to |V — U|, in addition to the high
frequency U explained in Sec. III. A similar initial behavior
is given by a three-site model, illustrated in Fig. 3, where
N4y = N, = 1. The two particles have an on-site interaction
U, and the spin-up particle has a potential V at sites 1 and
3 mimicking fixed spin-up fermions at the adjacent sites. In
the basis

M=ty 09, =11 8. IH=19 | 1,
2)=18 1ty 0, 5= 1 0, B=It 0 ),
B=1 0 1), 166=18 1+ ). 9= 8 1),

the Hamiltonian is written as

-t 0 0 0 0
-t —t —t 0 0
0O —t -t 0 0
0 0 0O -t 0
0 0 0 0 -t
0 0 0O —t O
0 0 \% 0 —t
0O -t 0 \% 0
-t 0 -t 0 \%

as a density difference (n;4(¢)) — (n;4(0)) propagating from
the center of the lattice in Figs. 5 and 6. In the off-resonant
cases, the density differences are an order of magnitude smaller
than in the resonant cases, and the impurity propagates more

(niy(t)) — (i (0)) (niy ()
510 | l 001 =10 1
g
-8 -8
o
w 6 0 > 6
= = 0.5
(=}
£ 4 -0.01 E 4
o 2 o 2
g g
Z 0 -0.02 I 0 0
10 05 10 1
> 8 ' > 8
i —
=6 =6
° 0 ° 0.5
L 4 = 4
2 9 2 2
g 0 o g 0 0
A 20 40 60 80 5 736 42 48

lattice site j lattice site j

FIG. 5. (Left column) The difference in the density of spin-up
(bath) fermions with respect to the initial state as a function of position
and time, (Y (1) nj [ (1)) — (Y (0)| njy [¥(0)) for U =8J and V =
20J (upper row) and U = 8J and V = 10J (lower row). (Right
column) The density of the spin-down impurity (v (t)| n;, [ (¢)) for
the same values of U and V. For U close to V, the changes in the
bath density distribution (lower left panel) are an order of magnitude
larger than for U and V far apart (upper left panel), indicating that
there is a resonant interval of U around V for creating excitations.
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FIG. 6. The same quantities as in Fig. 5 for V = 100J and U =
90J (upper) and U = 100J (lower). The parameters of the upper
row are in the off-resonant region and those of the lower row in the
resonant region.

diffusively at resonance. Off resonance, the propagation is
limited to occupied sites, which is a second-order process
with velocity % [36]. In Fig. 5, the value U = 8J allows a
propagation velocity of the impurity which can be observed
within the simulation time, whereas for U = 90J in Fig. 6 the
velocity is too small to be observed.

B. Model for the resonance region
The density differences (n;4(t)) — (n;41(0)) are largest for
U = V. To explain this behavior, one can look for limits of
|V — U| within which excitations can be created. For V — oo,
the mapping to a free particle in a superlattice gives two energy

bands for the impurity, £ E; = :t\/ 4J2 cos?(k) + (%)2, where

k is the quasimomentum (see Appendix A). An impurity
created at an occupied site is initially in the higher band.

time
Jo

Jo

2a) .

Jo
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A simple way to derive the width of the resonance in U
is to assume that the impurity transitions to the lower band
by moving to an empty site, and that the dispersion relation
of the impurity is unchanged in the transition. The energy
released in such a transition would be absorbed by excitations
created in the bath. In this scenario, the excitations in the bath
are created far away and do not interact with the impurity.
In such an excitation, a bath fermion moves by one site,
which corresponds to creating a domain wall (DW) with two
neighboring sites occupied and an antidomain wall (ADW)
with two neighboring sites empty. The bath can be mapped
to an XXZ Hamiltonian, which has a two-domain-wall excita-
tion continuum w € [V —4J,V +4J][37,38]. Assuming the
same excitation spectrum as for two domain walls [37,38],
the process of creating a DW and an ADW has minimally
the energy cost V —4J and maximally V 4 4J. By energy
conservation, the lower limit of U to create excitations is
Unin = v/ (V —4J)2 — 16J2 and the upper limit is Upay =
V + 4J (see Appendix B). For V = 100J, U, = 95.9J, and
Unax = 104J.

One can see in Fig. 2(c) that for U =V £2.5J, (Ny})
decays to a value close to zero and for U = V £ 3/, there is
a slower decay. On the other hand, for U = V % 3.5J which
is within [Unin,Unmax], (N4}) saturates to approximately 0.5.
As seen in Fig. 2(b), a saturation to a value less than one also
occurs in the analytic superlattice model where there can be no
excitations. This suggests that creating a DW-ADW excitation
far from the impurity does not have a high probability since
the clear decay behavior does not persist to U =V +4/J.
Thus the bounds Ui, and U, derived above do not describe
the numerical results accurately. It is notable and curious
that this straightforward description does not agree with the
simulations.

C. Excitation processes and the observed resonance region

Instead of the simple description above, we find evidence
that the DW-ADW pair is created right next to the impurity,
in which case the motion of the excitations is restricted by

T AVAVAVAVA AVAVAVAY
NPNAA A
Jo

Jo

AN
Jo

FIG. 7. A schematic figure of the time evolution where a DW-ADW excitation is created by moving a bath particle to the neighboring
site from the impurity. Here, the bath particle moves to the left but the symmetric case is equally likely. The DW and ADW excitations can
propagate in opposite directions (configuration 1) or the DW can propagate and the ADW form a stationary bound state with the impurity
(configuration 2). From 2, the state can evolve for instance so that the DW and ADW propagate in the same direction (2 a) or the DW continues
to the left and the ADW remains stationary, with the impurity oscillating between the two sites (2 b). In configurations 2a and 2b, the DW

excitation has moved to the left beyond the region drawn here.

125110-4
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TABLE 1. Values of U and V for which a decay of (N;,) is
reasoned in the discussion above, and found in the TEBD simulations.

V=100 V=20J V=10J
Unin = /(V — 31)2 — 16J2 96.9 16.5 5.7
TEBD: Uy € [96.8,97.5] [17,18]  [6,8]
Upax = V +3J 103 23 13
TEBD: Upay € [102.5,103.2] [22,23] [12, 13]

energy conservation. Two distinct processes which can occur,
and configurations to which the system can branch later, are
illustrated in Fig. 7. In one process, the DW and the ADW
simultaneously propagate in opposite directions while the
impurity stays at jo (configuration 1). In the other process, the
impurity hops to the neighboring site (configuration 2). From
configuration 2, the ADW can start propagating in the same
direction as the DW, in which case the impurity will be trapped
at jo £ 1 (2a). Alternatively, the impurity and the ADW can
remain in place and form a bound state while only the DW
propagates (2b). If the impurity stays at jj, the ADW cannot
move to the left since this would require an additional energy
U. This situation is different from creating the DW-ADW
excitation far from the impurity as discussed above. Moreover,
it is now possible for the impurity to hop within the effective
double well formed by the ADW, associated with the kinetic
energy J.

We find that instead of a kinetic energy contribution +4J,
the simulations are compatible with 3/, as seen in Table I. We
have located the limits of the resonance region, Upin and Upax,
by simulating the dynamics for different values of V > J,
and different values of U around V. The studied values of U
between which a clear decay in (N4 (7)) starts and ends are
indicated as intervals in Table I. These intervals are compared
to Unin and Upax calculated by replacing the bounds of the bath
excitation continuum V £ 4J by V & 3J. The agreement with
V + 3J may be related to the kinetic energy contribution from
the impurity in addition to the bath excitations.

VI. THE TIME EVOLUTION OF THE BATH

The striped pattern of (n4(t)) — (n;4(0)) in Figs. 6 and 5
corresponds to inverting the positions of empty and occupied
sites in the bath, which is consistent with a DW or an ADW
excitation propagating away from the center. At this time scale,
the impurity on the other hand stays confined to the center of
the lattice. The right top panel of Fig. 6 shows that for U =
90J, the impurity does not move from the central site. This is
consistent with the very small change in the density of bath
fermions in the left top panel, which indicates that excitations
are essentially not created. For U = 100/, the density changes
in the bath are larger by an order of magnitude and the impurity
has a considerable probability ({n j+1,) ~ 0.2) to move to the
neighboring site. While for a DW and an ADW propagating
in opposite directions, the impurity stays at the central site, in
the other states presented in Fig. 7, the neighboring site will
be occupied by the impurity with some probability.

Since the expectation value of the density is an average
over all states with excitations propagating in either direction,

PHYSICAL REVIEW B 93, 125110 (2016)

—time = 0.5/J 2/J
1 —3/J -
—4/J
5/J |
—10/J
10 20 30 40

distance from the center i = j — j

FIG. 8. The density correlation (y(¢)| Anjy An_i; [ (t)) for U =
V =100J at different time steps shows that the bath evolves in a
superposition of configurations (see Appendix C).

it does not give information on whether both the DW and
ADW move simultaneously or if only one of them moves
and the other one stays fixed. Instead, one can study the
density correlation (Y (¢)| Anjy An_iy |Y(2)), where An;y =
niy — (Y (0) njy [¥(0)) and i, —i are indices from the center
of the lattice. If the DW and ADW propagate in opposite
directions, the density difference (An;;) will be 1 or —1
symmetrically on either side of jj, giving a correlation
that is maximally one. If only one excitation propagates,
e.g., in the positive i direction, (An_;4) will stay zero and
(AnjyAn_;4) = 0. The correlation will also be zero if the
DW and ADW propagate in the same direction, or if there
are no excitations. Detailed examples of the calculation of
(AnisAn_;4) are shown in Appendix C. Figure 8 shows
(Anjy An_;4) at different time steps for U = V = 100J. The
correlation at i = 1 seems to saturate to approximately 0.5.
This implies that the system is in a superposition where in
addition to the oppositely moving DW and ADW, there are
other states present for which the correlator is zero. Note that
the physical picture of DW and ADW excitations can also
help to explain previous results on the interaction-independent
velocity of density correlations in Mott insulators [31].

VII. EXPERIMENTAL REALIZATION WITH ULTRACOLD
DIPOLAR GASES

Polar KRb molecules and Rydberg atoms in optical lattices
have recently been used for realizing the spin-exchange
interaction between nearest neighbors [39,40], and magnetic
atoms have been employed for realizing a - J-like model [41]
and the extended Bose-Hubbard model [24]. The magnitude of
the nearest-neighbor interactions between the magnetic atoms
ranges from zero to approximately 2 in units of the tunneling
rates in these experiments [24,41], but it is tunable by the lattice
spacing and depth. The on-site interaction can be controlled
by Feshbach resonances. The energy gap between the lowest
and next-lowest energy bands is made an order of magnitude
larger than the tunneling energies and interactions by tuning
the lattice depth, preventing excitations to higher bands. In
the ¢-J experiment [41], the largest band gap in units of the
tunneling rate is in the z direction, w, ~ 57J; and the largest
nearest-neighbor interaction quoted is approximately 1.7/,
where J, = 3 Hz. A system with interactions close to 10J and
a band gap in this range could still be reasonably treated in
the single-band approximation. This magnitude of interactions

125110-5
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would be sufficiently high to observe the excitation dynamics
studied here.

The tunneling and interaction energies are dependent on the
lattice parameters; in particular, % can be tuned by changing
the lattice depth [42]. In the extended Bose-Hubbard model
experiment [24], lattice depths (s, s,,s,) = (15,15,15) in units
of the recoil energies correspond to V ~ J = 27 Hz in the
(x,y) plane. The effect of the nearest-neighbor interaction is
already seen in the energy gap of the Mott insulator state. We
calculate, using a Gaussian approximation for the Wannier
functions, that a value V =~ 10J where J =~ 2.7 Hz could
be reached with lattice depths around (sy,s,,s;) = (24,24,24)
with the same laser wavelengths (see Appendix D). A sufficient
duration of the experiment for the dynamics studied here is
also realizable, since a coherent Bose-Einstein condensate
can be preserved for around 1 s [24], corresponding to 2.7}.
For these low frequencies, temperature effects would play a
role and should be taken into account. Note that postselection
techniques such as in Ref. [13] could help in that respect.

Even larger dipole-dipole interactions can be attained by
combining magnetic atoms into molecules [43] and with
heteronuclear molecules which possess large electric dipole
moments [27,44]. The stability of polar molecules against
chemical reactions is still an issue to be solved and has been
approached by confining the molecules to deep lattices which
suppresses their tunneling [39]. Immobile polar molecules
could be used for realizing the bath studied here, a Mott
insulator at half filling with nearest-neighbor interactions,
since it can be mapped to an XXZ model with spin exchange
S;“S;rl + SI-_S;TH and Ising S; S7, | terms. The impurity is not
included in such a mapping, and one could study the possibility
of whether an impurity particle added to the system would
create the excitation dynamics predicted in this work.

VIII. CONCLUSIONS

In summary, we have studied the dynamics of an impurity
in a bath where the nearest-neighbor interaction leads to
a periodic structure, in contrast to previous studies with
homogeneous baths. While we consider parameters for which
the bath is in the Mott insulator state, away from half-filling a
similar system can have a Luttinger parameter K < % The
dynamics of impurities in this regime are yet unexplored,
and our results are an indication that also this parameter area
may reveal novel types of dynamical phenomena. We find
that structuring crucially affects the types of excitations in
the system. An impurity which is initially localized at a site
occupied by a bath particle can create an excitation where a
DW and an ADW propagate in opposite directions. Since the
ADW consists of two empty sites however, another excitation
occurs where the impurity is coupled with an ADW and only
a DW propagates. These new dynamical phenomena highlight
that rich physics can emerge from a structured bath, and
open interesting perspectives, for instance, to experiments on
ultracold dipolar gases.
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APPENDIX A: SUPERLATTICE MODEL
FORU « VANDV — o

In the case U > J, U <« V, and V — oo, the impurity
problem is equivalent to a free particle in a superlattice
with potential difference U between alternating sites. When
there is a higher potential on odd sites, one can write the
number of doubly occupied sites as (N4 (2)) = (Noaa()) =

Zj odd (W ()] cjcj [ (¢)). The time evolution can be solved
analytically, which allows to compare the results obtained for
more realistic values of U and V to a perfectly rigid lattice.
The Hamiltonian can be written as H = H; + Hy, where

U .
Hy =23 11 = (= leje),
J

and H; =—-J Zja(cj.acﬁla + H.c.). Transforming c; =

ﬁ >, efcy gives

U t U imi T
— E: — }: ]Z —itk=kj .t
Hy = 2 d CiCr > j e 2 e CiCrs

where the first term is an energy offset and the second one can
be written

U et U
_E Z Ze i( ”)]Cllcck, = —E Zak,k’-&-n(modZn)C}zck’
Jj kK k,k'

u i
=75 § :Ck+n(mod2n)ck'
k

We use periodic boundary conditions, which do not affect the
result when the impurity is far from the edges of the lattice.
A convenient way to diagonalize the Hamiltonian is to choose
a new unit cell of length 2 (see Ref. [45]), which reduces the
Brillouin zone from BZ (k = —m + ?,n =1,---,L)toBZ’
k = —% + Z’L’—",n =1, ,%). One can replace the operators
cr with new operators o and S defined in BZ’,

T
= ) k I:__s_]v
(077 Ck (S )

Bi—n i=crx, k€ [%n]

Bir i=cCr, k€ [—n,—%].

The Hamiltonian

k)+ A —A
H= Z (0‘/1 ﬂg)(e(lA —G(k)+A><Zi>’

kel-%,71
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where €(k) = —2J cos(k) and A = %, can be diagonalized by
a Bogoliubov transformation

Vi— = ugoy — v Py,
Vit = Vo + ur B

with the coefficients

_ L e
“ERY T e ar
1 G
v =

ENETEYS
The diagonal elements are A + Ej., where
Err = £Ve2(k) + A2 (A1)

The wave function at time ¢ = 0 can be written

L ¥ et

Y (0) =cf, 0) =

keBZ
T 2 e )+ (=D B 10)
eBZ
«/_ Z e R0 (uy — (— 1)jovk))/k
keBZ'

+ (=DPug + vy, 110),

and at time ¢,

[W(0) = e~ [y (0))

— —lAz E :e—lkj()

keBZ'
x [(ug — (=P vp)e Bty

+ ((—1)-’0uk +upe Byl 110)

= —=e7 0 3" eThiv(Aral + BEB)) 10)

keBZ'
where
Af =[ug — (= Dov Juge ™!
+ (=D ug + veJoge™ 5
and

B = —[ux — (=) v Juge’™!
+ (=D g+ veluge™ 5

In the exponents, E;+ has been denoted by Ej. The number
operator becomes

ol lej = Z e—ia=aDj Tc,
qquZ
1 o
:Z Z e—ia q)][a;aq"f'ﬁ;ﬁq’
q.q'€BZ'

+ (=D} By + (1) Blag]
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and the expectation value
(Wl cle; [y (@0) =—

Z e*i(k*k’)(j*jo)[AkAz
k.,k'eBZ'

+ ByBj + (—1)/(Ay B}, + By A})]

2
1 L
le DS RG| . (A2)

keBZ'

where

fi(ijo) = Ax + (=1)! B
. {Zcos(Ekt) — diugvg sin(Egt) for jo,j odd

2i (—uj + v}) sin(Ext) joeven, jodd
Here, jo odd corresponds to an occupied site at jy and jy
even to an empty site. The number of doubly occupied sites
in the many-body model is now equal to the total occupation

of the odd sites, (N3, (1)) = Z, odd (lp(t)|cTcJ ¥ (t)). ForU >
J, Ex ~ Y and since the sum in Eq. (A2) contains terms of the

type cos(Ekt) cos(Ept) =~ cos2(¥ %), the oscillation frequency
of (N4, (#)) is close to U.

APPENDIX B: MODEL FOR THE RESONANCE REGION

1. Energy of the impurity

A free particle in a superlattice with potential difference U
between alternating sites has the two energy bands E;. = +E;
given by Eq. (A1). They are illustrated in Fig. 9. An impurity
created at an occupied site is in the higher band, and moving
to an empty site would correspond to a transition to the lower
band. The change in the energy of the impurity would be

. U\’
AEimp. = Eki — (—Ekf) = \/4.]2 COSz(kl) + (E)

U2
+ 4]20032(kf)+(3>,

which has the maximum 2,/4J2 + (%)2 and the minimum U.

The initial and final momenta are denoted by k' and k7. The
energy released in such a transition would be absorbed by
excitations created in the bath.

E
— | T—— B
T k
U
R‘/_ 'Ek
k:-g k= g

FIG. 9. The energy bands of a free particle in a superlattice with
potential difference U between alternating sites.
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A VAVAVAVAVAVAVAVAVAVAVAVAY

t=1t T T G T /_’_t / T T T
t=1t T T T T /.’: / T ! T
t=t3 T T T T /.’:: / T T T

FIG. 10. A DW propagating to the left and a stationary ADW.

2. Energy of the bath

The bath can be mapped to an XXZ Hamiltonian, which
has a two-domain-wall excitation continuum w € [V —4J,
V +4J] [37,38]. In our system, a bath fermion moving
by one site corresponds to creating a domain wall (DW)
with two neighboring sites occupied and an antidomain wall
(ADW) with two neighboring sites empty. Assuming the same
excitation spectrum as for two domain walls [37,38], this
process has minimally the energy cost V — 4J and maximally
V+4J.

3. Energy conservation

A simple way to derive the minimum and maximum values
of U for which excitations can be created is to assume that
the dispersion relation of the impurity is unchanged in the
transition to the lower band. This means that the excitations in
the bath are created far away and do not have an effect on the
fixed superlattice potential close to the impurity. By energy
conservation, AEjny, = Epw4apw. The lower limit for U is
now obtained when the change in the energy of the impurity
has its maximum value and the DW-ADW excitation in the
bath is created at the minimum energy V — 4J,

/ Uz,
2 412+%=V—4J.

From this, one can solve Upi, = \/(V —4J)? —16J2. The
upper limit is obtained when the energy change of the impurity

A VAVAVAVAVAVAVAVAVAVAVAVAY

= o AR AU AN
= o AR
t=t3 T T T T _ T T /’__:\’T

FIG. 11. A DW propagating to the left and an ADW propagating
to the right.
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TABLE 1I. The expectation values
(An j;(1)) for the configurations in Fig. 10.

(W (O)njs [¥(0)) and

j 12 3 4 5 6 jo=71829 10 11 12 13
np ) 10 01 0 1 010 1 0°1
(Anjry(t)) 00 0 0 0 1 -1 00 0 0 0 0
(Anp() 00 0 1 =11 -1 00 0 0 0 0
(Anp@) 01 =11 =11 -1 00 0 0 0 0

has its minimum value U and the excitation in the bath is
created at the maximum energy V +4J,

Unix =V +4J.

APPENDIX C: DENSITY CORRELATION

In this section, we illustrate with two examples the meaning
of the density correlation (y(t)| AnjsAn_;s |¥(t)), where
i is the distance to the center of the lattice i = j — jy.
Figures 10 and 11 depict two possible ways in which the bath
configuration can evolve in time, similar to Fig. 7 of the main
text. The impurity is not drawn for clarity. In Fig. 10, the DW
excitation propagates to the left while the ADW excitation
stays localized at the center of the lattice. In Fig. 11, the DW
propagates to the left and the ADW to the right. In Tables IT and
III, the expectation value of the density change (An (1)) =
(W®lnjs [Y@®) — (Y 0)nj4 |¥(0)) is calculated for these
two cases. When the state of the bath is described by a single
configuration at any ¢ (and not a superposition of different con-
figurations), as in these examples, (¥ ()| An;s An_;y [ (t)) =
(Ani4(t)){An_;4(1)) and the value of the correlation can be
read from Tables II and III. For example, Table III shows
that (Y (13)| Angy An_gy | (#3)) = —1 - (=1) = 1. Figure 12
shows a schematic diagram of the density correlation as a
function of i at the different times corresponding to the
configurations in Fig. 11. For the stationary ADW excitation of
Fig. 10, the correlation is zero at all times. Figure 8 is the main
text therefore shows that the system evolves in a superposition
of different configurations.

APPENDIX D: EXTENDED HUBBARD
MODEL PARAMETERS

In the extended Hubbard model in three dimensions, the
hopping energy J between neighboring sites is given by

2m

h2
J=- / d3r¢;(r)[__v2 + vm<r>}¢,+1(r), (D1)

TABLE III. The expectation values (Anj (1)) =
(Y@Injy | @) — (¥(0)|njy |¥(0)) for the configurations in
Fig. 11.

j 12 3 4 5 6 jo=78 9 10 11 12 13
(Anj@) 00 0 0 01 -1 0 0 O O 00O
(Anjpt)y 00 0 1 -1 1 -1 1 -1 0 0 0 O
(Anjp)y) 01 -1 1 -1 1 -1 1 -1 1 -1 0 O
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1 I =1 1
N —
3 t =1,
s
<
~
0 ‘ ‘ ; ; ;
1 2 3 4 5 6
FIG. 12. A schematic plot of the correlation

()| Anip An_jy |Y(t)) at different time steps for the case of
a DW propagating to the left and an ADW propagating to the right.

where ¢;(r) are the Wannier functions of the lowest band
and Vi, (r) is the lattice potential [42]. The on-site interaction

PHYSICAL REVIEW B 93, 125110 (2016)

energy with the s-wave and dipole-dipole contributions is
U= [ @rigswit+ [[ drdrioertismpua-r)
and the nearest-neighbor interaction is

V= / / &’rd’r|p; )l @PUX —r).  (D2)

The dipole-dipole interaction U (r) is given by

Cag 1 —3cos?6

vy = 47 r3
for dipoles aligned in the z direction with an angle 6 between
the dipole orientation and the relative location of the dipoles.
The coupling constant is Cqq = pou?. The magnetic moment
w of for example erbium is 7 5. We use the lattice spacings
d¢,y =266 nm and d, = 532 nm [24], fit the coefficients in
Egs. (D1) and (D2) to the values of J and V in the (x,y) plane
given in Ref. [24], and calculate J and V using a different
lattice depth.
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