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We characterize the role of electrostatic fluctuations on the charge selectivity of cylindrical nanopores
confining electrolyte mixtures. To this end, we develop an extended one-loop theory that can account
for correlation effects induced by the surface charge, nanoconfinement of the electrolyte, and inter-
facial polarization charges associated with the low permittivity membrane. We validate the quanti-
tative accuracy of the theory by comparisons with previously obtained Monte-Carlo simulation data
from the literature, and scrutinize in detail the underlying forces driving the ionic selectivity of the
nanopore. In the biologically relevant case of electrolytes with divalent cations such as CaCl2 in
negatively charged nanopores, electrostatic correlations associated with the dense counterion layer
in the channel result in an increase of the pore coion density with the surface charge. This peculiar-
ity analogous to the charge inversion phenomenon remains intact for dielectrically inhomogeneous
pores, which indicates that the effect should be observable in nanofiltration membranes or DNA-
blocked nanopores characterized by a low membrane permittivity. Our results show that a quantita-
tively accurate consideration of correlation effects is necessary to determine the ionic selectivity of
nanopores in the presence of electrolytes with multivalent counterions. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4864323]

I. INTRODUCTION

Electrostatic forces induced by the nanoscale confine-
ment of charged liquids are at the origin of various indus-
trial and biotechnological applications. A prominent exam-
ple is the water desalination process that aims at separating
salt from sea water by making use of the Donnan and di-
electric exclusion mechanisms.1–3 The coupling of electro-
static and hydrodynamic forces is also the basis of nanoflu-
idics separation technics that consist in controlling the flow of
charged liquids thorough nanochannels. Although a newborn
science, nanofluidics has already found many important appli-
cations from electromechanical energy conversion4 to DNA
sequencing5 and polymerase chain reaction in lab-on-a-chip
devices.6 In order to predict and control the functioning of
these devices, it is an important task to develop electrostatic
formulations of confined charged liquids that can handle ion-
ion and ion-substrate correlations in an accurate way; a chal-
lenge that remains to be met at present.

One of the major limitations of the current nanoflu-
idic transport theories is clearly the underlying dielectric
continuum electrostatics. Field theoretic formulations incor-
porating the charge structure of solvent7–10 or fluctuating
polyelectrolytes11 have been previously proposed. The addi-
tional weak point of nanofluidic approaches is their mean-
field (MF) nature. More precisely, these formulations that
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couple hydrodynamic transport equations with the Poisson-
Boltzmann (PB) equation neglect electrostatic correlations,
which are known to be highly relevant for charged nanopores
confining electrolytes of general composition.12, 13 On the side
of the artificial nanofiltration studies, ion rejection models1, 2

that make use of correlation corrected formulations such as
the electrostatic self-consistent (SC) equations14, 15 have been
so far one step ahead. However, uncontrolled approximations
involved in the derivation of the SC equations and in their so-
lution in cylindrical pore geometries have obscured the quan-
titative precision of these models.

The standard way to properly account for ionic correla-
tion effects consists of the one-loop expansion of the elec-
trolytic free energy around the PB theory. Unfortunately, the
unavailability of analytical solutions for the one-loop level
electrostatic equations in curved geometries have restricted
the proper consideration of ionic correlation effects to sim-
ple planar systems, whereas interfacial curvature effects have
been mostly considered at the MF level.16–18 At one-loop or-
der, electrostatic correlation effects on the interaction energy
of charged plates were considered within a semiclassical ap-
proximation by Podgornik and Zeks19 and in terms of special
functions by Attard et al.20 Correlation induced modifications
of ion densities at charged planes were also investigated at
the same perturbative order in Refs. 21–23 or using strong-
coupling expansion technics in Refs. 24–27. However, ionic
correlations in cylindrical geometries have been mostly stud-
ied within the Debye-Huckel (DH) approximation,28–30 which
is more limited than the one-loop theory, and valid exclusively
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for neutral or very weakly charged cylinders where the surface
charge induced electrostatic potential is much lower than the
thermal energy kBT.

The main advantage of the SC approach over the one-
loop theory is its ability to deal with dielectrically inhomo-
geneous interfaces where the one-loop expansion is known to
fail.23, 31 Different works introduced approximative solutions
of the SC equations beyond one-loop level in slit systems.32–34

Using a midpoint approximation that consists of replacing
the local ionic self-energy by its value in the mid-pore,
Yaroschuk solved the SC equations in cylindrical nanopores.1

Then, within a restricted variational approach based on a uni-
form screening parameter in the pore, Buyukdagli et al. im-
proved the solution of Yaroschuk and showed that ion trans-
port through nanoscale pores is characterized by an ionic
conductor-insulator (CI) transition.35, 36 Finally, Buyukdagli
et al. recently developed a systematic numerical scheme for
the exact solution of the SC equations in slit geometries.23

Comparisons with Monte-Carlo (MC) simulations showed
that this SC scheme can handle surface dielectric discontinu-
ities with a better accuracy than the DH approach.

Following these observations, we introduce in the present
work an extended one-loop approach that is based on the trun-
cation of the SC equations in such a way that the scheme re-
duces to the one-loop theory for dielectrically homogeneous
systems, but considers surface polarization effects associated
with low permittivity membranes in a self-consistent fashion.
The latter point is indeed the most important advantage of our
approach over numerical simulation schemes, since MC simu-
lation techniques have been so far unable to deal with interfa-
cial dielectric discontinuities in cylindrical pores. The article
is organized as follows. We review in Sec. II A the physical
framework of the SC formalism, and briefly introduce the ex-
tended one-loop theory whose detailed derivation is reported
in Appendixes B and C. Then, in Sec. III A, we make use of
the present approach in order to analyze the MC simulation
data of Refs. 12 and 13 for the partition of electrolyte mix-
tures in dielectrically homogeneous cylindrical pores. Finally,
Sec. III B is devoted to dielectric discontinuity effects on the
ionic selectivity of the pore, and our main results are summa-
rized in the Conclusion part.

II. THEORY

A. Self-consistent formalism

We review in this part the SC formalism introduced in
Refs. 14 and 15. The geometry of the membrane nanopore
is depicted in Fig. 1. It consists of a cylindrical pore of in-
finite length and radius d, and a negative wall charge distri-
bution σ (r) = −σsδ(r − d) with σ s > 0. The pore is in con-
tact with an ion reservoir at the extremities, which is imposed
by assuming the chemical equilibrium condition between the
charges in the pore and the reservoir.36 Furthermore, the elec-
trolyte is composed of p ion species, with each species of
reservoir concentration ρ ib and valency qi. The number den-
sity of each ionic species is given by

ρi(r) = ρibe
−Vw(r)e−qiφ(r)− q2

i
2 δv(r), (1)

FIG. 1. Schematic representation of the pore geometry. The pore radius is d,
the net negative surface charge −σ s, and the pore and membrane permittivi-
ties are, respectively, εw = 80 and εm ≤ εw .

where the wall potential that imposes the ionic confinement
inside the cylinder is introduced as Vw(r) = 1 if 0 < r
< d, and Vw(r) = ∞ for r > d. Moreover, the function φ(r) in
Eq. (1) stands for the electrostatic potential generated by the
fixed membrane charge at the pore wall or ionic charge ex-
cesses induced by charge separation effects. Then, the ionic
self-energy is defined in the form of an equal point Green’s
function

δv(r) ≡ lim
r′→r

{
v(r, r′) − vb

c (r − r′) + �Bκb

}
, (2)

with the electrostatic Green’s function v(r, r′) corresponding
to the potential induced by an ion located at r′. In an ion free
bulk reservoir, the latter reduces to the simple Coulomb po-
tential vb

c (r) = �B/r . Furthermore, the coefficient �B = 7 Å
in Eq. (2) stands for the Bjerrum length at ambient tempera-
ture T = 300 K, and κ2

b = 4π�B

∑
i ρibq

2
i is the DH screen-

ing parameter. Indeed, the self-energy introduced in Eq. (2)
accounts for the spatial variations of the chemical potential of
an ion resulting from the deformation of its screening cloud
close to boundaries of the system (solvation energy) and its
interaction with surface polarization charges (image charge
forces).

The external potential φ(r) and the Green function
v(r, r′) in Eqs. (1) and (2) are solutions of the electrostatic
self-consistent equations,14, 15

∇ε(r)∇φ(r) + e2

kBT

p∑
i=1

ρi(r)qi = − e2

kBT
σ (r), (3)

∇ε(r)∇v(r, r′) − e2

kBT

p∑
i=1

ρi(r)q2
i v(r, r′)

= − e2

kBT
δ(r − r′), (4)

where the dielectric permittivity function accounting for
the variations of the background permittivity at the bound-
aries of the cylindrical pore is given by ε(r) = εwθ (d − r)
+ εmθ (r − d), with εw � 80 and εm ≤ εw the water and mem-
brane permittivities, respectively. Moreover, e stands for the
elementary charge, and kB the Boltzmann constant. One notes
that Eq. (3) is an extended PB equation for the electrostatic
potential φ(r). Furthermore, Eq. (4) corresponds to a gen-
eralized DH equation for the Green function v(r, r′). The
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difference from the usual PB and DH equations is respectively
due to the non-uniform ion density ρi(r) in Eq. (4), and the
presence of the ionic self-energy term δv(r) in Eq. (1) that
introduces in Eq. (3) an inhomogeneous screening of the ex-
ternal potential. We also note that the bulk limit of Eqs. (3)
and (4) was investigated in Ref. 34. Indeed, it was shown that
for monovalent ions with concentration ρ ib < 2.0 M, the so-
lution of the variational equations yields the DH limiting law,
whereas for higher concentrations, the electrolytic free energy
becomes unstable. Although this instability can be avoided
with an ultraviolet cut-off, the regularization is unnecessary
since we have previously showed that the instability regime
lies well beyond the ion density range where the SC formal-
ism is quantitatively accurate.23

To characterize the correlation effects induced by the
confinement on the charge selectivity of the pore, it is help-
ful to identify the key system parameters. To this end, we
consider a dielectrically homogeneous pore εm = εw confin-
ing a symmetric electrolyte composed of two ion species of
valencies q± = ±q, with q > 0. Rescaling the distances in
Eqs. (3) and (4) according to r̄ = κbr , and renormalizing the
external potential and the Green function as ψ(r̄) = qφ(r̄) and
u(r̄, r̄′) = q2v(r̄, r̄′), the SC equations take the form

∇2ψ(r̄) − θ (d̄ − r̄)e− 1
2 δu(r̄) sinh ψ(r̄) = 2

s
δ(r̄ − d̄), (5)

∇2u(r̄, r̄′) − θ (d̄ − r̄)e− 1
2 δu(r̄) cosh ψ(r̄)u(r̄, r̄′)

= −4π�δ(r̄ − r̄′). (6)

The rescaled equations (5) and (6) show that for dielectrically
homogeneous pores and symmetric electrolytes, the ion den-
sity in the pore is solely characterized by three parameters.
These are the reduced pore radius d̄ = κbd, the coupling pa-
rameter � = q2κb�B characterizing the strength of the elec-
trostatic potential fluctuations around the MF potential, and
the parameter s = κbμ, where μ = 1/(2πq�Bσ s) stands for
the Gouy-Chapman length. Namely, the parameter s measures
the ratio of the counterion layer thickness μ at the charged
pore wall to the screening cloud radius κ−1

b around a central
ion in the bulk reservoir. In Sec. III A on electrolytes in di-
electrically homogeneous pores, it will be shown that elec-
trostatic correlation effects are characterized by an interpola-
tion between the parameter regime s 	 1 corresponding to a
compact interfacial counterion layer and the regime s 
 1 as-
sociated with a diffuse counterion partition close to the pore
wall.

In the present work, we will generalize to dielectri-
cally discontinuous pores the one-loop approach developed in
Refs. 21–23 for dielectrically uniform systems. Our strategy
consists in truncating the SC Eqs. (3) and (4) in such a way
that the extended scheme reduces to the one-loop theory for
dielectrically uniform pores with εm = εw. The details of the
derivation of the extended approach that we summarize in
Sec. II B are reported in Appendix C.

B. Truncating SC equations

The one-loop theory of a symmetric electrolyte in contact
with a dielectrically continuous charged plane was shown in

Ref. 23 to follow from the linearization of the SC Eqs. (3) and
(4) in terms of the electrostatic Green’s function v(r, r′). The
extension of the one-loop approach to a general electrolyte
mixture is presented in Appendix B. In the present work, we
also introduce a generalization of the one-loop approach to di-
electrically discontinuous systems where the singular nature
of the self-energy on the pore wall does not allow a simple
Taylor expansion of Eq. (1).23, 31 Our strategy that we detail
in Appendix C consists in treating in Eqs. (3) and (4), the part
of the Green function induced by the dielectric discontinuity
self-consistently, and expanding the rest resulting from solva-
tion forces perturbatively.

To derive the truncated equations, we formally split the
self-energy into a solvation and an image charge contribution
as δv(r) = δv(im)(r) + δv(s)(r), where the potential δv(im)(r)
accounts for the interaction of ions with the interfacial polar-
ization charges, and the potential δv(s)(r) incorporates the sol-
vation energy induced by the deformation of the ionic cloud
in the pore. Then we insert this expansion into Eqs. (3) and
(4), and linearize the latter in terms of the solvation energy
δv(s)(r). This truncation results in an expansion of the external
potential in the form φ(r) = φ0(r) + φ1(r), where the com-
ponent φ0(r) of the potential and the Green function v(r, r′)
satisfy the differential equations

∇ε(r)∇φ0(r) + e2

kBT

p∑
i=1

qini(r) = − e2

kBT
σ (r), (7)

∇ε(r)∇v(r, r′) − e2

kBT

p∑
i=1

q2
i ni(r)v(r, r′)

= − e2

kBT
δ(r − r′), (8)

and the correction term to the external potential is given by

φ1(r) =
∫

dr′v(r, r′)δσ (r′), (9)

with the auxiliary number and excess charge densities

ni(r) = ρibe
−Vw(r)−qiφ0(r)e− q2

i
2 δv(im)(r), (10)

δσ (r) = −1

2

p∑
i=1

q3
i ni(r)δv(s)(r). (11)

One sees that Eq. (7) is a modified PB equation that accounts
for the variations of the external potential by the image charge
forces. Furthermore, Eqs. (9) and (11) indicate that the term
φ1(r) brings corrections from solvation forces. The explicit
form of the potentials δv(s)(r) and δv(im)(r) as well as the it-
erative solution scheme of Eqs. (7)–(9) is explained in Ap-
pendix C. We finally note that in the limit εm = εw, Eqs. (7)–
(9) reduce to the one-loop equations derived in Appendix B.

III. RESULTS

A. Dielectrically homogeneous pores

We characterize in this section ionic correlation effects on
the selectivity of dielectrically homogeneous pores (εm = εw)
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confining electrolytes of general mixture. The theoretical ion
density results will be compared with MC simulation data
from Refs. 12 and 13 in order to establish the quantitative
accuracy of the present theory. The transparency of our theo-
retical scheme will also allow to probe in detail the underly-
ing physics behind the simulation results. Section III A 1 is
devoted to correlation effects on the partition of asymmetric
electrolytes composed of two species, and we will consider in
Sec. III A 2 the more complicated case of mixed electrolytes.

1. Asymmetric electrolytes

In this part, we focus on the MC simulation results of
Ref. 12 for the partition of asymmetric solutions and scru-
tinize in detail the underlying electrostatic interactions. The
reservoir contains an asymmetric electrolyte composed of two
ion species. We first consider in Fig. 2(a) the case of diva-
lent coions and monovalent counterions (q− = −2 and q+
= 1), with the pore radius d = 4 nm and charge σ s = 0.0356
C/m2. The figure displays the rejection rates defined as �c = 1
− k−, where the ionic partition function corresponds to the
pore averaged ion density,

ki = 2

d2ρb

∫ d

0
drrρi(r), (12)

with the local ion densities given by (see Appendix B)

ρi(r) = ρibe
−qiφ0(r)

[
1 − qiφ1(r) − q2

i

2
δv(r)

]
. (13)

It is seen that over the bulk density regime ρ−b > 0.03 M,
the MC data (red dots) and the one-loop result (solid black
curves) in Fig. 2(a) predict a slightly higher rejection rate
than the MF theory (dashed black curve). The same effect is
also illustrated in Fig. 3(a) that displays the coion rejection
rates against the surface charge at fixed bulk concentration

FIG. 2. Coion rejection rates against the anion density for (a) divalent anions
q− = −2 and monovalent counterions q+ = 1, and (b) monovalent anions q−
= −1 and divalent counterions q+ = 2. The pore charge is σ s = 0.0356 C/m2,
pore radius d = 4 nm, and the membrane permittivity εm = εw . The dashed
and solid black curves are, respectively, the MF and one-loop results, and the
MC data in (a) and (b) denoted by the red circles are, respectively, taken from
Tables III and IV of Ref. 12.

FIG. 3. (a) Coion rejection rates against the pore charge for divalent anions
q− = −2, monovalent counterions q+ = 1, with the bulk anion density ρ−b

= 0.1099 M, and membrane permittivity εm = εw . The curves and symbols
have the same meaning as in Fig. 2. MC data were taken from Table III of
Ref. 12. (b) Ionic self-energy and (c) the effective screening parameter of
Eq. (14) for the same system parameters as in (a) and the surface charges
given in the legend.

ρ−b = 0.1099 M, and for pore radii r = 2 nm and 4 nm. To un-
derstand the underestimation of the rejection rates by the MF
theory, one should note that for monovalent counterions, the
surface charge densities σ s < 0.068 C/m2 in Fig. 3(a) corre-
spond to the parameter regime s > 1 characterized by a diffuse
counterion layer next to the pore wall. In this regime where
the ion free membrane is responsible for a charge screening
deficiency in the vicinity of the charged wall, ions feel a re-
pulsion from the wall towards the mid-pore area where they
are more efficiently screened. Thus, correlations decrease the
MF density of both anions and cations in the pore. The posi-
tive ionic self-energy embodying this repulsive force δv(r) is
reported in Fig. 3(b) (solid black curve).

An interesting point to be noted in Fig. 3(b) is the
increase of the ionic self-energy in the mid-pore with an
increase of the surface charge from σ s = 0 C/m2 to
0.0356 C/m2. The positive energy barrier in the mid-pore area
that appears at finite charges is indeed the second correla-
tion effect behind the deviation of the MF curves from the
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one-loop and MC results in Fig. 3(a). This peculiarity can be
understood in terms of the effective screening parameter

κ2
eff (r) = 4π�B

p∑
i=1

q2
i ni(r) (14)

that determines the local screening of the one-loop potential
in Eq. (B4), with the function n(r) defined in Eq. (10). In
Fig. 3(c), it is seen that while moving from the charged wall
towards the mid-pore, the local screening parameter drops
below the bulk one. This originates from the exclusion of
divalent coions by the surface charge, which dominates the
monovalent counterion excess in the pore. The correspond-
ing charge screening deficiency with respect to the bulk reser-
voir results in an electrostatic energy barrier for ionic pene-
tration. Then, by further increasing the surface charge from
σ s = 0.0356 C/m2 to 0.0712 C/m2, one gets into the sec-
ond regime s < 1 where the counterions form a dense layer
in the vicinity of the charged wall. The resulting interfacial
ionic screening excess with respect to the bulk reservoir (see
Fig. 3(c)) leads to a negative ionic self-energy close to the
pore wall, although the mid pore area is still characterized by
the strong coion deficiency resulting in the positive branch of
the self-energy (see Fig. 3(b)). As a result, the one-loop re-
jection rates in Fig. 3(a) drop below the MF result for large
pore charges. One can also notice in Fig. 3(a) the good agree-
ment between the one-loop theory and the MC data, which
is remarkable if one considers the large coupling parameter
� � 5.2 for divalent anions at the bulk density ρ−b

= 0.1099 M.
We next consider an asymmetric electrolyte composed of

monovalent coions and divalent counterions. Fig. 2(b) dis-
plays for this case the anion rejection rates against the bulk
density at the pore charge σ s = 0.0356 C/m2. The inspec-
tion of the figure shows that the one-loop result remains very
close to the MC data, significantly improving over the MF re-
sult. Then, it is seen that the latter now overestimates the MC
and one-loop rejection curves. This effect is also illustrated in
Figs. 4(a) and 4(b) over the whole surface charge regime σ s

≤ 0.11 C/m2. To understand this peculiarity, one should note
that for divalent counterions, the pore is characterized by a
significant counterion excess even for weak surface charges.
The resulting screening excess κeff(r) > κb displayed in
Fig. 4(d) is shown in Fig. 4(c) to yield a significantly neg-
ative ionic self-energy on the order of the thermal energy
kBT, which is monotonically lowered with increasing surface
charge. As a result of this pure correlation effect, the coion
rejection rates in Fig. 4(a) obtained from MC and one-loop
approaches are seen to reach a peak at a characteristic sur-
face charge, and to decrease for higher pore charges where the
screening excess in the pore takes over the Donnan exclusion.
As noted in Ref. 12, this feature may be the precursor of the
negative rejection of electrolytes with multivalent counteri-
ons observed in ion rejection experiments with porous glass.37

Thus, the enhancement of coion densities with increasing sur-
face charge clearly deserves further investigation, and we will
reconsider the effect in Sec. III B 3 in further detail.

Finally, in Figs. 4(a) and 4(b), the one-loop theory is seen
to exhibit a quantitative agreement with MC data exclusively

FIG. 4. Coion rejection rates for pore radius (a) d = 2 nm and (b) d = 4 nm
against the pore charge for monovalent coions q− = −1, divalent counterions
q+ = 2, with the bulk anion density ρ−b = 0.0475 M, and the membrane
permittivity εm = εw . The curves and symbols have the same meaning as in
Fig. 2. MC data were taken from Table IV of Ref. 12. (c) Ionic self-energy and
(d) effective screening parameter Eq. (14) for the same system parameters as
in (a) and the surface charges given in the legend.

at low surface charges. Namely, the turning point where the
coion density starts to increase with the surface charge is seen
to be underestimated by the one-loop approach, and the devi-
ation increases beyond this value. Although the discrepancy
should be mainly due to electrostatic correlation effects, we
also expect the hard-core (HC) interactions absent in the one-
loop theory to be partly responsible for the disagreement.

2. Electrolyte mixtures

We consider in this part the simulation results of
Ref. 13 for the partition of an electrolyte mixture composed
of a symmetric and an asymmetric electrolyte, such as CaCl2
and KCl. Fig. 5(a) compares the one-loop ion densities with
the MC data in a narrow pore with radius d = 1 nm and van-
ishing surface charge σ s = 0 C/m2. The ion densities in the
reservoir are ρ−b = 0.2074 M, ρ2 + b = 0.0889 M, and ρ+b

= 0.0296 M, which are marked in the plots by the dotted
horizontal curves. First of all, it is seen that despite the large
coion density and strong confinement, the theory agrees well
with MC simulations within the numerical uncertainties of the
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FIG. 5. Ion density profiles for the electrolyte mixture CaCl2 and KCl in the
nanopore with (a) vanishing surface charge σ s = 0 C/m2 and radius d = 1 nm,
and (b) finite surface charge σ s = 0.00445 C/m2 and radius d = 4 nm. Bulk
ion densities are ρ−b = 0.2074 M, ρ2 + b = 0.0889 M, and ρ+b = 0.0296
M, and membrane permittivity is εm = εw . The curves and symbols have the
same meaning as in Fig. 2. MC data in (a) and (b) were, respectively, taken
from Figs. 4 and 12 of Ref. 13. (c) External potential (inset) and ionic self-
energy (main plot) for the same system parameters as in (a) (dashed-dotted
curves) and (b) (solid curve).

data, except in the vicinity of the pore wall where the theory
predicts a stronger ion depletion. This deviation may be due
to the fact that our formalism neglects the interfacial ion-free
layer associated with the finite ionic radius. This layer could
be easily incorporated into the Green function computed in

Appendix A as it was done in Refs. 38 and 39 in planar geom-
etry and in Ref. 36 for cylinders, but we leave this improve-
ment for a future work for the sake of simplicity. We also
note in passing that for ions in a neutral pore, the MF theory
yields the ideal gas behavior ρ i(r) = ρ ib, which is denoted in
Figs. 5(a) and 5(b) by the horizontal lines.

Two features to be noted in Fig. 5(a) are an overall deple-
tion of Cl− and Ca2 + ions, and a weak pore excess of K+ ions.
To explain these points, we report in Fig. 5(c) the ionic self-
energy (dashed-dotted curve in the main plot) and the external
potential (inset). It is seen that the deformation of the screen-
ing cloud around the ions results in a positive self-energy,
i.e., an electrostatic energy barrier depleting the monovalent
anions and divalent cations from the pore. Furthermore, as
a consequence of the stronger exclusion of divalent cations
with respect to monovalent anions, the bulk electroneutrality
is locally perturbated in the pore. The corresponding charge
separation effect leads in turn to a weakly negative external
potential (see the inset of Fig. 5(c)), resulting in a K+ excess
in the mid-pore area.

We next consider in Fig. 5(b), a larger pore of radius d
= 4 nm and surface charge σ s = 0.00445 C/m2. The bulk ion
densities are the same as in Fig. 5(a). The theoretical density
curves are again seen to yield a reasonable agreement with
MC simulation data that exhibit large uncertainties. In this
case, the counterion excess induced by the surface charge at
the pore wall (see Fig. 5(b)) is shown in Fig. 5(c) to yield a
weakly negative ionic self-energy, except in the vicinity of the
pore wall where the screening deficiency takes over and re-
sults in a positive branch of the self-energy. In Fig. 5(b), one
sees that the repulsive branch leads to an ionic depletion layer
close to the wall, and its competition with the surface charge
results in a concentration peak for counterions. Moreover, in
the same figure, the attractive branch of the self-energy is
shown to slightly increase the MF prediction of cation densi-
ties. In Sec. III B, we will incorporate into this picture surface
polarization charges resulting from the dielectric discontinu-
ity between the pore and the low permittivity membrane.

B. Dielectrically inhomogeneous pores

We consider in this part ionic partitions in cylindri-
cal nanopores separating the electrolyte from a membrane
medium with a low dielectric permittivity εm ≤ εw = 80.
The SC solution of the electrostatic closure equations (7)–
(9) for dielectrically inhomogeneous pores is explained in
Appendix C. For this more general case, the ion density is
given by

ρi(r) = ρib e−qiφ0(r)− q2
i
2 δvim(r)

[
1 − qiφ1(r) − q2

i

2
δvs(r)

]
,

(15)
where the external potential φ0(r) is the solution of the MPB
equation (C3), the correction to the external potential φ1(r) is
obtained from Eq. (C11), and the solvation potential δvs(r)
and the image-charge energy δvim(r) resulting from the di-
electric discontinuity at r = d are given by Eq. (C16).
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1. Comparison with MC simulations

We note that the present SC scheme that treats solva-
tion forces in a perturbative fashion differs from the approach
developed in Ref. 23 for ions at dielectric planes. Although
there are no available MC simulation data for ion densities
in dielectrically discontinuous cylinders, we can still test the
quantitative validity of the present theory for cylinders with
a large radius by comparison with MC simulations at planar
dielectric interfaces. To this end, we compare in Fig. 6 the
MC data from Ref. 23 for a symmetric electrolyte at a neu-
tral dielectric plane (red curve), with the predictions of the
present scheme for a cylinder of radius d = 10 nm (black
curve). The bulk ion concentration is ρ ib = 0.2 M, and the
membrane permittivity εm = 1. In order to illustrate the cor-
rections beyond the WC regime, we also report the DH den-
sity profiles for a planar interface23 (solid blue curve) and
a cylinder of radius d = 10 nm (square symbols). The DH
density profile for the cylinder is computed from the relation
ρi(r) = ρib exp[−q2δvDH (r)/2], with the DH potential given
by Eq. (A11) of Appendix A in the limit κ0 = κb.

First of all, in Fig. 6, one notes that the DH density pro-
files for the planar interface and the cylindrical pore coincide,
which indicates that curvature effects become negligible for
the pore radius d = 10 nm. Then, it is seen that the DH theory
overestimates the MC result for the ion density. The failure of
the DH theory for large densities in the range ρ ib � 10−2 M
was shown in Ref. 23 to result from the unability of the WC
theory to account for the local variations of the ionic screen-
ing. Finally, the ion densities computed with the present SC
scheme is seen in Fig. 6 to exhibit a very good agreement
with the MC data. This point shows that the present approach
can accurately handle image charge forces beyond the WC
regime. Encouraged by this observation, we make use of our
SC scheme to reconsider in Sec. III B 2 the ionic CI transition

FIG. 6. Ion density against the distance from the neutral pore wall for a
symmetric electrolyte of two monovalent ion species. The solid red and blue
curves are, respectively, MC simulation data from Ref. 23 and the DH den-
sity for ions at a planar dielectric interface, and the square symbols and solid
black curve, respectively, mark for a cylinder of radius d = 10 nm the ion
density profile from the DH approximation and the SC scheme introduced in
Appendix C. The bulk salt concentration is ρib = 0.2 M, and the permittivities
are εm = 1 and εw = 80.

FIG. 7. Ionic partition coefficient against the pore radius for a sym-
metric electrolyte of two monovalent ion species with reservoir density
ρib = 0.1 M and various values of the membrane permittivity εm. The transi-
tion points where the ion density drops to zero are marked by dotted vertical
lines.

that we had discovered in Refs. 35 and 36 within a restricted
variational scheme.

2. Conductor-insulator transition

We illustrate in Fig. 7 ionic partition coefficients com-
puted within the present approach from Eqs. (12) and (15)
against the pore radius for different values of the membrane
permittivity. In the case of a low permittivity membrane εm

= 1 associated with a strong dielectric jump at the pore wall
(solid black curve), the partition coefficient is seen to gradu-
ally decrease with the pore size, until it sharply drops from
k � 0.15 to zero at the pore radius d � 10 Å. We note
that within the restricted variational scheme based on a uni-
form pore screening parameter, we had already observed in
Refs. 35 and 36 the same ionic CI transition for cylindrical
pores. The appearance of this effect within the general SC
scheme of the present study shows that the transition is not a
simple artefact of the restricted variational choice in Refs. 35
and 36.

Then, with an increase of the membrane permittivity
from εm = 1 to 5, the jump in the ion density is seen to be
significantly reduced, and the transition becomes a smooth
one for the larger permittivity εm = 20. In Refs. 35 and 36,
it was shown that the CI transition results from a competition
between two opposing effects. On the one hand, the deforma-
tion energy of the screening cloud around ions associated with
solvation forces is amplified with ionic penetration and thus
favors ionic exclusion from the pore. On the other hand, the
screening of image interactions that lower the free energy of
the electrolyte favors ionic penetration. The smoothing of the
transition stems from the weakening of the competition be-
tween these two effects as a consequence of the reduction of
image charge forces with increasing εm. Indeed, the rounding
of the transition with a small reduction of the dielectric dis-
continuity indicates that the effect may be difficult to observe
in nanoscale membrane pores where the water permittivity is
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(a)

(b)

FIG. 8. (a) Coion partition coefficient against the pore charge and (b) the ef-
fective screening parameter Eq. (14) for an asymmetric electrolyte composed
of monovalent coions q− = −1 and divalent counterions q+ = 2. The bulk
anion density is ρ−b = 0.0475 M and the pore radius d = 2 nm. In (b), the
surface charge values are σ s = 0.0178 C/m2 (dashed curves) and σ s = 0.0356
C/m2 (solid curves), and the membrane permittivities εm = 1 (blue curves)
and εm = εw (black curves).

also expected to be reduced with respect to the reservoir per-
mittivity.

Finally, in Fig. 7, the comparison of the lower curves
with the result for a dielectrically homogeneous pore εm = εw

shows that regardless of the pore radius, the dielectric ex-
clusion is clearly the dominant rejection mechanism in the
nanopore. This is in line with recent nanofiltration experi-
ments where image-charge forces were shown to play the key
role in ion rejection from artificial membrane nanopores.3

3. Enhancement of coion densities with surface
charge

At the end of Sec. III A 1 on electrolytes composed of
monovalent coions and divalent counterions, it was shown
that an increase of the surface charge beyond a characteris-
tic value results in a decrease of the coion rejection rates (see
Figs. 4(a) and 4(b)). This seemingly counterintuitive effect
displayed in Fig. 8(a) in terms of the coion partition func-
tion (black curve) was shown to result from the strong counte-
rion attraction into the nanopore, transforming the latter into a
medium with high screening ability (see the local pore screen-
ing parameters displayed by black curves in Fig. 8(b)).

FIG. 9. Diagram characterizing the enhancement of coion densities with the
surface charge for an asymmetric electrolyte composed of monovalent coions
q− = −1 and divalent counterions q+ = 2, with the membrane permittivity
εm = εw and the pore radius d = 2 nm.

Then, in Fig. 8(a) where we illustrate the anion partition
functions for dielectrically discontinuous pores with εm = 1
and 40, it is seen that the surface charge induced enhancement
of coion densities is also present for low permittivity mem-
brane nanopores characterized by a strong ion rejection. This
peculiarity can be explained in terms of the electroneutral-
ity condition in the pore. More precisely, in Fig. 8(b) where
we reported the local screening parameter for εm = 1, the di-
electric exclusion of counterions from the pore wall is seen
to be compensated by a local counterion excess in the mid-
pore area. The latter effect originates from the global elec-
troneutrality condition that fixes the total number of coions
and counterions over a crossection of the charged pore. As a
result of this mechanism, the enhancement of the coion attrac-
tion with the pore charge survives for dielectrically inhomo-
geneous pores. Thus, the effect should be observable in real
membrane nanopores characterized by a low static dielectric
permittivity εm = 1 − 5.

In order to determine the charge density regime where
the coion density enhancement is expected, we plot in
Fig. 9 the characteristic surface charge σ ∗

s versus reservoir
concentration ρ∗

−b that marks the boundary between the area
for the surface charge induced anion decrease (σ ∗

s ↑ k− ↓ be-
low the curve) and increase (σ ∗

s ↑ k− ↑ above the curve).
We note that the transition curve also fixes the applicabil-
ity limit of the WC DH theory that always predicts an en-
hanced coion rejection with surface charge, i.e., σ ∗

s ↑ k− ↓.
The diagram in Fig. 9 shows that increasing the ion den-
sity from ρ∗

−b = 5 × 10−4 M to 0.1 M, the characteristic pore
charge where the effect is expected to come into play is moved
from σ ∗

s = 0.03 C/m2 to 0.01 C/m2. It should be noted that
these values correspond to considerably weak charge densi-
ties, and most of the charged nanoscale systems are actually
located in the parameter regime above the transition curve of
Fig. 9. For example, the characteristic surface charge of a
DNA molecule in a pore or the wall charge of a polyethy-
lene terephthalate membrane nanopore at pH = 7 are both on
the order σ s � 0.16 C/m2. This indicates that the effect scruti-
nized in this part is relevant to a large variety of biological and
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industrial nanopore systems, and charge fluctuation effects
should be properly taken into account beyond the DH theory
for an accurate determination of their functioning.

IV. CONCLUSION

In this work, we have characterized electrostatic correla-
tion effects on the ionic selectivity of cylindrical nanopores.
To this aim, we have developed an extended one-loop ap-
proach that can account for the charge correlations induced
by the strong confinement in the cylindrical pore, the sur-
face charge, and the interfacial polarization charges associ-
ated with the low dielectric permittivity of the membrane. We
have confirmed the quantitative accuracy of the theory and de-
termined its validity regime by making extensive comparisons
with MC simulation data.

In Sec. III A, we made use of the present theory in or-
der to analyze MC simulation results of Refs. 12 and 13 for
the partition of asymmetric and mixed electrolytes in dielec-
trically homogeneous pores. It was shown that for nanoscale
pores with surface charges in the range σ s ≤ 0.0712 C/m2,
ionic correlation effects can be categorized into two param-
eter regimes. For electrolytes with monovalent counterions
where the size of the surface counterion layer is larger than
the screening cloud radius in the bulk, i.e., μ 
 κ−1

b , charge
screening deficiency close to the pore wall results in an elec-
trostatic barrier decreasing the MF prediction for ion densi-
ties in the pore. We emphasize that this effect can be already
taken into account in a qualitative way by the weak-coupling
DH theory.

In the case of an electrolyte solution with divalent coun-
terions, such as CaCl2, where one gets into the second regime
μ 	 κ−1

b , the compact interfacial counterion layer responsi-
ble for a charge screening excess in the nanopore was shown
to attract both negatively and positively charged particles, in-
creasing their pore density above the MF prediction. This sec-
ond parameter regime is precisely not covered by the DH the-
ory since the latter is unable to account for the non-uniform
screening of the electrostatic potential. Most importantly, we
found that beyond a characteristic value of the pore charge
where the screening ability of the nanopore overcomes the
Donnan rejection mechanism, the coion density rises with the
surface charge.

In Sec. III B, we incorporated into this picture image
charge interactions associated with the dielectric discontinu-
ity between the pore and the membrane. First of all, it was
shown that the general SC approach introduced in this work
yields the same ionic CI transition as the one already observed
by the restricted variational approach of Refs. 35 and 36. This
suggests that the transition is not an artefact of the restricted
trial potential used in the previous variational theory. How-
ever, we also showed that the transition is smoothed if the
membrane permittivity exceeds εm � 5, which indicates that
the effect may be difficult to observe in membrane nanopores
where the strong confinement is also expected to reduce the
pore dielectric permittivity. Thus, in order to consider the case
of biological pores with subnanometer radius, future works
should consider the electrostatic nature of the solvent beyond
the dielectric continuum approximation. Moreover, the en-

hancement of coion densities with surface charge in the pres-
ence of divalent counterions was shown to survive for dielec-
trically inhomogeneous pores. Thus, this effect should be ob-
servable in biological and artificial nanopores characterized
by a low membrane permittivity. Finally, for electrolytes with
submolar bulk concentrations, the effect was shown to come
into play at considerably weak surface charge densities on the
order σ s ∼ 0.01 C/m2. This means that the surface charge in-
duced anion density enhancement should be present in many
biological and artificial pore systems where the characteris-
tic surface charges are usually an order of magnitude above
this limit. This observation confirms the significance of the
present SC approach in the study of nanopores with multiva-
lent counterions.

The approach developed herein presents important ad-
vantages over the existing theoretical tools of confined elec-
trolytes. First, for dielectrically uniform pores, it allows to de-
termine the partition of the ions in the cylindrical nanopore
at one-loop level, which has been so far limited to single
planar interfaces.21–23 Second, the formalism can also accu-
rately consider beyond the WC regime the induced polariza-
tion charges resulting from the dielectric jump at the pore
wall, a complication that cannot be taken into account by MC
simulation technics based on the image charge convention in
cylindrical pores. We should also mention that the present the-
ory is less time consuming than MC simulations, since in the
most complicated case of a charged nanopore with a strong
dielectric discontinuity and divalent counterions (see Fig. 8),
the computation of the ion densities for a given parameter set
requires less than 20 min on a single 2.7 GHz processor.

We would like to discuss as well the limitations of the
present theory. As it was shown in Fig. 4, in the presence of
divalent counterions, the quantitative agreement with MC re-
sults worsens for pore charges above σ s ≈ 0.02 C/m2. Since
the theoretical results overestimate the coion attraction into
the nanopore, we think that the absence of HC interactions
in the theory may be partly responsible for this failure. The
incorporation of HC interactions is also necessary in order to
consider concentrated solutions above the characteristic den-
sity ρ ib = 0.2 M where these interactions were shown to come
into play even at simple planar interfaces.23 For lower ion
densities where HC collisions play a minor role, one would
expect the finite ion size to modify exclusively the ionic den-
sities in the close vicinity of the pore wall associated with
an ion-free Stern layer.38, 39 The latter can be easily incor-
porated into the electrostatic Green’s function computed in
Appendix A, but we expect this improvement to weakly mod-
ify the pore average ion densities for channels with nanoscale
radius. Moreover, one should note that unlike the biological
channels having a finite length, the nanopore model consid-
ered in this work is an infinitely long cylinder. The finiteness
of the cylinder length is expected to reduce the strength of
correlation effects and particularly the dielectric exclusion ef-
fect induced by image charge interactions. In a future work,
one could extend the present theory by accounting for the
finite nanopore length in the same way as it was done in
Ref. 28 at the DH level. To conclude, we emphasize that
in view of the importance of the cylindrical confinement
geometry in nanosystems, the present formalism can find
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important applications from nanofluidics to artificial nanofil-
tration technology where a quantitatively accurate considera-
tion of charge correlation and surface polarization effects is
still missing.
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APPENDIX A: DERIVATION OF THE REFERENCE
POTENTIAL IN CYLINDRICAL COORDINATES

We derive in this Appendix the reference Green’s func-
tion that will be needed to solve the closure equations (7)–
(9) derived in Appendixes B and C. The confinement geom-
etry corresponds to a cylinder of charge σ s and radius d (see
Fig. 1). We choose the reference Green’s function in the form
of a DH potential with a general but uniform screening pa-
rameter κ0(r) = κ0θ (d − r), and satisfying the differential
equation

[∇ε(r)∇ − ε(r)κ2
0 (r)

]
v0(r, r′) = − e2

kBT
δ(r − r′), (A1)

where we introduced the piecewise dielectric permittivity pro-
file ε(r) = εwθ (d − r) + εmθ (r − d). Exploiting the cylindri-
cal symmetry of the system and inserting the Fourier expan-
sion of the potential

v0(r, r′) =
∞∑

m=−∞

∫ ∞

−∞

dk

4π2
ṽ0(r, r ′; k,m)eik(z−z′)eim(θ−θ ′),

(A2)
into the relation (A1), the equation for the Fourier transformed
Green’s function follows as{

1

r
∂rrε(r)∂r − ε(r)

[
κ2

0 (r) + k2 + m2

r2

]}
ṽ0(r, r ′; k,m)

= − e2

kBT

1

r
δ(r − r ′). (A3)

For the solution of the closure equations (7)–(9), we exclu-
sively need the solution of Eq. (A3) for the charge sources
inside the cylinder, i.e., for 0 < r′ < d. In this case, the homo-
geneous solution of Eq. (A3) is indeed given by

ṽ0(r, r ′; k,m)

= C1Im(ρ0r)θ (r ′ − r)θ (d − r)

+ [C2Im(ρ0r) + C3Km(ρ0r)]θ (r − r ′)θ (d − r)

+C4Km(kr)θ (r − d), (A4)

where In(x) and Kn(x) stand, respectively, for the modified
Bessel functions of the first and second kind, and we also in-

troduced the auxiliary function ρ0 =
√

κ2
0 + k2.

The integration constants Ci with 1 ≤ i ≤ 4 in Eq. (A4)
are obtained by imposing the boundary conditions associated

with the continuity of the potential and the displacement field.
The first set of boundary conditions follows by imposing the
continuity of the Green function at the position of the source
ion r = r′ and at the cylinder wall r = d,

ṽ0(r, r ′; k,m)|r→r ′− = ṽ0(r, r ′; k,m)|r→r ′+ , (A5)

ṽ0(r, r ′; k,m)|r→d− = ṽ0(r, r ′; k,m)|r→d+ . (A6)

The remaining two boundary conditions are in turn obtained
by integrating Eq. (A3) around r = r′ and r = d, which yields

∂r ṽ0(r, r ′; k,m)|r→r ′− − ∂r ṽ0(r, r ′; k,m)|r→r ′+

= 4π�B

r ′ ; (A7)

ε(r)∂r ṽ0(r, r ′; k,m)|r→d− = ε(r)∂r ṽ0(r, r ′; k,m)|r→d+ .

(A8)

Imposing the boundary conditions in Eqs. (A5)–(A8) to the
homogeneous solution (A4), the latter finally follows for
r < r′ in the form

ṽ0(r, r ′; k,m) = 4π�B[Im(ρ0r)Km(ρ0r
′)

+Fm(k)Im(ρ0r)Im(ρ0r
′)], (A9)

where we defined the function

Fm(k) = Km(kd)K ′
m(ρ0d) − ηγK ′

m(kd)Km(ρ0d)

ηγ Im(ρ0d)K ′
m(kd) − Km(kd)I ′

m(ρ0d)
(A10)

with the parameter η = εm/εw and the function γ = k/ρ0.
Moreover, we note that the solution of the potential for
r > r′ follows by interchanging in Eq. (A9) the variables r and
r′. Finally, the self-energy associated with the Green function
(A9) follows from Eq. (2) as

δv0(r) = �B(κb − κ0) + 2�B

π

∞∑
m=−∞

∫ ∞

0
dk Fm(k)I 2

m(ρ0r).

(A11)
For the solution of the SC equations in dielectrically discon-
tinuous pores, we note that the self-energy in Eq. (A11) can
be separated into a solvation and an image-charge part as
δv0(r) = δv

(s)
0 (r) + δv

(im)
0 (r), where

δv
(s)
0 (r) = �B(κb − κ0)

+2�B

π

∞∑
m=−∞

∫ ∞

0
dk F (s)

m (k)I 2
m(ρ0r), (A12)

δv
(im)
0 (r) = 2�B

π

∞∑
m=−∞

∫ ∞

0
dk F (im)

m (k)I 2
m(ρ0r) (A13)

with the auxiliary functions

F (s)
m (k) = Km(kd)K ′

m(ρ0d) − γK ′
m(kd)Km(ρ0d)

γ Im(ρ0d)K ′
m(kd) − Km(kd)I ′

m(ρ0d)
,

(A14)
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F (im)
m (k)=−(1 − η)

γ

d
Km(kd)K ′

m(kd)

×[ηγ Im(ρ0d)K ′
m(kd)−Km(kd)I ′

m(ρ0d)]−1

×[γ Im(ρ0d)K ′
m(kd)−Km(kd)I ′

m(ρ0d)]−1. (A15)

One sees that in the limit εm = εw, the function (A15) and
the image-charge contribution to the self-energy in Eq. (A13)
vanish.

APPENDIX B: ONE-LOOP SOLUTION OF SC
EQUATIONS

We explain in this Appendix the one-loop solution of the
SC equations (3) and (4) for ions confined in a dielectrically
homogeneous interface, i.e., εm = εw, with the surface charge
distribution σ (r) = −σsδ(r − d). The one-loop approxima-
tion consists of an expansion of the SC equations around the
MF theory in terms of the Green function v(r, r′) and the self-
energy δv(r). To this end, we split the external potential into a
MF and a fluctuating part as φ(r) = φ0(r) + φ1(r), where the
MF potential φ0(r) is the solution of the PB equation

∇ε(r)∇φ0(r) + e2

kBT

p∑
i=1

ni(r)qi = − e2

kBT
σ (r), (B1)

where we introduced the MF level ionic number density as

ni(r) = ρibe
−Vw(r)−qiφ0(r). (B2)

Linearizing the SC equations (3) and (4) in terms of the Green
function and the excess potential φ1(r), and making use of the
MF equation (B1), one obtains the following equations:

∇ε(r)∇φ1(r) − e2

kBT

p∑
i=1

ni(r)q2
i φ1(r) = − e2

kBT
δσ (r),

(B3)

∇ε(r)∇v(r, r′) − e2

kBT

p∑
i=1

ni(r)q2
i v(r, r′)

= − e2

kBT
δ(r − r′), (B4)

where we introduced in Eq. (B3) the excess charge density

δσ (r) = −1

2

p∑
i=1

ni(r)q3
i δv(r). (B5)

With the use of the definition of the Green function∫
dr1v

−1(r, r1)v(r1, r′) = δ(r − r′), (B6)

and the inverse of the one-loop Green’s function

v−1(r, r′) =
[
−kBT

e2
∇ε(r)∇ +

p∑
i=1

ni(r)q2
i

]
δ(r − r′),

(B7)

Eq. (B3) can be inverted as

φ1(r) =
∫

dr′v(r, r′)δσ (r′). (B8)

In order to evaluate the potential (B8), one has to compute
the one-loop Green’s function by solving Eq. (B4). Since this
equation has no analytical solution in cylindrical coordinates,
one has find the solution numerically. To speed up the numeri-
cal solution scheme, we opt to solve this equation by choosing
as the reference potential the Donnan Green’s function, with
the corresponding kernel that we introduce in the form

v−1
D (r, r′) =

[
−kBT

e2
∇ε(r)∇ + κ2

D(r)

4π�B

]
δ(r − r′), (B9)

and the effective screening parameter

κ2
D(r) = 4π�B

p∑
i=1

ρibq
2
i e

−qiφDθ (d − r). (B10)

Indeed, the approximation in introducing Eq. (B9) consisted
in replacing the MF potential φ0(r) in Eq. (B2) and (B7) by
the constant Donnan potential φD, which is solution of the
equation

p∑
i=1

ρibqie
−qiφD = 2σs

d
. (B11)

We note that Eq. (B11) follows by neglecting in Eq. (B1) the
spatial variations of the potential, and integrating the rest of
the terms over the cross-section of the channel.

Then, using Eqs. (B6), (B7), and (B9), the relation (B4)
can be formally inverted as

v(r, r′) = vD(r, r′) +
∫

dr1vD(r, r1)δn(r1)v(r1, r′),

(B12)
where we introduced the excess number density

δn(r) =
p∑

i=1

ρibq
2
i e

−Vw(r)[e−qiφD − e−qiφ0(r)]. (B13)

Comparing Eqs. (A1) and (B9), one notices that the Green
function vD(r, r′) is obtained from the potential (A9) com-
puted in Appendix A by setting κ0 = κD.

Moreover, accounting for the cylindrical symmetry and
substituting into Eqs. (B8) and (B12) the Fourier expansion
of the Green function in the form of Eq. (A2), the one loop-
potential and the Green function in Fourier basis takes the
form

φ1(r) =
∫ d

0
dr1r1ṽ(r, r1; 0, 0)δσ (r1), (B14)

ṽ(r, r ′; k,m) = ṽD(r, r ′; k,m)

+
∫ d

0
dr1r1ṽD(r, r1; k,m)δn(r1)

×ṽ(r1, r
′; k,m). (B15)

We finally note that the one-loop level ion densities given in
Eq. (13) follow by expanding Eq. (1) to linear order in φ1(r)
and δv(r).

To evaluate the one-loop potential correction in
Eq. (B14), one has to solve Eq. (B15) by iteration. The first
step consists in numerically solving the PB Eq. (B1) with the
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boundary conditions

φ′
0(0) = 0, (B16)

φ′
0(d−) = 2

μ
, (B17)

where the parameter μ = 1/(2πq�Bσ s) is the Gouy-Chapman
length. Then, at the first iterative step, the MF potential profile
is injected into Eqs. (B13) and (B15), together with the Don-
nan potential obtained from the solution of Eq. (B11), and the
Donnan Green’s function from Eq. (A9) with κ0 = κD used as
the input function instead of the function ṽ(r1, r

′; k̄, m) on the
r.h.s. of Eq. (B15). At the next iterative step, the obtained so-
lution for ṽ(r, r ′; k,m) is reinjected into the r.h.s. of Eq. (B15),
and this cycle is continued until self-consistency is achieved.
In the end, the converged solution for the Fourier transformed
potential ṽ(r, r ′; k,m) is used to evaluate the self-energy δv(r)
that follows from Eq. (B15) in the form

δv(r) = δvD(r)

+
∞∑

m=−∞

∫ ∞

−∞

dk

4π2

∫ d

0
dr1r1ṽD(r, r1; k,m)δn(r1)

×ṽ(r1, r; k,m). (B18)

We also note that in Eq. (B18), the self-energy δvD(r) follows
from Eq. (A9) by setting κ0 = κD. Then, the Fourier trans-
formed potential ṽ(r, r ′; k,m) is used with the self-energy
(B18) in Eq. (B14) in order to compute the one-loop correc-
tion to the external potential φ1(r). Finally, the obtained po-
tentials φ0(r), φ1(r), and δv(r) are inserted in Eq. (13) in order
to evaluate the ion densities.

APPENDIX C: EXTENDED ONE-LOOP THEORY
FOR DIELECTRICALLY INHOMOGENEOUS PORES

In this Appendix, we generalize the one-loop scheme in-
troduced in Appendix B to dielectrically discontinuous sys-
tems. To this end, we first split the external potential and the
self-energy into a solvation contribution and a singular part
resulting from image-charge interactions as

φ(r) = φ0(r) + φ1(r), (C1)

δv(r) = δv(im)(r) + δv(s)(r), (C2)

where we choose the component φ0(r) as the solution of the
modified PB (MPB) equation,

∇ε(r)∇φ0(r) + e2

kBT

p∑
i=1

qini(r) = − e2

kBT
σ (r), (C3)

with the number density

ni(r) = ρibe
−Vw(r)−qiφ0(r)e− q2

i
2 δv(im)(r). (C4)

The image-charge potential δv(im)(r) in Eqs. (C2)–(C4) will
be introduced below.

Inserting the potentials in Eqs. (C1) and (C2) into the SC
Eqs. (3) and (4), linearizing the latter in terms of the potentials

φ1(r) and δv(s)(r), and making use of the MPB equation (C3),
one gets the following relations:

∇ε(r)∇φ1(r) − e2

kBT

p∑
i=1

q2
i ni(r)φ1(r) = − e2

kBT
δσ (r),

(C5)

∇ε(r)∇v(r, r′) − e2

kBT

p∑
i=1

q2
i ni(r)v(r, r′)

= − e2

kBT
δ(r − r′), (C6)

where we introduced in Eq. (C5) the excess charge density

δσ (r) = −1

2

p∑
i=1

q3
i ni(r)δv(s)(r). (C7)

Identifying from Eq. (C6) the kernel associated with the
Green function

v−1(r, r′) =
[
−kBT

e2
∇ε(r)∇ +

p∑
i=1

q2
i ni(r)

]
δ(r − r′),

and using the definition of the Green function in Eq. (B6),
Eq. (C5) can be inverted to get the correction to the MPB
potential as

φ1(r) =
∫

dr′v(r, r′)δσ (r′). (C8)

The evaluation of the potential correction in Eq. (C8) re-
quires again the knowledge of the Green function, i.e., the
solution of Eq (C6). We opt to solve this equation in a similar
way as in Appendix C, but by choosing now as the reference
potential the DH Green’s function, whose kernel is obtained
by setting in Eq. (B9) the Donnan potential to zero, that is ψD

= 0. This gives

v−1
DH (r, r′) =

[
−kBT

e2
∇ε(r)∇ +

p∑
i=1

ρibq
2
i e

−Vw(r)

]
δ(r − r′).

Making use of the relations (C8) and (C9), and the definition
of the Green function (B6), Eq. (C2) can be inverted to give

v(r, r′) = vDH (r, r′) +
∫

dr1vDH (r, r1)δn(r1)v(r1, r′),

(C9)
with the excess number density

δn(r) =
p∑

i=1

ρibq
2
i e

−Vw(r)

[
1 − e−qiφ0(r)− q2

i
2 δv(im)(r)

]
. (C10)

Taking into consideration the cylindrical asymmetry and sub-
stituting into Eqs. (C8) and (C9) the Fourier expansion of the
Green function (A2), one finally gets

φ1(r) =
∫ d

0
dr1r1ṽ(r, r1; 0, 0)δσ (r1), (C11)

ṽ(r, r ′; k,m) = ṽDH (r, r ′; k,m)

+
∫ d

0
dr1r1ṽDH (r, r1; k,m)δn(r1)

×ṽ(r1, r
′; k,m). (C12)
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The Fourier-transformed DH potential in Eq. (C12) follows
from Eq. (A9) by taking the limit κ0 = κb.

In order to solve Eqs. (C3), (C11), and (C12), we have to
define the image charge part of the self-energy in the expo-
nential of the excess density function (C10). To this aim, we
first split the latter into a solvation and image part as

δn(r) = δn(s)(r) + δn(im)(r), (C13)

with

δn(s)(r) =
p∑

i=1

ρibq
2
i e

−Vw(r)− q2
i
2 δv(im)(r)[1 − e−qiφ0(r)],

(C14)

δn(im)(r) =
p∑

i=1

ρibq
2
i e

−Vw(r)

[
1 − e− q2

i
2 δv(im)(r)

]
. (C15)

Injecting the decomposition in Eq. (C13) into Eq. (C9) and
taking the limit r′ = r, one can recast the equal point Green’s
function in the form δv(r) = δv(s)(r) + δv(im)(r), where the
solvation and image-charge contributions are given by

δv(α)(r) = δv
(α)
DH (r)

+
∞∑

m=−∞

∫ ∞

−∞

dk

4π2

∫ d

0
dr1r1ṽDH (r, r1; k,m)

×δn(α)(r1)ṽ(r1, r; k,m), (C16)

with the superscript α = {im, s}. We finally note that solvation
and polarization parts of the DH self-energy in Eq. (C16) are
obtained from Eqs. (A12) and (A13) by setting κ0 = κb.

Because the image-charge potential in Eq. (C16) is con-
sidered self-consistently, the solution of the closure equations
composed of the relations (C3), (C11), and (C12), and the
relation Eq. (C16) for the image potential is more tricky. De-
scribing the iterative solution, we will skip some of the de-
tails already explained in Appendix B. The solution scheme
consists in numerically solving first the MPB equation (C3)
by using as the image potential δvim(r) the dielectric part of
the weak-coupling DH potential δv

(0)
im (r) in Eq. (A13) with κ0

= κb, i.e., δvim(r) → δv
(0)
im (r). At the next iterative step, the

obtained solution for φ0(r) and the DH potential δv
(0)
im (r) are

used in Eqs. (C10) and (C12) in order to compute the out-
put function ṽ(r, r ′; k,m). The latter is injected in turn into
Eq. (C16) in order to obtain the new values of the image
potential δvim(r). Then, the MPB equation (C3) is numeri-
cally solved with the updated image potential δvim(r), which
provides us with the updated external potential φ0(r). One
has to continue the cycle until the converged Green’s func-

tion ṽ(r, r ′; k,m) is obtained. Finally, using the latter in Eqs.
(C16), (C7), and (C11), one gets the external potentials φ0(r)
and φ1(r), and the self-energies δvs(r) and δvim(r) that allows
to evaluate the ion density in Eq. (15).
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