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We study the structural and dynamical mechanisms of reinforcement of a polymer nanocomposite (PNC) via
coarse-grained molecular dynamics simulations. In a regime of strong polymer-filler interactions, the stress at
failure of the PNC is clearly correlated to structural quantities, such as the filler loading, the surface area of
the polymer-filler interface, and the network structure. Additionally, we find that small fillers, of the size of
the polymer monomers, are the most effective at reinforcing the matrix by surrounding the polymer chains and
maximizing the number of strong polymer-filler interactions. Such a structural configuration is correlated to a
dynamical feature, namely, the minimization of the relative mobility of the fillers with respect to the polymer
matrix.
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I. INTRODUCTION

The properties of rubbers and plastics can be efficiently
tuned by dispersing micro- or nanosized additives (fillers) in
the polymer matrix. Properties that can be influenced include
rheology [1], mechanical [2], electrical [3], and optical [4]
properties. In particular, the mechanical reinforcement induced
by micro-fillers in rubbery and glassy materials has been
known empirically (and exploited at an industrial level) for
many years [5]. In polymer nanocomposites (PNCs), the size
of the fillers is reduced down to the nanoscale and becomes
comparable with the size of the polymers or even of their
monomers. However, the exact physical mechanisms leading
to mechanical reinforcement have proven elusive. Recently,
intensive experimental [6–8] and computational [9–17] efforts
have been devoted to answering this fundamental question
with the aim to get to better design of reinforced materials.
Many parameters play a role: the size and shape of the
fillers, the polymer molecular mass and the presence of an
entangled network, the strength of the physical and/or chemical
interaction between the fillers and the polymers, the filler
loading, and dispersion.

In this paper, we focus on the issue of a polymer
nanocomposite undergoing tensile tests, leading to mechanical
failure. We model the PNC in a regime of strong polymer-filler
interactions and optimal degree of dispersion [18]. Fillers are
small if compared to the radius of gyration of the chains. Their
diameter varies from being equal to the monomer diameter
to being twice as large. In this regime, the smallest fillers are
known to achieve the highest degree of reinforcement [10,12].
The ability of the small fillers to induce toughening has to
be partly attributed to their large surface to volume ratio,
which allows for the formation of a large number of strong
polymer-filler bonds. But, as we show here, surface area alone
is not enough to explain the filler size dependence of the PNC
mechanical response. There are other factors that need to be
considered for a full explanation.

*giulia.rossi@inserm.fr

Fillers affect the PNC dynamics as well, with possible
repercussions on the mechanical properties of the compos-
ite. Experimental results analyzing mobility in PNCs have
suggested that the diffusion processes in PNCs are far more
complex than in pure polymers. For example, nonmonotonic
trends of chain diffusion coefficients vs loading have been
very recently observed experimentally in PNC containing both
carbon nanotubes and nanoparticles [19,20], but no micro-
scopic explanation is currently available. For smaller fillers,
Gersappe [10] proposed that the reinforcement mechanism is
based on the dissipation of deformation energy offered by the
high mobility of the nanoparticles in the polymer matrix.

In order to clarify which are the structural and dynamical
contributions to reinforcement, we study here the correlation
between mechanical toughening, structural configuration, and
dynamics of the PNCs. We find that the mechanical rein-
forcement, quantified by the stress at failure, is positively
correlated to the creation of a network of numerous and strong
polymer-filler bonds. Small fillers, whose size is comparable
to the size of the polymer monomers, are the most effective at
creating such a network. Concerning mobility, the toughening
is correlated to the minimization of the diffusion of the fillers
with respect to the polymer matrix. We do not find any evidence
for dissipation effects as proposed by Gersappe [10].

II. MODEL AND SIMULATION METHODS

A. Model system and interactions

Our results are based on molecular dynamics (MD) sim-
ulations of a polymer melt containing 64 chains, each one
composed by 64 beads, and a variable number of spherical
filler particles. Intrachain bonds are modeled by a harmonic
potential, Eharm(r) = 1

2kh(r − r0
h)2, where r is the distance

between the monomers, kh is the elastic constant (kh =
4000 kJ mol−1 nm−2), and r0

h is the equilibrium length of
the bond (r0

h = 0.47 nm). The elastic constant was set at
the minimum value preventing chains from crossing each
other [21].

Nonbonded interactions are modeled by Lennard-Jones
(LJ) potentials, VLJ(r) = 4ε[(σ/r)12 − (σ/r)6]. In the model,
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the reference energy scale is provided by the polymer-polymer
LJ interactions, with σ = 0.47 nm and ε = 0.05 eV. These
values set the degree of coarse graining of our model,
where each bead can represent realistically a chemical moiety
containing four carbon atoms [22]. The filler-filler interaction
is weaker than the polymer-polymer interaction ε, with εff =
ε/5. The polymer-filler interaction is stronger, with εpf = 4ε.
Three different sizes for the fillers were considered. Our length
scale is set by the size of the chain monomer σ . The mass
of the polymer beads has been set to the value of 56 amu,
corresponding again to a (CH2)4 group and providing a density
of 730 kg/m3 (0.81 chains/σ 3 [23]) at 600 K and atmospheric
pressure conditions. The small filler (SF) is as large as the
chain monomer and has the same mass, while the medium
and large fillers (MF and LF, respectively) have sizes of 1.3σ

and 1.9σ , with their masses scaling according to their volumes.
Values of σ for polymer-filler Lennard-Jones interactions were
chosen as the arithmetic average between the σ of the polymer
and that of the filler. The addition of fillers strongly interacting
with the polymer chains has the effect of increasing the density
of the composite, whose value depends on the filler size and
concentration. For example, for the sample containing 21%
SF, the density increases to 870 kg/m3.

B. Simulation protocols

System setup. Each of our initial independent configura-
tions was set up as follows. First, we placed the colloidal
nanoparticles at random positions within a large simulation
box. Then, we placed the first monomer of a polymer chain,
again choosing at random its position. We placed the rest of
the monomers one after the other along a random direction
and at equilibrium distance from the previous one, avoiding
overlaps. The procedure was then iterated for each of the 64
polymer chains.

Equilibration. MD simulations were performed by means of
the GROMACS 4 simulation package [24]. For each composition
and replica, we performed a 100-ns equilibration in the NpT
ensemble (temperature controlled by a Nosé-Hoover thermo-
stat, pressure controlled by a Parrinello-Rahman barostat) at
a temperature of 600 K and a pressure of 1 bar. In these
thermodynamic conditions, the pure polymer matrix is in
the liquid state, well above its glass transition temperature,
which we estimated, by means of a slow cooling simulation, to
be 390 K. As shown in more detail in Sec. III, at the temperature
of 600 K all the filler-containing systems are in the liquid state
as well. The relaxation time of the end-to-end vector of the
polymer chains varies between 103 and 105 ps depending on
the nanofiller size and loading, assuring a proper relaxation of
the chain conformations during our equilibration run. During
equilibration, periodic boundary conditions were applied in all
directions.

Tensile tests. After equilibration, the thermostat and the
barostat were turned off, and the tensile test started. We
performed our tensile tests by stretching the z edge of the
simulation box at a constant velocity while keeping x and
y at fixed length (see top panel of Fig. 1). Periodic boundary
conditions were still applied in all directions. The z edge of the
simulation box was enlarged at the constant velocity of vp =
1.1 m/s (a value close to the one used in previous studies, as

FIG. 1. (Color online) (top) Snapshots from a tensile test (small
fillers, 21% mass loading). Chain bonds are represented by light
grey sticks. Filler particles are shown as red beads. (middle) Some
examples of stress-strain curves as obtained for PNC loaded with 8%,
15%, and 21% SF. Each data set results from the average over five
independent tensile tests. The grey circle on top of the stress-strain
curve for the 21% SF system indicates the onset of the formation of a
single large void in the PNC matrix. (bottom) Evolution of the fraction
of polymer-polymer and polymer-filler contacts during the pulling of
a PNC loaded with 21% SF. Void formation is again indicated by a
grey circle. The fraction of filler-filler contacts is negligible (10−3,
decreasing to 10−4 before void formation).

in [10]). A further set of tensile tests, not reported in this paper,
was performed according to a second protocol, mimicking
exactly the setup used by Gersappe [10]. In this latter case, the
PNC is confined between two sticky walls, which are pulled
apart during the test. We remark that none of the results depend,
at least qualitatively, on the choice of one of these alternative
protocols (regarding the role of boundary conditions in tensile
test simulations, see also Rottler and Robbins [25]).
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FIG. 2. Mean square displacement of SF and chain monomers at
T = 600 K and atmospheric pressure.

Measure of the diffusion coefficient. D was calculated from
the mean square displacement 〈|�R|2〉 = 〈|R(t) − R(0)|2〉 of
the particles, averaged over time and over all particles. Data
were recorded from 1 μs long runs in the NpT ensemble, at T =
600 K and p = 1 bar, under periodic boundary conditions,
and D was obtained via linear fit from the relation 6D =
limt→∞〈|�R|2〉/t . As an example, Fig. 2 shows the mean
square displacement data for a PNC with a 21% mass loading
of SF. While SFs reach terminal diffusion very quickly, on the
time scale of tens of nanoseconds, the chain monomers have a
slower diffusion, and the linear regime is reached after about
200 ns.

III. RESULTS

A. Tensile tests

The top panel of Fig. 1 depicts a typical evolution of a
tensile test simulation and its stress-strain profile (middle
panel). After an initial homogeneous decrease of density
during which the material’s response is nearly elastic, the stress
reaches a maximum (the stress at failure), the nanocomposite
undergoes mechanical failure, and a single large void is formed
in the matrix while the stress drops. Before void formation,
the system reacts to pulling by forming as many strong
polymer-filler contacts as possible. This is illustrated in the
bottom panel of Fig. 1. A contact is formed any time two
particles are found closer than 1.1 × 21/6σ , where σ is the
parameter of their mutual LJ interaction. In Fig. 1 we plot
contact fractions, namely, the ratios between the polymer-
polymer or polymer-filler contacts and the total number of
contacts. Irrespective of the filler size, during pulling the
fraction of contacts between the polymer chains and the fillers
increases at the expense of polymer-polymer and filler-filler
contacts.

Stress-strain curves allow us to single out the stress at the
failure of the PNC matrix, here defined as the highest stress
value achieved. The higher the stress at failure is, the better the
reinforcement offered by the nanofillers is. As shown in Fig. 3,
small fillers provide the best reinforcement, achieving the
largest stress at failure in the whole loading range considered.

FIG. 3. (top) Stress at failure as a function of filler mass loading
for SF, MF, and LF. (bottom) Stress at failure as a function of filler
total surface area for the same systems reported in the top panel.
Surface area is expressed in units of the SF surface area.

The availability of contact surface between the polymers
and the fillers depends on the fillers’ size; that is, the smaller
the filler is, the larger the contact surface area is. Nevertheless,
it has been shown in previous works, such as in [10], that
surface area is not the only cause for better reinforcement by
the small fillers. In order to confirm this point, we plot the
stress at failure as a function of the total surface area of the
fillers, as shown in the bottom panel of Fig. 3. At very low
loadings the stress at failure is positively correlated with the
filler surface area, but such a correlation quickly vanishes,
and it is completely lost at 21% loading. In this regime, small
fillers achieve the largest degree of reinforcement no matter
what their total surface area is.

B. PNC dynamics

In order to clarify whether the filler’s mobility plays a
role in determining such a dependence of the mechanical
reinforcement on the filler size, we thus focused on the
dynamics in our PNCs. We measured the diffusion coefficient
D of the monomers and of the fillers as a function of loading
for the SF, MF, and LF cases.

Let us start with the polymers. As shown in the top
left panel of Fig. 4, their diffusion coefficient decreases
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FIG. 4. (top left) Diffusion coefficients of the polymer monomers
as a function of filler loading and size. (top right) Diffusion
coefficients of the fillers as a function of filler loading and size.
(bottom) Relative mobility, namely, the ratio between the filler and
the polymer diffusion coefficients, as a function of loading and size.
Lines are only guides for the eye.

nearly exponentially in the whole loading range considered
for the case of large and medium fillers dispersed in the
matrix. An overall reduction of polymer diffusion vs particle
loading is indeed expected in a regime of strong polymer-
filler interactions [26]. When coupled to small fillers, the
monomer diffusion coefficient decreases nearly exponentially
until 15% loading and then reaches a local minimum at
31% loading. Other dynamic indicators of the mobility of
polymers in the PNC are the relaxation times derived from
the polymer rotational autocorrelation functions. We looked at
the rotational autocorrelation function Cb(t) of the end-to-end
vector �b defined as Cb(t) = 〈P2[b̂(t) · b̂(0)]〉, with P2 being
the second Legendre polynomial and b̂ being a unitary vector
directed as �b. We define the relaxation time as the time τ

at which Cb(t) reaches a value of 0.3. Relaxation time data
are reported in Fig. 5. The relaxation time of the end-to-end
vector in the systems containing the SF has a maximum
at composition 31%. For MF- and LF-containing systems,
the relaxation time increases monotonically with loading in
the loading range considered. The relaxation times of the
monomer-monomer bonds, analogously defined, show the
same trend.

We can now analyze the fillers’ mobility. As shown in
the top right panel of Fig. 4, despite the fact that small
fillers provide the best reinforcement effects in all the loading
range considered, they do not always diffuse faster than the
other particles. Between 12% and 15% loading, the diffusion
coefficients of the SF, MF, and LF invert their order, with the
small fillers becoming the slowest in the PNC.

FIG. 5. Relaxation times of the polymer end-to-end vectors and
of the polymer chain bonds in the PNC as a function of filler loading
and size.

It has been suggested, by means of MD simulations, that the
small fillers, namely, those with the largest mobility relative
to the matrix, should always be better at toughening the
PNCs [10] through the dissipation of deformation energy.
This is questionable, as the time scale of the mechanical
deformation in simulations is much shorter than the diffusion
time scale. To this end, we plot the relative mobility, namely,
the ratio between the diffusion coefficient of the fillers and
that of the polymers, Df /Dp, in the bottom panel of Fig. 4.
The relative mobility does not have a positive correlation
with the stress at failure. At low loadings, relative mobility
decreases while the stress at failure increases for all the filler
sizes considered. In the 15%–25% loading range, the SF and
MF systems have comparable relative mobilities, but the SF
system is remarkably tougher (see Fig. 3). Moreover, the
relative mobility does not have a monotonic dependence on
loading, and at least for the SF in the loading range considered,
it exhibits a clear minimum. Such a minimum corresponds
to the maximum value for the stress at failure of the SF
nanocomposite, which is 700 MPa in the 21%–31% loading
range and is lower elsewhere.

C. Polymer-filler network

These results suggest going back to structural sources of
reinforcement, particularly to an analysis of the structure of
the polymer network as it is formed via the formation of strong
polymer-filler contacts. Let us look at the filler-filler radial
distribution functions (RDFs). At 8% loading, as shown in the
top panel of Fig. 6, no filler-filler contacts are formed in the
matrix. The first peak of the RDF roughly corresponds, for all
filler sizes considered, to bridging [12,27,28] configurations.
In such configurations, the fillers self-organize around polymer
chains in such a way that their first filler-filler neighbors
are found only one polymer bead apart. This arrangement
maximizes the strong polymer-filler contacts. It is then
interesting to observe how RDF peaks evolve with loading.
For small fillers, the bridging peak reaches a maximum at
15% loading. Then, the peak corresponding to neighboring
SF particles begins to become populated. At 31% loading the
two peaks are roughly equivalent, and at 39% the neighboring
peak is the highest. This trend is correlated to our mechanical
and dynamical indicators. Between 15% and 31% loading, in
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FIG. 6. Filler-filler radial distribution functions. In the top panel,
the data are referred to three PNCs containing 8% loading of SF, MF,
or LF. In the bottom panel, the evolution of the first peaks of the radial
distribution functions vs loading is shown. Each panel is referred to
a different bead size, SF, MF, and LF, from left to right. The x and y

axes report the same quantities as in the top panel.

fact, the SF-loaded nanocomposites exhibit the largest stress at
failure, while the filler mobility relative to the polymer matrix
is suppressed. The 31% loading marks an inversion of the
tendency for all of our mechanical, dynamical, and structural
indicators: the stress at failure decreases, the relative mobility
of the SF increases, and the number of weak filler-filler
contacts becomes comparable to the number of bridging
configurations.

Despite the smaller number of MFs in the systems, it is again
at 15% loading that the bridging peak reaches its maximum
and then starts decreasing, in favor of the formation of the
neighbor fillers peak. At 39% a shoulder corresponding to

second MF neighbors appears as well. Medium fillers are thus
much less efficient in creating bridging configurations, and the
overall response to strain is weaker than in the SF case. As for
the LF, the PNC is much less crowded, and the bridging peak
maximum sets at 31% loading.

As a further structural indicator, we can count the number
of different chains the nanofillers are, on average, in contact
with. We thus consider multiple contacts between the same
chain and a nanoparticle as a single bridging link and then
evaluate the average number of bridging links per filler. Fillers
with a large surface area are expected to be more effective,
namely, to be able to create more bridging links than the fillers
with small surface area. Still, if we normalize by σ 2, SFs turn
out to be the best at exploiting their surface area, namely,
nl

SF/σ
2
SF = 0.16 > nl

MF/σ
2
MF = 0.11 > nl

LF/σ
2
LF = 0.07 Å

−2
.

IV. CONCLUSION

To conclude, we can thus rationalize two different con-
tributions to mechanical reinforcement that make our small
fillers more effective than the larger ones. The first reason is
surface area, which allows for the formation of more, strongly
attractive, polymer-chain bonds. In this respect, our results are
consistent with Gersappe [10] and show that PNCs containing
fillers of different sizes but sharing the same interfacial
surface area are still reinforced more effectively by smaller
fillers. We have demonstrated further that the effectiveness of
small fillers in reinforcing the matrix is associated with their
ability to surround the polymer chains, maximizing bridging
configurations. Such a structural configuration is correlated to
a dynamical feature, namely, the minimization of the relative
mobility of the fillers with respect to the polymer matrix. This
is in contrast to the hypothesis that the large mobility of the
small fillers is responsible for the dissipation of mechanical
energy, thus explaining their better reinforcement effect. Given
the fast time scale of the simulated tensile tests, no dissipative
effects are observed.
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