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We develop and test numerically a lattice-Boltzmann (LB) model for nonideal fluids that incorpo-
rates thermal fluctuations. The fluid model is a momentum-conserving thermostat, for which we
demonstrate how the temperature can be made equal at all length scales present in the system by
having noise both locally in the stress tensor and by shaking the whole system in accord with the
local temperature. The validity of the model is extended to a broad range of sound velocities. Our
model features a consistent coupling scheme between the fluid and solid molecular dynamics objects,
allowing us to use the LB fluid as a heat bath for solutes evolving in time without external Langevin
noise added to the solute. This property expands the applicability of LB models to dense, strongly
correlated systems with thermal fluctuations and potentially nonideal equations of state. Tests on
the fluid itself and on static and dynamic properties of a coarse-grained polymer chain under strong
hydrodynamic interactions are used to benchmark the model. The model produces results for single-
chain diffusion that are in quantitative agreement with theory. © 2011 American Institute of Physics.
[doi:10.1063/1.3544360]

I. INTRODUCTION

Submicron dynamics of suspensions are dictated by
solvent-mediated long-range interactions and Brownian mo-
tion. The idea of the origin of Brownian motion being in
the solvent surrounding the suspended particles dates back to
Einstein’s original work.1 Diffusion of lone colloids is often
modeled using Brownian dynamics, but there are many col-
lective phenomena in colloidal physics that require both hy-
drodynamic interactions and thermal fluctuations.2 Capturing
both the rheology and thermal fluctuations in complex fluid
simulations requires efficient computational algorithms.

Mesoscale continuum-solvent models, such as the lattice-
Boltzmann (LB) model,3, 4 have become established tools for
studies of complex fluids.5–11 However, they are mean-field
models and typically contain no thermal fluctuations. In addi-
tion to their obvious importance to behavior near the critical
point, there are many instances where thermal fluctuations
play a role.12–14 The omission of thermal noise is also in
sharp contrast to particle-based models, such as molecular
dynamics (MD), dissipative particle dynamics (DPD), and
stochastic rotation dynamics (SRD)4 that contain fluctuations
inherently. However, SRD and DPD are typically
restricted15, 16 to a Schmidt number Sc, the ratio of the
diffusive momentum transfer rate to the diffusive mass
transfer rate, well below 10 which is considerably lower than
Sc ≈ 460 corresponding to water at S.T.P.,17 although work
on this aspect continues.18, 19

a)Electronic mail: santtu.ollila@tkk.fi.
b)Electronic mail: cdennist@uwo.ca.
c)Electronic mail: mkarttu@uwo.ca.
d)Electronic mail: tapio.ala-nissila@tkk.fi.

Thermal fluctuations were first implemented in the LB
model by Ladd20 in an effort to have solid particles un-
dergo Brownian motion. Following Landau and Lifschitz,21

Ladd applied noise to the fluid stress tensor—an approach
valid close to equilibrium.22 However, discretization of the
Boltzmann transport equation23 to the LB equation cre-
ates lattice-specific independent degrees of freedom dubbed
“ghosts”24 that do not enter the macroscopic equations of
mass and momentum conservation. As the moments of the LB
equation corresponding to momentum and energy fluxes are
coupled, noise applied only to the stress tensor leaks to
higher-order ghost moments leading to poor temperature re-
production. This is likely because the isothermal LB model
does not conserve energy. Adhikari et al. found that thermal-
ization of ghosts improves local temperature reproduction in
the isothermal LB model.25 Statistical mechanical foundation
for the fluctuating LB model was provided by Dünweg et al.26

for LB models with equilibria accurate to second order in ve-
locities under the assumption that the speed of sound vs in the
model was 1/

√
3 in lattice units.

Fluctuating LB models have been applied to colloidal
systems25, 27, 28 using a bounce-back rule to account for the
surface of the colloid, which has proven reasonable for par-
ticle radii a > 2.4�x , where �x is the resolution of the LB
mesh.28 Alternatively, in studies of rigid point29–31 and com-
posite particles,32 a velocity coupling designed to make the
particles track the fluctuating fluid velocity field was used
and external Langevin noise was added to the particle phase.
Ahlrichs and Dünweg simulated a polymer composed of point
particles with external Langevin noise applied independently
to all monomers.30 Their solvent was a fluctuating LB fluid as
per Ref. 20 (without ghost noise) and they used a form of ve-
locity coupling that resulted in an a priori chosen diffusion
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coefficient for a point particle.29, 30 They observed correct
long-time behavior and obtained good scaling results.30 More
recently, Iwashita et al.33 applied Langevin noise to the poly-
mer the same way as in Ref. 30, but not to the solvent, which
in their case was a direct discretization of the incompress-
ible nonfluctuating Navier–Stokes equation with a body force
term coupling the two. Their results suggest that if one is only
interested in correct behavior in the long-time limit (hydrody-
namic tails), the only source of noise being in the particles’
equation of motion suffices also for coarse-grained polymers.
Most recently, Pham et al.31 used the same LB model with
external Langevin noise. They found good agreement with
Brownian dynamics simulations and scaling predictions only
when they thermalized the ghost modes. In all these works,
the speed of sound vs was set to (�x/�t)/

√
3, which simpli-

fies the viscosity tensor.
Despite its apparent success, the coupling between the

LB fluid and MD particles has subtleties arising from the
nature of the coupling itself and whether one uses point or
composite particles. In an accompanying paper,34 we estab-
lish criteria under which particles have a well-defined hy-
drodynamic radius, independent of means of measurement.
Previous works do not fulfill all these criteria, which should
not, however, be necessary for dilute systems. Yet, from a
fundamental point of view, the existing schemes are unsatis-
factory in that if the hydrodynamic coupling were physically
correct, the LB fluid should suffice as the only thermostat to
the particle phase.

The purpose of this paper is to establish how thermal fluc-
tuations can be included in the LB method in a way that al-
lows, first, one to use a broad range of values for the speed
of sound even with fluctuations in the system and, second,
the LB fluid to function as a heat bath even for a suspen-
sion of high solute concentration. The distinct difference to
earlier approaches is: we do not add Langevin noise to any
solute particles but, in keeping with Einstein’s original idea,
they pick up the correct temperature by basking in the fluid.
This is highly relevant if one is to study systems where the
solvent molecules are strongly correlated as their degrees of
freedom cannot be assumed independent of one another.

In Sec. II, we present relevant aspects of the theory of
thermal fluctuations in fluids. We build our isothermal model
on previous approaches in Sec. III. The model is subjected to
tests in Sec. IV, demonstrating how our scheme thermalizes
fluctuations at all wavelengths. Moreover, we show that our
fluid functions as a proper heat bath for solid inclusions and
in particular exhibits quantitative agreement between theory
and simulations for polymer diffusion and dynamic scaling.

II. THEORY

Thermal noise in a continuum description of a fluid is
complicated because one must conserve mass and momentum
globally yet still produce correct local fluctuations in the mass
density ρ and momentum density ρu. As a result, thermal
fluctuations in fluids are much less studied and understood.
Local fluctuations in mass and momentum arise through
coupling to stress fluctuations in Navier–Stokes equations21

(summation over repeated indices is assumed),

∂tρ + ∂β(ρuβ) = 0; ∂t (ρuα) + ∂β(ρuαuβ) = ∂βσαβ, (1)

where the stress tensor σαβ is given by

σαβ = −Pαβ + ηαβγ ν∂γ uν + sαβ. (2)

In this case, the pressure tensor Pαβ , or nondissipative stress,
can describe a nonideal fluid (e.g., Po ≡ TrP/3 could be the
van der Waals equation of state) and can include gradient
terms (potentially off-diagonal elements) capable of describ-
ing (diffuse) interfaces.5, 6 The fluctuations in the stress en-
ter through the fluctuating stress tensor sαβ . In most cases
the viscosity tensor ηαβγ ν of the dissipative stress is fairly
straightforward, containing only shear η and bulk � viscos-
ity terms,35

ηαβγ ν = η

[
δαγ δβν + δανδβγ − 2

3
δαβδγ ν

]
+ �δαβδγ ν. (3)

However, it may involve more independent viscosity coeffi-
cients in some complex fluids such as liquid crystals. The
fluctuating stress sαβ is related to the viscosity through a
fluctuation–dissipation relation,35

〈sαβ(r, t)sγ ν(r′, t ′)〉 = 2ηαβγ νkBT δ(r − r′)δ(t − t ′). (4)

Note that in general the diagonal components of sαβ will be
correlated as will be discussed in Sec. III B.

As long as we reach local equilibrium, and have no
velocity-dependent forces in our system, the equipartition
theorem23 in a particle system tells us that fluctuations of the
particle velocity δv obey 〈δvαδvβ〉 = (kB T/M)δαβ , where M
is the mass of the particle. This is most often interpreted in a
continuum system in the form

〈δuα(r1)δuβ(r2)〉 = kBT

ρ
δαβδ(r1 − r2), (5)

where δuα = 〈(uα − 〈uα〉)〉. Note, however, that Eq. (5) con-
tains the additional assumption that the velocity fluctuations
are delta function correlated, something not strictly required
by the equipartition theorem and not generally true at micro-
scopic distances. Ignoring these short distance correlations is
justified when the distances involved are all much greater than
the velocity–velocity correlation length and this is what we
will assume here. Work is underway by other groups to relax
this assumption and build velocity correlations into the ther-
mal noise.36, 37 Also, some caveats pertain to this formula in
actual numerical simulations, in which the spatial Dirac delta
function must be replaced by some finite volume L3

s , where it
approaches 1/L3

s . In order to calculate the averages involved
in δuα , one must calculate uα and 〈uα〉 in a finite volume L3

s ,
which on the discrete simulation mesh must be between the
volume of a plaquette of the mesh �x3 and the system vol-
ume L3, where L is the linear size of the system. The fluid
temperature T (Ls) associated with a subvolume L3

s is thus
determined from (here 〈uα〉 = 0)

1

2

∑
α

〈
[
∑

x∈L3
s
ρ(x)uα(x)]2∑

x∈L3
s
ρ(x)

〉
= 3

2
kBT (Ls). (6)

Navier–Stokes relations conserve the total momentum of the
system so that δuα is zero if the discrete volume is that of the
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entire system whereas in the strictest continuum interpretation
this should only be true for an infinite system. At the other
end of the spectrum, at the highest wavevector supported by
the lattice, k = 2π/�x , one would hope Eq. (5) to be at least
approximately valid as long as the mesh spacing were suf-
ficiently larger than the microscopic velocity–velocity corre-
lation length of the fluid. Thus, conservation of momentum
results in the T (Ls) defined in Eq. (6) not to be the true lo-
cal temperature. We will examine this point more closely in
Sec. IV A.

The fluctuation–dissipation relation of Eq. (4) is fre-
quently used in MD to measure the viscosity based on fluc-
tuations in the stress but is seldom used in modeling the
fluctuating Navier–Stokes equation itself. The reason for this
omission is the difficulty in solving this complex set of equa-
tions. Navier–Stokes equations are already very complicated
and computational fluid dynamics calculations can easily
strain the resources of the largest supercomputers. Next, we
introduce the LB method used to solve these equations.

III. FLUID MODEL

A. Lattice-Boltzmann model

The LB algorithms are based on solving an ap-
proximation of the Boltzmann transport equation on a
structured lattice with sites x = (i, j, k)�x . In the simplest
single-relaxation time approximation, these algorithms simu-
late the Lattice Bhatnagar–Gross–Krook (LBGK) equation,38

typically of the form

Di fi ≡ (∂t + eiα∂α) fi = − 1

τ

(
fi − f eq

i

) + Wi , (7)

where ei are the discrete velocities that transport material to
neighboring lattice sites in the discrete time �t and their di-
mension is the lattice velocity vc ≡ �x/�t , Di is the material
derivative in direction ei , τ is the relaxation time, fi (x, t) is
the discretized distribution function representing the partial
density of material moving with velocity ei = (eix , eiy, eiz),
and f eq

i (x, t) is the equilibrium value of fi . In fact, f eq
i

is typically a suitably weighted expansion of the Maxwell–
Boltzmann (MB) distribution in the discrete velocities,39 but
alternatives have also been developed.40 We have included a
general forcing term Wi (x, t) in Eq. (7) as per Ref. 34. We de-
fer presenting a finite-difference form of Eq. (7) until later as
our noise implementation of Sec. III B is based on the contin-
uous BGK equation.38 These LBGK equations are much sim-
pler to simulate than the Navier–Stokes equations (they can be
cast as a system of ordinary differential equations in the La-
grangian picture) at the cost of having to simulate more equa-
tions. That is, one typically needs n = 15 partial densities fi

in three dimensions instead of the three spatial components
of momentum and one scalar density of the Navier–Stokes
equations. The degree to which the higher-order moments in
velocities are reproduced correctly depends on the underly-
ing lattice structure. The more vectors ei there are, the more
isotropic the lattice becomes and the higher moments of f eq

i
can be made to correspond to those of the MB distribution.

The shorthand notation DdQn tells the number of spatial di-
mensions d in the lattice and the number of lattice vectors n.

How Eq. (7) is related to Eq. (1) or its approximative form
becomes evident when one considers moments of the dis-
cretized distribution function and expands Eq. (7) in space and
time using the Chapman–Enskog expansion, see, e.g., Ref. 3.
The mass and momentum densities are defined by

ρ(x, t) = M0(x, t) = ∑
i fi (x, t),

ρ(x, t)uα(x, t) = Ma(x, t) = ∑
i eiα fi (x, t),

(8)

where x (a = 1), y (a = 2), and z (a = 3) components of mo-
mentum define M1–M3. These linear functions of the fi can
be generalized to give higher-order moments Ma(x, t) as

Ma(x, t) =
∑

i

ma
i fi (x, t), (9)

where ma
i , given in Appendix A for the D3Q15 model,

corresponds to moments of the velocity vectors ei so that
Eq. (9) provides the discrete versions of integrals such
as

∫
(vαvβ . . .) f (r, v, t)dv in continuum transport theory.

Equation (9) is invertible to give the fi in terms of the den-
sities as

fi (x, t) = wi

∑
a

ma
i Ma(x, t)N a, (10)

where the wi are weight factors and the N a are normaliza-
tion constants given in Appendix A. Equation (10) is general
meaning that any function may be expanded in terms of cor-
responding physical moments and we use this to define the
equilibrium distribution,

f eq
i (x, t) = wi

∑
a

ma
i Ma

eq(x, t)N a, (11)

where the moments Ma
eq for the D3Q15 model are given in

Table I. We will use a similar expression later for the fluc-
tuations ξ̄i (x, t) in f eq

i (x, t). Mass and momentum conserva-
tions are imposed by requiring that the first four moments (M0

–M3) of the equilibrium distribution are equal to those
of fi . By construction, this makes the right-hand side of
Eq. (7) zero as one calculates its zeroth or any of the first-
order velocity moments. We have included the necessary nu-
merical values for implementing our model on the D3Q15
lattice41structure in Appendix A together with pseudocode in
Appendix B. Here we present the theory in general form.

Plugging Eq. (10) into Eq. (7) and making note of the fact
that (cf. Appendix A and Table II therein)

N a
∑

i

wi m
a
i mb

i = δab, (12)

gives the local density evolution equations for the n different
Ma(x, t),

∂t Ma + ∂α

(∑
i

ma
i eiα fi

)
= − 1

τ
(Ma − Ma

eq)

+
∑

i

ma
i Wi , (13)
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TABLE I. Moments of the equilibrium distribution Ma
eq in the D3Q15 model and of the continuum noise distribution ζ̄ a .

a 0 1 2 3 4 5 6 7 8 9 10–12 13 14
Ma

eq ρ ρux ρuy ρuz Pxx+ Pyy+ Pzz+ Pxy + ρux uy Pyz + ρuyuz Pxz + ρux uz 0 ρux uyuz K eq

ρ
(

u2
x − v2

c
3

)
ρ
(

u2
y − v2

c
3

)
ρ
(

u2
z − v2

c
3

)
ζ̄ a 0 0 0 0 sxx syy szz sxy syz sxz ζ̄ a ζ̄ 13 ζ̄ 14

where Ma
eq = ∑

i ma
i f eq

i . The forcing terms,

Wi = pi + 1

τ
ξ̄i , (14)

are split into two parts, of which the pi model external forces
and the ξ̄i thermal fluctuations internal to the fluid. The fac-
tor 1/τ is included in the definition of the ξ̄i to make them
consistent with the definitions of the equilibrium distribution
in Eq. (7). The three lowest moments of the external forcing
terms are chosen to be34, 42∑

i

pi = 0;
∑

pi eiα = Fα;

∑
i

pi eiαeiβ = uα Fβ + Fαuβ,
(15)

where Fα is a force density external to the fluid modeled
by the LB equations, which may contain contributions from
gravity and/or a particle phase. The second moment is consis-
tent with Boltzmann’s equation (see Appendix in Ref. 34).

If we now insist that f eq
i is constructed so that M0

eq
= ρ, Ma

eq = ρuα for a ∈ {1, 2, 3} and Ma
eq = Pαβ + ρuαuβ

for a ∈ {4, 5, . . . , 9}, then by performing the Chapman–
Enskog expansion for Eq. (7), the equations of motion for the
zeroth and first-order moments become in the hydrodynamic
limit,3

∂tρ + ∂β(ρuβ) = 0 + O(∂3); (16a)

∂t (ρuα) + ∂β�αβ = 0 + O(∂2), (16b)

where �αβ = ∑
i fi eiαeiβ is the second moment. The ex-

plicit expression for the Navier–Stokes equation of Eq. (16b)
reads3, 6

∂t (ρuα) + ∂β(ρuαuβ) = ∂α(−Pαβ + sαβ) + Fα

+ ∂β

(
η
(
∂αuβ + ∂βuα − 2

3
∂γ uγ δαβ

)

+ �∂γ uγ δαβ

)
, (17)

where for the ideal gas equation of state the pressure
tensor Pαβ = Poδαβ = ρv2

s δαβ is diagonal, and vs is the
speed of sound. The shear viscosity is then η = ρτv2

c /3
and the bulk viscosity � = η(5/3 − (3/v2

c )∂ Po/∂ρ) = η(5/3
− 3v2

s /v2
c ). The fluctuating stress sαβ enters Eq. (17) through

the second moment of ξ̄i as described in Sec. III B.
Before we discuss thermal fluctuations in the model, we

must discuss their local dynamics and feedback structure. An
analysis included in Appendix A of the dynamics of high-
order densities Ma , a > 4, for the D3Q15 model leads to the

following relation between the leading-order stresses, �
(0)
αβ

= Pαβ + ρuαuβ , and leading-order ghost momentum densi-
ties written in lattice units (vc = 1):

2

3
∇·

⎡
⎢⎣
ρ(u2

y + u2
z )/2 Pxy + ρux uy Pxz + ρux uz

Pxy + ρux uy ρ(u2
x + u2

z )/2 Pxy + ρuyuz

Pxz + ρux uz Pyz + ρuyuz ρ(u2
x + u2

y)/2

⎤
⎥⎦

+2

9
∇
(

TrP − ρ + K eq

√
2

)
= − 1

τ
J(1),

(18)

where K eq is the 14th density at equilibrium, M14
eq , and J(1)

is the nonequilibrium part of (M12, M10, M11) whose equi-
librium value is zero.39 The value of K eq is not determined
by any condition at this point. In the presence of fluctuating
stresses sαβ , however, this relation clearly demonstrates that
the fluctuating stresses [which will appear in conjunction with
the corresponding Pαβ in Eq. (18)] will couple to K eq—hence
its value will be relevant.

Equation (18) is the equivalent to an expression in 2D
derived by Dellar in Ref. 39. In the deterministic case that he
studied, Dellar showed that the damping of stress fluctuations
is related to the value of K eq. Dellar set a nonzero value of
K eq to remove high-frequency oscillations from the model in
order to make his finite-difference scheme more “dissipative,”
and hence more stable. We do not do that here as the removal
affects the fluctuations and thereby the temperature. Instead,
we reserve the freedom to pick the amplitude K0 of the 14th
equilibrium moment,

K eq = K0(ρ − Tr(P − s)), (19)

as we will be able to use it below to tune temperature repro-
duction in the model. This form is chosen since, if TrP = ρ

in lattice units, the damping effect described by Eq. (18) dis-
appears for K eq = 0 without noise.39 Having determined the
form of the densities Ma

eq, we are at a position to construct the
equilibria f eq

i using Eq. (10) and tune K0. Next, we introduce
fluctuations in the equilibrium populations.

B. Thermal noise in the lattice-Boltzmann model

Generally, LB works best when the fluid is essentially
incompressible,24 but corrections can be added for fluids
of nonuniform density.43 However, with thermal fluctuations
present, density fluctuates locally (δρ 
= 0, but still small)
and, therefore, the bulk viscosity coefficient is relevant. Previ-
ous LB studies20, 25, 26, 29–31 incorporating noise have assumed
the speed of sound squared v2

s = v2
c /3, a choice which ze-

roes the viscosity coefficient of the ∂γ uγ term in Eq. (17).
We will illustrate the complications that arise when one
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uses a nontrivial bulk viscosity in the single relaxation time
scheme (i.e., when v2

s 
= v2
c /3), which allows straightforward

generalization to the multirelaxation time D3Q15 and D3Q19
models44 that permit arbitrary bulk viscosity.

As in Ref. 25, we implement our noise in Eq. (7) via the
forcing terms Wi of Eq. (14) which adds noise to the stress and
ghost modes. The ξ̄i are decomposed into physically meaning-
ful continuum fluctuations in local densities and ghost densi-
ties using Eq. (10),

ξ̄i (x, t) = wi

∑
a

ma
i ζ̄

a(x, t)N a . (20)

The ζ̄ a represent the local thermal fluctuations in the cor-
responding continuum physical and ghost densities Ma

eq and

are given in Table I. The first four moments, ζ̄ 0 through ζ̄ 3,
must be identically zero [see Eq. (9) and (13)] as mass and
momentum must be conserved exactly. The continuum noise
terms ζ̄ 4 through ζ̄ 9 are the fluctuating stress terms sαβ of
Eq. (16b). We emphasize that these continuum-limit fluctua-
tions are not in general the lattice-level discrete-time stresses,
but only related to them. We will show below that the lattice-
level discrete-time stress fluctuations ζ a depend, first, on
the kinetic equation modeled [here Eq. (7)], second, the un-
derlying lattice model [here D3Q15] and, third, the finite-
difference scheme used [here Eq. (27)]. We will explain these
dependencies in detail in the following passages. The remain-
ing noises, ζ 10 through ζ 14, are related to the lattice-specific
ghost modes that are independent degrees of freedom in the
wi -weighted basis defined by the 15 vectors ma subject to the
orthogonality relation of Eq. (12).

Our starting point is that we want to reproduce the noise
given in Eq. (4) locally at the lattice level leading to the repro-
duction of Eq. (5) also at the lattice level. The nontriviality in
doing this arises from the three aforementioned dependencies.
After the following three steps, we will have obtained expres-
sions for the variances of each lattice-level discrete-time ran-
dom variable ζ a .

Step 1. Identification as an Ornstein–Uhlenbeck process.
In the theory of stochastic differential equations (SDEs), an
equation of the form,

dXt = (a(t) + b(t)Xt )dt + (α(t) + β(t)Xt )dBt , (21)

is known as an Ornstein–Uhlenbeck (or Langevin) process for
a stochastic variable Xt .45 The functions a(t), b(t), α(t), and
β(t) are continuous processes adapted to the filtration of Xt ,
Bt is a Brownian motion, and dBt is the Wiener measure. The
general solution to this equation is46

Xt ′ = Ut ′

(
Xt +

∫ t ′

t

a(s) − β(s)α(s)

Us
ds +

∫ t ′

t

α(s)

Us
dBs

)
;

Ut ′ = exp

(∫ t ′

t
β(s)dBs +

∫ t ′

t
(b(s) − 1

2
β2(s))ds

)
. (22)

We may take direct advantage of this result by identifying the
fi in Eq. (7) as the process Xt , a(t) as (1/τ )( f eq

i + τpi ), b(t)
as −1/τ , α(t)dBt as (ξ̄i/τ )dt and β(t) as identically zero to
rewrite the solution of Eq. (7) at t ′ = t + �t in the comoving

frame47 as

fi (x + ei�t, t + �t)

= e−�t/τ fi (x, t) + e−�t/τ
∫ t+�t

t

1

τ
e(s−t)/τ

× geq
i (x + ei s, t + s)ds + e−�t/τ

∫ t+�t

t

1

τ
e(s−t)/τ ξ̄i dt,

(23)

where

geq
i = f eq

i + τpi , (24)

and we have made use of the fact that Us simplifies to Us

= exp(
∫ s

t −1/τ ds) = exp((t − s)/τ ).
From Eq. (23), the variance in the noise term (the last

term) integrated over one time step �t can be calculated to
obtain

Var

[
e−�t/τ

∫ t+�t

t

1

τ
e(s−t)/τ ξ̄i dt

]

= 〈ξ̄i
2〉 (1 − exp(−2�t/τ ))

2τ
(25)

≡ 〈ξ̄i
2〉q2

OU,

where we have assumed the continuum stochastic process ξ̄i

to have zero mean and that its standard deviation is approxi-
mately constant during the time step. This is the variance in-
herent to this SDE and q2

OU defined in the last line of Eq. (25)
is a factor that we must retain in the discrete-time and space
random variables ξi to ensure that fluctuations of the desired
variance are present in the discrete version of the LBGK equa-
tion, Eq. (7), at every time step. As Eq. (20) relates ξ̄i and ζ̄ a

linearly, the same factor relates ζ a to ζ̄ a , i.e.,

〈(ζ a)2〉 ∝ 〈(ζ̄ a)2〉q2
OU. (26)

Step 2. Identifying the contribution from the finite-
difference scheme. The finite-difference scheme, we employ,
is similar to one for the deterministic terms that can be found
in Ref. 34. It is obtained by replacing geq

i (x + ei s, t + s) in
Eq. (23) by a Taylor series about s = 0 and then directly in-
tegrating. The resulting time-evolution equation for the fi is

fi (x + ei�t, t + �t)

= e−�t/τ fi (x, t) + (1 − e−�t/τ )heq
i (x, t)

+�t
(

1 − τ

�t
(1 − e−�t/τ )

)
Dt h

eq
i (x, t) (27)

+�t2

(
τ 2

�t2
(1 − e−�t/τ ) − τ

�t
+ 1

2

)
D2

t heq
i (x, t)

+O(�t4),

where for computational efficiency and to save memory we
have included the noise terms in the local equilibria which we
now generalize as

heq
i = geq

i + ξi , (28)

where ξi is the discrete noise process. We emphasize here
that the discrete process ξi is not the same as the continuum
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process ξ̄i of Eqs. (7) and (20). The variance of ξi is re-
lated to that of the continuum stochastic process ξ̄i by 〈ξ 2

i 〉 =
〈ξ̄ 2

i 〉q2
OU/q2

FD, where q2
OU comes from Eq. (25) and the factor,

qFD = (1 − e−�t/τ ), (29)

is needed to cancel out the same factor on the second line
of Eq. (27). This neglects the second-order terms that arise
from Ito’s lemma which we expect to be small. Later in Re-
sults, we will demonstrate that identifying qFD as the only cor-
rection arising from the finite-difference algorithm is enough
to capture the temperature dependence sufficiently accurately.
We refer to Eq. (27) with only the first-order derivative term
included as the first-order scheme and with both derivative
terms as the second-order scheme. The more standard finite-
difference scheme is obtained from Eq. (27) in the limit of
small �t/τ with the derivative terms neglected,

fi (x + ei�t, t + �t) = fi (x, t)

−�t

τ

(
fi (x, t) − heq

i (x, t)
)
. (30)

In practice, the standard scheme is equivalent to a second-
order accurate form using the trapezoidal rule, which formally
requires one to define so-called auxiliary populations.48 The
following analysis applies also to the standard scheme if τ in
the viscosity, given below Eq. (17) is replaced by τ − �t/2.

Step 3. Noise amplitudes in densities. What is left is
to determine the noise correlation matrix with elements
〈ζ a(x, t)ζ b(x′, t ′)〉 of the Gaussian random numbers with zero
mean according to which the noise is added at the local lattice
level. Analogous to Eq. (20) for the continuum-level fluctua-
tions, the discrete-time lattice-level fluctuations obey

ξi (x, t) = wi

∑
a

ma
i ζ

a(x, t)N a . (31)

We may now write down the lattice-level version of Eq. (4) for
our ordering of basis vectors ma (see Appendix A) by making
use of the corrections from previous steps. We will come back
to the general case below, but first consider the case where
v2

s = v2
c /3, which results in the fluctuating components of the

stress tensor being independent random variables, and

〈(ζ a)2〉 = 〈(ζ̄ a)2〉q2
OU

q2
FD

= 〈
s2
αβ

〉q2
OU

q2
FD

= 2 η kBT
1

�x3�t

q2
OU

q2
FD

, a = 7, 8, 9;

〈(ζ a)2〉 = 〈
s2
αα

〉q2
OU

q2
FD

= 4 η kBT
1

�x3�t

q2
OU

q2
FD

, a = 4, 5, 6,

(32)

where the 1/(�x3�t) terms are the discrete spatial and tem-
poral delta functions from Eq. (4). This formulation can be
extended straightforwardly to more complicated collision ma-
trices than (−1/τ )δi j of the BGK approximation. We would
like to point out the necessity of subtracting K0 times the
trace of the noise, K0(ζ 4 + ζ 5 + ζ 6), from M14

eq = K eq as
K eq ∝ −K0TrP in constructing the equilibria as in Eq. (10).

Both relations in Eq. (32) are instances of a general for-
mula,

〈(ζ a)2〉 = 18

N a
Aη ≡ 18

N a
η kBT

1

�x3

1

�t

q2
OU

q2
FD

, (33)

which reduces to Eq. (32) when the corresponding normal-
ization constants N a given in Eq. (A1) are substituted for.
In other words, the substitution of the normalization con-
stant N a in Eq. (33) gives the correct lattice-level fluctuation–
dissipation relation for all fluctuating densities Ma, a ≥ 4.
The amplitudes given in Eq. (33) recover the results of
Ref. 26 for the standard integrator with v2

s /v2
c = 1/3 when

q2
OU in lattice units is replaced by 1/τ 2 (equivalent to a Taylor

expansion of q2
OU for small �t/τ ) and q2

FD is neglected
(since in Ref. 26, they do not incorporate the noise into
the equilibrium distribution). Thermalization of ghost den-
sities is required as they drain fluctuations from the stresses
[cf. Eq. (A6)] and they are also found in the source term [cf.
Eq. (A4)] for the stresses (and vice versa), which shows ex-
plicitly the coupling between moments of different order at
the local lattice level. Since it is not conserved, energy leaks
into higher-order moments, which then dissipate it. If one
were to use an energy-conserving LB scheme,40 this probably
would not be needed. However, energy-conserving schemes
require more than 15 moments in three dimensions.49

For v2
s 
= v2

c /3, there are correlations in Eq. (4) be-
tween the diagonal stresses and they are not independent
random variables. These correlations are determined by the
nonzero diagonal ηαααα and off-diagonal elements ηααββ of
the viscosity tensor of Eq. (3). For the equation of state Pαβ

= P(ρ)δαβ = ρv2
s δαβ , where vs is the speed of sound, we may

calculate the elements using the formulae below Eq. (17) to be
ηαααα = 2 η + (1 − 3 v2

s )η =: 2η + Yη;

ηααββ = (1 − 3 v2
s )η = Yη,

(34)

where α 
= β, and η and v2
s are in units, where �x

= �t = 1. Collecting all nine elements allows us to write
down the correlation matrix C whose matrix elements
Cab = 〈ζ a(x, t)ζ b(x′, t ′)〉, a, b ∈ {4, 5, 6} correspond to diag-
onal stresses computed from Eq. (4),

C = q2
OU

q2
FD

⎡
⎢⎣ 〈s2

xx 〉 〈sxx syy〉 〈sxx szz〉
〈sxx syy〉 〈s2

yy〉 〈syyszz〉
〈sxx szz〉 〈syyszz〉 〈s2

zz〉

⎤
⎥⎦

= 2Aη

⎡
⎢⎣2 + Y Y Y

Y 2 + Y Y

Y Y 2 + Y

⎤
⎥⎦ . (35)

Corrections due to time discretization are contained in the
same factor Aη defined in Eq. (33). To construct random vari-
ables with this correlation matrix we factorize the correla-
tion matrix C for the diagonal components into Cholesky-
decomposed50 form C = 2 Aη L LT, where T denotes the
transpose and

L =

⎡
⎢⎢⎢⎢⎢⎣

√
2 + Y 0 0

Y√
2 + Y

√
2(2 + 2Y )

2 + Y
0

Y√
2 + Y

2Y√
2(2 + Y )(2 + 2Y )

√
2(2 + 3Y )

2 + 2Y

⎤
⎥⎥⎥⎥⎥⎦. (36)

We then generate a column of three independent Gaussian
random variables and multiply them by

√
2 Aη L to obtain the

three correlated random variables that form the noise on the
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three diagonal elements of the stress tensor. Note that the re-
quired positive-definiteness of C/(2Aη) is not guaranteed—
e.g., for our LB version of Eq. (3), its eigenvalues are 2,
2, and 5 − 9(∂ Po/∂ρ), the last of which gives the criterion
v2

s = ∂ Po/∂ρ < 5/9 for the positive-definiteness of C/(2Aη)
in lattice units. This limitation is shared not just by any stan-
dard, but also the multirelaxation time D3Q15 and D3Q19
models.44 The other random variables (a > 6) are the same as
for the v2

s = v2
c /3 case discussed above.

IV. RESULTS

We shall first discuss the performance of our fluctuat-
ing LB fluid without immersed particles. As the total mass
and momentum are conserved, it is a priori certain that local
fluctuations in density and momentum must amount to zero
when summed over the whole lattice. It is, therefore, inter-
esting to see what happens to the temperature at intermediate
length scales, which is not self-evident. We demonstrate how
thermalization of center-of-mass (CM) degrees of freedom of
the total system may be used to adjust the temperature at the
whole system level. The second aspect we address is a coarse-
grained polymer chain in bulk solution for which we perform
standard static and dynamic measurements.

Unless otherwise specified, we have set the fluid pa-
rameters to those of water. The speed of sound is vs

= 1497 m s−1, shear viscosity η = 1.0 g m−1 s−1, density ρ

= 998.2 kg m−3, and temperature T = 300 K. The parameters
are scaled to be multiples of �x = 1.0 nm, �t = 0.3 ps, and
mLJ = 0.001554 ag (attogram) in the simulations. The speed
of sound is, therefore, vs ≈ √

0.2 vc (vc = �x/�t), for which
� = 1.07 g m−1 s−1, which is smaller (by about a factor of 4)
than the measured bulk viscosity.51

A. Fluid temperature

Temperature in the pure LB fluid without any immersed
particles was assessed previously by Adhikari et al.25 by tak-
ing a Fourier transform of the local momenta jα(x, t) as

δ jα(k, t) ≡ 1√
V

∑
x

eik·xδ jα(x, t), (37)

where δ jα(x, t) = ρ(x, t)uα(x, t) − 〈ρuα〉 and the sum runs
over all lattice sites in the system. Since jα(x, t) are real val-
ued, only half of the Fourier components are independent and
it suffices to plot the time-averaged quantity,

T (k) = 〈|δj(k, t)|2〉t/(3kBρ0),

for k�x ∈ (0.2, 3.0) as was done in Refs. 25 and 36. We plot
T (k) in Fig. 1(a). Two features are present: First, T (k = 0)
is zero due to conservation of total momentum. Second, T (k
> 0) deviates from the target value by no more than 2%.

The impact of T (k = 0) in a finite-sized system is worth
considering further. As already mentioned, T (k = 0) is due
to the fact that the CM velocity of the system V is zero as
the simulation box is stationary. One can consider a scenario
where the simulation box is embedded in a much larger (or
infinite) bath of the same fluid. In this case, the simulation box
itself would undergo Brownian motion inside the bath. This

Brownian motion of the CM coordinates could be modeled
using a Langevin equation,

MT
dVα

dt
= −χ MT Vα + �α, (38)

where the total mass of the simulation box is
MT = ρL3 and the components of the CM velocity are
Vα = M−1

T

∑
x ρ(x)�x3uα(x). When the second moment of

the random force �α is related to the friction coefficient χ by
the fluctuation–dissipation theorem of the Langevin equation,

〈�α〉 = 0; 〈�α(t)�β(t ′)〉 = 2kBT χ MT δαβδ(t − t ′),

then the equipartition theorem is obeyed and we have

1

2
MT

〈
V 2

α

〉 = 1

2
kBT . (39)

We detail the CM thermalization procedure at the end of Ap-
pendix B. A plot of T (k) for such a system is constant for all
k including k = 0.

Now consider the block-averaged temperature defined in
Eq. (6). Separate the CM motion from the block-averaged ve-
locity of a block of size L3

s to define

W s
α =

∑
x∈L3

s
ρ(x)uα(x)

Ms
− Vα,

where Ms = ∑
x∈L3

s
ρ(x). The block-averaged temperature

defined in Eq. (6) then gives

1

2
kBTs = 1

2

〈(
Ms

(
W s

α + Vα

))2

Ms

〉

= 1

2
〈Ms〉

〈(
W s

α

)2〉 + 1

2
〈Ms〉

〈
V 2

α

〉
= 1

2
〈Ms〉

〈(
W s

α

)2〉 + 1

2

〈Ms〉
MT

kBT

= 1

2
〈Ms〉

〈(
W s

α

)2〉 + 1

2

(
Ls

L

)3

kBT,

where we have assumed that fluctuations in Ms can be de-
coupled from fluctuations in W s

α and have used Eq. (39) in
the second to last line. The second term in the equation is
due entirely to the CM motion and is clearly nonzero. With
T (k) being constant for all k including k = 0 we would ex-
pect, and indeed find, that Ts(Ls) is constant independent of
Ls . The inescapable conclusion is that if we do not thermostat
the CM velocity, the Ts cannot be constant but should be the
local temperature minus the CM term above. This is exactly
what is found and demonstrated in Fig. 1(b).

If we place a complex object, such as a polymer with ra-
dius of gyration Rg = Ls , into our fluid and then ask about its
center-of-mass diffusion, then the distinction between Ts and
T (k = 2π/Ls) is important as the polymer will behave as if
its CM is experiencing the block-averaged temperature Ts . As
a result, in comparing the polymer’s diffusion in systems of
different size L we need to either thermostat the CM motion
or ensure that Ls/L is small enough that deviations from the
target temperature are small. In order to distinguish the effects
of the local and CM noise, we will use only local noise in the
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FIG. 1. (a) Temperature due to local stress fluctuations measured in a
L = 50 nm box from Fourier-transformed local momentum fluctuations for
three k-vectors. Total momentum conservation can be seen as T (k = 0) = 0.
(b) Temperature measured from block-averaged momentum fluctuations us-
ing Eq. (6) as a function of ratio of subsystem size Ls to linear size L of the
system (solid symbols: L = 30 nm, hollow symbols: L = 50 nm) with only
local noise present in the stress tensor (squares), with noise only in the CM
coordinate of the total system (diamonds), and with both local noise in the
stress and Langevin thermostat on the CM coordinate present (circles). The
dashed line is the function 300 K(Ls/L)3. The target temperature was 300 K
and the speed of sound is vs = (1/

√
3)(�x/�t) in both (a) and (b).

remainder of this paper and use objects whose size is less than
a quarter of the system size.

The higher-order density, M14
eq denoted as K eq in Eq. (18),

may still be adjusted to tune the temperature. This is because
this moment is related to damping of the stress fluctuations
vis-à-vis Eq. (18). Figure 2 shows the effect of tuning the am-

Keq optimized

Keq 0

0.0 0.2 0.4 0.6 0.8 1.0

50
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250

300

Ls L

T
L

s
L

K

0 0.1

300

315

FIG. 2. The amplitude of the 14th moment can be adjusted to yield a flatter
temperature profile at small length scales. This example is shown for our first-
order integrator and v2

s = 0.1 �x2/�t2. The squares and circles in Fig. 1 are
also for the optimized K eq, but there v2

s = v2
c /3.

FIG. 3. The optimal values of the amplitude K0 of the 14th equilibrium
moment for the first-order integrator versus speed of sound squared. We
found the function 0.15 + 2.18|(1/3) − (vs/vc)2| a good fit to the data points.
K0 was optimized similarly for the other integrators giving K0((vs/vc)2

< 0.25) = 1/3 and K0((vs/vc)2 > 0.25) = 1/
√

2 for the standard integrator
with our noise and K0 = max{3.8(1/3 − (vs/vc)2), 0} for the second-order
integrator.

plitude K0 in Eq. (19), K eq = K0(ρv2
c − Tr(P − s)) on tem-

perature reproduction in the case of our first-order integrator
for a case where v2

s = 0.1 v2
c . The improvement of tempera-

ture reproduction is visible in the Ls = �x, . . . , L/4 range
where the optimized equilibria result in a flatter temperature
profile, whereas the K0 = 0 case has a monotonic decrease.
The amplitude K0 of the 14th equilibrium density [M14

eq as
per Eq. (9)] was set by minimizing the least squares error in
the short length scale temperature (Ls ≤ L/4) from the set
point temperature of 300 K separately for each value of v2

s in
the range v2

s = 0.1, . . . , 0.45 v2
c . This gave a set of optimal

values {K0, j }, which are plotted versus v2
s in Fig. 3 for the

first-order integrator. K0 was optimized similarly for the other
integrators. One should note that even for v2

s = (1/3) v2
c , for

which (ρv2
c − TrP) = 0, there is a nonzero correction due to

the fluctuations from s.
Our LB model and noise implementation also differ from

previous works by the treatment of the pressure tensor Pαβ .
In our model, the speed of sound need not be given by v2

s
= (1/3)v2

c and Pαβ can accommodate also off-diagonal com-
ponents. This will make way for, e.g., studies of interface
properties with fluctuations.

We next examine the temperature reproduction at vari-
ous v2

s , based on the temperature from Eq. (6) as a func-
tion of Ls/L for the values v2

s = 0.1, . . . , 0.45 v2
c comparing

the standard integrator Eq. (30) and our first and second-
order integrators Eq. (27). The results are shown in Figs. 4(a)
and 4(b), and 4(c) for the K0-optimized standard, first-
and second-order integrators, respectively. For comparison,
Fig. 4(d) contains our implementation of the fluctuating LB
model by Dünweg et al.26 and our reproduction of Ladd’s
original results20 (both with K eq = 0 and M13

eq = 0). For both
of these we have Cholesky-decomposed the correlation ma-
trix from the viscosity tensor corresponding to Eq. (35) al-
though this decomposition is not mentioned in either work.
The results are considerably worse for v2

s /v2
c 
= 1/3 if this is

not done. In particular, Fig. 4(d) should be compared with
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FIG. 4. Temperature measured in a L3 = (50�x)3 box from velocity fluctuations as a function of linear size Ls of the subsystem. The target temperature was
300 K. Different curves correspond to different v2

s : 0.1 (solid) 0.2 (dotted), 1/3 (dashed) 0.45(�x2/�t2) (dotted-dashed). (a) standard integrator with our noise,
(b) our first-order integrator with our noise, (c) our second-order integrator with our noise, and (d) our interpretation of Dünweg et al. (Ref. 26) (�) and our
interpretation of Ladd’s original scheme without ghosts (�) (Ref. 20). The insets are close-ups of the corresponding upper left-hand corner. In particular, note
the improvement in the reduced temperature spread in (a) over (d).

Fig. 4(a), for which the temperature spreads at Ls < L/5 is
smaller than that in (d).

The (vs/vc)2 = 1/3 case is somewhat more accurate for
the Dünweg model probably because the noise amplitude and
the standard integrator are derived with a consistent level of
accuracy. Similarly, our first-order integrator of Eq. (27) has a
consistent level of accuracy as the noise of Eq. (33) based
on the SDE in continuum. The measured temperature pro-
files match nicely with the target temperature of 300 K at
length scales Ls ≤ L/4. Also, the incorporation of the cor-
relation matrix, Eq. (35), for the viscosity tensor makes the
deviation between the data for different v2

s small. This would
be very important for a nonideal equation of state, such as
van der Waals, where the speed of sound is not constant, but
in equilibrium, the temperature in the bulk of both phases
should be the same. The fact that the temperature rises for
the second-order [Fig. 4(c)] integrator at length scales slightly
larger than that of the plaquette of the mesh is due to the
second-order derivative terms in the integrator. They corre-
late the fluctuations between adjacent lattice sites. This off-
set is probably due to our neglect of some of the terms from
Ito’s lemma in the stochastic Taylor expansion of the equi-
librium distribution. As the temperature is still fairly inde-
pendent of length scale this integrator should still perform
well. The main use of the second-order integrator is that it
affords a large value for the coupling between the molecu-
lar dynamical solute and the LB fluid, which, as we shall
see in the remaining sections, eliminates the need for ex-
ternal Langevin noise on the solute. If a particle phase is
not of interest, the standard integrator [Fig. 4(a)] is a good
choice.

B. Single-particle diffusion

An obvious requirement for a realistic description of hy-
drodynamic interactions is that an impermeable sphere of
radius a moving at a small velocity v relative to a still back-
ground fluid should experience a drag force equal to 6πηav
first derived by Stokes.53 Much effort has been dedicated to
different ways of implementing the frictional fluid–particle
interaction in simulations (see Refs. 30 and 34 and references
therein). We have established criteria for consistent hydrody-
namic radius of a solid inclusion in an LB solvent as presented
in the accompanying paper.34 We found that by approximat-
ing the sphere by a set of Nv nodes placed equivalently to a
fullerene’s structure at a distance an about the sphere’s center
of mass, lattice corrugation effects were reduced significantly.
Our scheme relies on Newton’s equation of motion with the
local frictional force,

F f = −γ (v(r, t) − uip(r, t)), (40)

where uip(r, t) is an interpolated fluid velocity at the particle
location based on the flow field at nearby lattice sites and it
acts as the source of fluctuations for the inclusion, and v is
the particle velocity.

The fluctuating field uip is thus a heat bath for the molec-
ular dynamical objects on which the frictional force is exerted.
Relevant to the present study, we showed that in our consistent
scheme, Stokes drag, drag torque in shear flow, and hydrody-
namic forces between particles depend strongly on the algo-
rithmic (bare) coupling parameter γ .34 We adjusted γ so that
consistency between these deterministic measures of hydro-
dynamic radius and theory was attained. We show here that
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for the very same value of γ , the fluctuation–dissipation theo-
rem is also obeyed with thermal fluctuations implemented as
in the current paper.

We emphasize the fact that γ is neither arbitrary nor is it
to be naively equated with 6πηan as uip is not the far-field
velocity as assumed in 6πηav, but it is adjusted to ensure
consistency between different measures of hydrodynamic
radius.34 A sufficiently large value γs = γs(ρ, Nv , an) for γ

will make the radii based on the different measures all equal
an . Similar, but not necessarily consistent schemes are cited in
Ref. 34. Only at γ = γs the particles experience the cor-
rect temperature, drag force, and obey the macroscopic
fluctuation–dissipation theorem. Use of a different value of
γ would require additional thermostatting of the particle de-
grees of freedom to obtain the correct temperature.

To demonstrate the fluctuation–dissipation theorem of
the algorithm, we study the velocity autocorrelation func-
tion VACF = (1/3)〈v(t) · v(0)〉. The equipartition theorem
tells us that at t = 0 the VACF should be kBT/M . With the
assumption that the particle of hydrodynamic radius RH is
well described in a continuum model with no-slip impenetra-
ble boundary conditions, the VACF has been calculated from
the linearized (compressible) Navier–Stokes equations in
Refs. 54 and 55. The result is complex so we just summarize
the relevant findings: at short times, t < ts ≡ RH/vs , where vs

is the speed of sound, sound waves generated by the particle
motion carry away some of the particle’s momentum resulting
in a quick decay from kBT/M at t = 0 to kBT/M∗, where M∗

= M + ρ2π R3
H/3 (see Ref. 55). At longer times compress-

ibility is not important and the incompressible Navier–
Stokes equations can be used to predict the asymptotic long-
time power-law tail33, 55, 56 kBT (12ρ

√
π3ν3)−1t−3/2, where ν

= η/ρ is the kinematic viscosity. All of these effects have
been observed in particle systems (see Ref. 57 for a recent
example).

For the deterministic comparison of a particle coming to
rest, we consider a particle dragged with constant external
force F0 until it reaches steady state (walls far from the parti-
cle are needed in a direction parallel to the particle motion
in order for the fluid not to “catch up” with the particle).
At t > 0 the external force is removed and the particle and
solvent relax toward a quiescent state. Iwashita et al.33 have
shown that the fluctuation–dissipation theorem implies that
(−1/F0)dv(t)/dt for this relaxation of the particle velocity
is equal to the VACF divided by kBT in an incompressible
fluid. This should be the same as the compressible case for
t > ts (the time during which sound waves affect the VACF)
but should go to kBT/M∗ at t = 0 as there will not be any
sound waves generated by this protocol (starting from steady
state), even in the compressible case.

The VACF and the comparison to the deterministic re-
laxation is shown in Fig. 5. The particle had a hydrody-
namic radius of 2.7 �x (�x = 10 nm and L = 32�x) for
which the sound time ts is 4.7�t . We see perfect agree-
ment for times t > ts between the deterministic relaxation
and the VACF as predicted by the fluctuation–dissipation
theorem. We also see excellent agreement with the asymp-
totic t−3/2 behavior. We have left the 1/M factor out of
the curve (which would have given an intercept of one on

 : VACF/(kT)
 : (-1/F(0)) dv/dt

dashed line: (long-time tail)/(kT)
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FIG. 5. VACF of a particle diffusing in the LB fluid with thermal fluctua-
tions (�) and the rate of decay of the velocity of a particle that was in steady
state motion due to a constant force F0 for t < 0 and then relaxes to a qui-
escent state when the force is removed for t > 0 in a LB fluid with no ther-
mal fluctuations. The dashed line is the asymptotic long-time power-law tail,
kBT (12ρ

√
π3ν3)−1t−3/2, divided by kBT (Ref. 33).

the y-axis) so that the intercept of the VACF curve gives
1/M and that of the deterministic curve gives 1/M∗. This
gives M = 150 ag and M∗ = 190 ag. The difference M∗ − M
= ρ2π R3

H /3 expected from Zwanzig’s calculation55 can be
used to give one measure of RH for the particle (27 nm). This
can be used to predict M which is the mass of the fullerene
shell we used to construct our particle (66.9 ag) and the fluid
that necessarily always moves with it (i.e., fluid inside its hy-
drodynamic radius). This predicts M = 149 ag which is very
close to the M = 150 ag measured. Thus we can conclude
that both the fluctuation–dissipation theorem and equipartion
(t = 0 prediction) are well obeyed.

Measuring the diffusion coefficient has been used in the
past as a test of polymer dynamics in an LB solvent.30, 31 To
measure the diffusion constant of a single particle we place it
in a cubic simulation box with periodic boundary conditions.
To measure the diffusion coefficient in three dimensions we
track the mean squared displacement as a function of time
and use the relation,58

D = lim
|t−t ′|→∞

〈(r(t) − r(t ′))2〉
6(t − t ′)

. (41)

Rather than using an infinite time displacement, we look at
the slope of 〈(r(t) − r(t ′))2〉 versus 6(t − t ′) which eventually
becomes constant (equal to D).

The one remaining caveat is that there are also finite-size
effects in the measurement of the diffusion coefficient.59, 60

That is, we expect

D(L) = kBT

6πηRH
− kBT

6πη

B

L
, (42)

where B is a dimensionless numerical constant with the theo-
retical prediction of 2.837 in the zero Reynolds number limit
calculated in Ref. 60 from the Oseen tensor, and RH is a hy-
drodynamic radius. Thus, a plot of D RH versus RH/L should
give a straight line onto which data from different radii should
fall. Such a plot is shown in Fig. 6 which follows the predic-
tion of Eq. (42). RH is slightly larger than the radius of the
fullerene shell used to construct our particle but can be deter-
mined independently by drag force or torque measurements.
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FIG. 6. Diffusion coefficient D as a function of the hydrodynamic radius RH

and linear system size L . Different symbols are from runs with particles of
different radii. A linear fit gives 2.82 for the numerical constant B in Eq. (42).

In addition, the theoretical approximation of 2.837 is in ex-
cellent agreement with the fit parameter B = 2.82 ± 0.1 of
Eq. (42). Thus, not surprisingly given the relation between
the diffusion constant and the VACF, the particle also obeys
the macroscopic fluctuation–dissipation relation of Eq. (42).

C. Polymer in fluid

There are several well-established results in polymer
physics for the static and dynamic behaviors of a single
polymer chain in bulk solution.61 They provide a suitable
benchmark to see how our fluctuating fluid with an immersed
polymer chain fares against theoretic predictions and other
models. We use the finitely extensible nonlinear elastic
(FENE) chain62 to model a polymer as N beads intercon-
nected by N − 1 springs. The excluded-volume effect is
captured by the Lennard-Jones potential. These interactions
are written as

U (ri , r j ) = −1

2
k R2

0 log

(
1 − r2

i j

R2
0

)
δ| j−i |,1

+ 4ε

(( σ

ri j

)12
−

( σ

ri j

)6
+ 1

4

)
�

(
21/6 − ri j

σ

)
,

(43)

where ri j = |ri − r j |, the first term is the FENE potential
tying consecutive beads together in the chain, �(x) is the
Heaviside step function and the second term is the repulsive
truncated and shifted 12-6 Lennard-Jones potential. The
parameters of the model are the spring constant k = 30εσ−2,
the maximum extension of a bond R0 = 1.5σ , the energy
scale ε = kB (300 K), where kB is the Boltzmann constant,
and the length scale σ = �x = 1 nm. The monomers follow
Newton’s equation of motion,

mr̈i = −
∑
j 
=i

∇iU (ri , r j ) + F f i (ri , vi , u(ri , t)), (44)

where the particle mass m = mLJ is the inertia needed in
defining the Lennard-Jones timescale τLJ =

√
mσ 2/ε of the

model. The second term on the right-hand side is a local force
to describe frictional fluid-particle interaction,

FIG. 7. A schematic picture of a point-particle chain, for which lattice cor-
rugation effects are large and the hydrodynamic radius is not well defined in
the LB scheme (top). A chain consisting of composite beads of 20 nodes each
(bottom). The simulations were run using beads of 60 nodes and a strength of
coupling γ large enough to guarantee a consistent hydrodynamic radius (see
Ref. 34 for detailed analysis).

F f i = −γ (vi (ri , t) − uip(ri , t)), (45)

where uip is an interpolated fluid velocity at the particle
location based on the flow field at nearby lattice sites.

Ahlrichs and Dünweg30 simulated a FENE polymer made
of point particles, cf. Fig. 7, in a fluctuating LB fluid at
v2

s = (1/3)(�x2/�t2) with additional Langevin noise applied
independently to the beads. As described in Ref. 29, they ob-
served that fluctuations transmitted from the fluctuating LB
fluid to a tracer point particle undergoing Brownian motion
did not result in a consistent temperature as measured from
the expected equipartition relation 3kBT = m〈v2〉 for the par-
ticle velocity, but 〈v2〉 turned out to be a function of γ . To
obtain a uniform temperature profile independent of γ , they
added Langevin noise to the particle and subtracted the very
same noise locally from the fluid to conserve momentum.

While their approach works for a single point parti-
cle, the added Langevin noise alters hydrodynamic correla-
tions between any degrees of freedom coupled through the
momentum-conserving fluid and the internal structure of the
molecular dynamical object. In this paper, we study a poly-
mer made out of rigid composite beads, see bottom of Fig. 7,
and allow it to bask in the heat bath provided by the fluctu-
ating fluid alone. Since we have already shown that a single
extended or point particle obeys the fluctuation–dissipation
theorem when γ = γs in the previous subsection, here we
shall concentrate on testing a polymer chain suspended in the
LB fluid.

To speed up the polymer dynamics for these tests, we de-
crease the density to 1/60 of that of water, increase the tem-
perature to 310 K and to boost hydrodynamic interactions we
multiply the kinematic viscosity by a factor of 1.4. We re-
fer to these as “relaxed parameters.” The FENE polymer is
then constructed from composite particles of Nv = 60 nodes,
which is considerably more than necessary, but MD is not a
big fraction of total computational cost in these simulations. A
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monomer’s radius is set to an = 0.6 nm and its mass is set by
requiring neutral buoyancy, i.e., mLJ = (4/3)πa3

nρ. In order to
have a consistent hydrodynamic radius for each monomer,34

the value of γ Nv is set to be γs Nv ≈ 1.62 pg ns−1.
The effective Schmidt number for a spherical parti-

cle of radius 0.6 nm in water is Sc = (η/ρ)/(kBT/(6πaη))
≈ 2740, which is six times larger than the value of 460
for water17 calculated using the self-diffusion coefficient
of a water molecule. We resort to this calculation as the
self-diffusion coefficient of the LB fluid is not well de-
fined. We get Sc ≈ 90 for the same sphere using our re-
laxed parameters, but the self-diffusion coefficient of the
LB fluid is reduced correspondingly. The difference in Sc
computed in the two different ways is important as that
indicates slower dynamics for the particle phase than for
the solvent. The Péclet number for the same sphere in wa-
ter can be approximated as Pe =

√
〈v2〉a/(kB T/(6πηa))

= 6
√

3πa2η/
√

mLJkBT ≈ 190, which decreases to 34 for our
relaxed parameters.

D. Static polymer scaling

The size of a polymer is characterized by its radius of
gyration Rg ,〈

R2
g

〉 = 1

N

∑
m

〈(rm − rcm)2〉, (46)

where the subscript cm refers to the center of mass of the
chain. Rg is expected to scale as a function of the degree of
polymerization N as

〈Rg〉 ∼ N ν, (47)

where ν is the Flory exponent that accounts for the excluded-
volume effect. Its asymptotic value for a self-avoiding
random walk in 3D is ν ≈ 0.5877.63 We have verified Eq. (47)
for our coupled LB–MD model by measuring Rg and fit-
ting the data to the functional form of aN b with the result
Rg = (0.49σ )N 0.61 using data for N = 48, 64, 80, and 96.

The Flory exponent may be obtained independently from
the angularly averaged static structure factor S(k) defined
through the monomer density function ρ(r) = ∑

m δ(r − rm)
and its Fourier transform ρ̂(k) = F(ρ(r)) = ∑

m exp(ik · rm)
as

S(k) = 1

N

1

4π

∫
〈ρ̂(k)ρ̂∗(k)〉 d�

= 1

N

N∑
m,n=1

〈 sin(k|rm − rn|)
k|rm − rn|

〉
. (48)

The static structure factor should follow a scaling relation for
a range of k values,

S(k) ∼ k−1/ν . (49)

We plot S(k) for the chain length-system size ratios
N/L = 32/36, 48/46, 64/56, 80/64, and 96/72 in Fig. 8
using a logarithmic scale. We also show the corresponding
running slopes of logarithms to locate the scaling region
that should show up as a constant region (∂ log[S(k)]/∂ log k
= (−1/ν)). We find a broad flattening of the curves that shows
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FIG. 8. (a) Static structure factor for N = 32 (◦), 48 (�), 64 (♦), 80 (�),
and 96 (∇). The black dotted lines indicate the corresponding fitting/scaling
regions determined from (b). The scaling region broadens toward smaller k
values as the chain gets longer. (b) The slope of the logarithm of S(k) vs k
used to extract the scaling region and a slope, where a plateau equal to −1/ν

should develop. The horizontal dotted line indicates the theoretic value of
−1/ν = −1.70. The inset is a finite-size scaling plot that gives ν = 0.586 ±
0.005 in the N → ∞ limit. Errors in the main plots are smaller than the size
of symbols.

signs of saturation at the theoretic value of −1/ν = −1.70 for
chains N = 80 and 96. We have also extracted the asymptotic
value of 0.586 ± 0.005 for ν through finite-size scaling in the
inset of Fig. 8(b). The error in ν as a function of 1/N was
estimated by including a broader range of k values in fitting
and seeing the effect on ν as a function of 1/N [the range of
k used for the mean values of ν are indicated as dashed lines
in Fig. 8(a)]. The ratio L/Rg was kept constant at about 9.5
in our simulations.

We also examined the bond–bond correlation function
along the backbone of the chain defined as

〈cos θm,m+n〉m ≡
〈 rm+1 − rm

|rm+1 − rm | · rm+n+1 − rm+n

|rm+n+1 − rm+n|
〉
m
.

We compare the measurements from our LB simulations
to runs where the LB fluid term in the monomer’s equation
of motion is replaced by the commonplace Langevin ther-
mostat and the composite monomers are replaced by a point
particle of equal mass. The damping factor in the frictional
term of the Langevin equation is set to 1.4 τLJ. We find in
Fig. 9(a) a close correspondence in the bond–bond correlation
between LB chains of length N ≥ 64 and Langevin chains
of length N ≥ 128. The close correspondence for n = 5 − 25
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FIG. 9. Bond angle correlation function for a 32-bead chain as a function
of separation of monomers along the chain backbone (see text). The filled
symbols are data from LB runs and hollow symbols are from corresponding
Langevin runs. The power law ∼ n−1.36±0.01 fits well both to the LB and
Langevin data indicating that the chain is properly thermalized in the LB
solvent when the strength of coupling γ equals γs of Eq. (45) for which a
consistent hydrodynamic radius is obtained (Ref. 34).

indicates that the LB chain is properly thermalized as the de-
cay is temperature dependent. We observe also that an in-
creased local exclusion ensues in the LB solvent, which is
seen as the slower initial decay of the function for n = 2 − 5,
i.e. the effective size of the beads is slightly larger in the full
LB simulation. Panel (b) in Fig. 9 shows the same data in
log–log scale with a fit n−1.36 to the LB data in the range
n = 3 − 15 for N = 64 and 96 and n = 3 − 5 for N = 32,
and we find the slope in the corresponding Langevin data to be
identical. This suggests that hydrodynamics has no effect on
such an equilibrium property in agreement with the findings in
Ref. 64. The chains we simulated are short compared to those
in Ref. 65, where chains of length N = 400, . . . , 6400 mod-
eled as self-avoiding walks (SAW) on a simple cubic lattice
were observed to scale as n−0.824 and the same SAWs at the
θ -temperature as n−1.5, but our tentative power law is reason-
able as it suggests good-solvent conditions.

E. Polymer dynamics

1. Rouse mode analysis

We have done a standard Rouse mode analysis for our
chain. The Rouse modes are written as66

FIG. 10. (a) Rouse mode correlation functions p = 1 − 9 for N = 32 in log–
linear scale with fits for extraction of relaxation times τp . (b) Relaxation times
vs the ratio of mode number p to degree of polymerization N . The slope of
the fit in (b) equals zν = 1.74 ± 0.01, which gives z ≈ 2.97 ± 0.04, when
the asymptotic value ν = 0.586 from Fig. 8(b) is used.

Xp = 1

N

N∑
m=1

rm cos
( pπ

N

(
m − 1

2

))
, (50)

where p = 1, 2, ..., N − 1 is the mode number. For the Zimm
model, these modes should decay exponentially with a relax-
ation time τp according to

〈Xp(t + s) · Xp(s)〉s = 〈
X2

p

〉
e−t/τp . (51)

We do not expect our LB model to produce a one-to-one map-
ping to Zimm theory as there is no Langevin-type noise on
the monomers that would dominate the heat bath provided by
the fluctuating fluid and make the mode-coupling matrix di-
agonal. Nevertheless, it is insightful to compare the measured
relaxation times to those from theory that are expected to
scale as67

τ−1
p ∼

( p

N

)zν
rν(p), (52)

where z is the dynamic scaling exponent that depends on
chain rigidity, ν is again the Flory exponent, and rν(p) is
a slowly varying function of p that arises when the sum-
mation in Eq. (A1) is approximated by an integral. Its form
and detailed discussion is well presented in Refs. 30 and 67.
We measured the relaxation times τ1 to τ9 for N = 32, 48,
64, 80, and 96 by performing a linear fit to the logarithm of
Eq. (A1). An example of such fits is shown in Fig. 10(a).
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When the relaxation times data for all the chains are plot-
ted in log–log representation simultaneously [Fig. 10(b)], the
data fall onto a line with the exponent zν = 1.74 ± 0.01 for
p/N = 0.01, . . . , 0.1. The correction rν(p) does not improve
the data collapse in Fig. 10(b) as was also stated in Ref. 64
where different Rouse modes for a fixed N were collapsed
onto a single line. By dividing the fitted exponent zν by the
asymptotic Flory exponent ν = 0.586 ± 0.005 from Fig. 8(b),
we obtain a value of 2.97 ± 0.04 for z in agreement with
z = 3 in the Zimm model.

2. Chain diffusion

Dynamic polymer scaling in the dilute limit is built on
the relations of Eq. (47), the scaling relation for Rg , and Dcm

∼ N−νD , which relates the center-of-mass diffusion coeffi-
cient, Dcm, to its scaling exponent νD . In the present context,
the formula relating Dcm to the mean-squared displacement,58

Dcm = lim
|t−t0|→∞

〈(rcm(t) − rcm(t0))2〉
6 |t − t0| , (53)

will prove useful.
As any simulation is performed in a finite system, it is im-

portant to account for finite-size effects. Several works59, 60, 68

report an expression of the form,

Dcm = kBT

6πη

( A

Rg
− B

L

)
, (54)

where A and B are dimensionless constants and L is the linear
size of the system. We expect our polymer model to yield con-
gruous results for B to our earlier work dealing with a single
colloid in Subsection IV B.

A finite-size scaling analysis for short chains of 16, 24,
and 32 beads, Fig. 11(a), confirms the 1/L scaling. The fits
give an average value of 2.8 ± 0.05 for B, with which the
analytic approximation of 2.837 of Ref. 60 valid for the Oseen
tensor agrees well. The calculation in Ref. 60 for B, which
has been performed in the Ewald representation,69 is, to our
knowledge, the most accurate in the Oseen limit as it accounts
for the periodic images.

Since a polymer is not a solid sphere of radius Rg , A
is necessarily larger than unity. Dünweg et al.70 have done
extensive work on measuring 〈Rg/RI 〉 with the result 1.63
± 0.01 for a bead-spring model in continuum space (in this
case they use RI as the static hydrodynamic radius de-
fined through 〈1/RI 〉 = ∑

m 
=n〈1/|rm − rn|〉). Sunthar and
Prakash71 have pointed out that the static measure RI is
systematically larger than the dynamic hydrodynamic radius
present in Eq. (A1) as RH = Rg/A. We have extracted A
= Rg/RH from the diffusion data and plotted it as a function
of Rg in Fig. 11(b). We used the mean value of B = 2.8 to ex-
tract A for the chains for which we did not have data as a func-
tion of system size. We find that A approaches 1.67 ± 0.05
asymptotically, which is close to Dünweg and co-workers’
result.

We conclude, as for the single-particle diffusion, our
polymer obeys the fluctuation–dissipation theorem with no
added adjustable parameters.

FIG. 11. (a) Diffusion coefficients of three short polymers scale linearly as
a function of 1/L . We also show results for four longer chains at different
L . The three asymptotic values at L → ∞ are used in (b) together with
the data for (N , L) = (48, 46) and (64, 56) to extract the ratio A = Rg/RH

whose asymptotic value 1.67 ± 0.05 agrees within error bounds with the
value 1.63 ± 0.01 from Ref. 70 for 〈Rg/RI 〉 in the excluded-volume case.

Results from similar SRD simulations64 suggest the
existence of an additional term in Eq. (A1) of the form D0

= kBT/(ξ N ), where ξ is a friction parameter. To see this
term, Liu and Dünweg72 have shown that one is to work
strictly within the assumptions of Kirkwood theory so that the
model exhibits clear time scale separation and, consequently,
D0 is visible at short times, but not in the long-time limit. For
the sake of completeness, we performed a regression analysis
for the data in Fig. 11(a) and found the existence of a D0-like
term to be below any statistical significance. Also, we see
neither a ballistic regime nor an intermediate time scale in our
MD–LB simulations. The lack of a clearly separated interme-
diate time scale means there is no theoretical argument that we
should observe D0,72 which is also the argument that Liu and
Dünweg give for D0 not being observed in MD simulations.72

We have compared the SRD fluid parameters in Ref. 64 (such
as density and viscosity) and they can be mapped to values
in a similar range to ours. Hence, we attribute the difference
between our and SRD simulations to the no-slip boundary
condition at the surface of our monomers, which we impose
by construction in our method, while the SRD may be able to
slip more readily.

Following the notation in Ref. 60, we define

g2(t) = 〈((rc(t + s) − rcm(t + s))

−(rc(s) − rcm(s))2〉s, (55)
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FIG. 12. (a) Mean squared displacement g2 in center-of-mass frame, which
flattens around the Zimm relaxation time tZ . The data are for N = 32 (•), 48
(�), 64 (�), 80 (�) and 96 (�). (b) The decay of the slope of g2 is described
as a two-stage exponential decay. A fit to the region below the horizontal 1/e
line gives an estimate of tZ = 500, . . . , 2000 τLJ for these chains.

for the mean squared displacement of central monomers in
the CM frame of reference, where rc(t), the average position
of two monomers in the middle of the chain at time t and rcm,
is the center-of-mass coordinate of the polymer. The Zimm
time tZ is the time scale at which a polymer moves a distance
comparable to its own radius, tZ ∼ R2

g/Dcm. We may estimate
tZ from g2(t) based on the fact that after a time of order tZ ,
the central monomers move along with the CM for which rea-
son g2(t) should plateau for t > tZ . We observe this transition
in Fig. 12(a) to be very broad and estimate an upper bound
for tZ to be in the range 1000 − 7000 τLJ, depending on chain
length. The smooth transition of Fig. 12(a) was also observed
in Ref. 30. To make this more quantitative, the normalized
slope of g2 is plotted in log-linear scale in Fig. 12(b). Fit-
ting straight lines to data in (b) below the 1/e line indicated
gives estimates tZ = 500 − 2000 τLJ (as this is a “decay” time
it is less than the above time estimates for when the plateau
values were reached). Another estimate for the Zimm time is
the translational time, ttr = 〈R2

g〉/(6Dcm), that is in the range
between 500 τLJ (N = 32) and 3200 τLJ (N = 96). These
estimates for tZ will be needed in Subsection IV E 3 as an
upper bound for the dynamic scaling region.

3. Dynamical scaling

Brownian motion of a polymer is studied experimentally
by means of dynamic light scattering. The time correlation of

the intensity of the scattered light is embodied by the dynamic
structure factor S(k, t), which is the time-dependent general-
ization of Eq. (48),

S(k, t) ≡ 1

N
〈ρ̂(k, t + s)ρ̂∗(k, s)〉s

= 1

N

N∑
m,n=1

〈eik·(rm (t+s)−rn (s))〉s, (56)

where rm(t) is the position of the mth monomer at time t and
〈〉s denotes averaging over time.

We also define a dynamic structure factor in the center-
of-mass coordinate system as

Scm(k, t) ≡ 1

N

N∑
m,n=1

〈eik·(r̃m (t+s)−r̃n (s))〉s, (57)

where r̃m(t) = rm(t) − rcm(t). Here, Scm(k, t) is expected to
be sensitive to intramolecular dynamics as CM motion is re-
moved, whereas any short distances between the monomers
observed by S(k, t) will be mostly along the backbone of the
chain.

Within the assumptions of the Zimm model, the dynamic
structure factor is expected to exhibit scaling in the form of

S(k, t) = S(k, 0)F(kzt) (58)

in the limit of an infinite dilute system and a long polymer
chain for intermediate length scales, 2π/Rg < k < 2π/ l p (l p

is a microscopic cutoff), and times between the ballistic and
the Zimm time in the system.61 F is a scaling function and z
is the dynamic scaling exponent.

The dynamic scaling exponent can be extracted based on
Eq. (A1) by finding the value of z that produces the best col-
lapse of S(k, t)/S(k, 0), or Scm(k, t)/Scm(k, 0), for different
k as a function of (kσ )z(t/τLJ) in log-linear representation.
We find the scaling exponent z to match well with the pre-
diction of the Zimm model, for which z = 3, in the case of
Scm(k, t). This is shown in Fig. 13(b) as a scaling collapse,
which is seen to be sensitive for both the upper and the lower
k bound. The collapse is plotted as a function of (kzt)2/3

as it has been shown theoretically that log F(x) ∼ x2/3 for
k3kBT t/(6πη) � 1.73

Mussawisade et al.64 have confirmed by simulation a
theoretic argument73 stating that the dynamic scaling expo-
nent should, in fact, assume the value of 8/3 similar to a
semiflexible polymer in the laboratory frame for k Rg � 1.
Figure 13(a) suggests that z = 2.43 is quite optimal for a
32-bead chain in the range k ∈ [1.0, 2.4] σ−1. Corresponding
data for the 64-bead chain collapse best for z = 2.54 ± 0.02
in the laboratory frame of reference thus approaching the 8/3
found by Winkler et al.73 We note that the scaling does not
break down in Fig. 13(a) for length scales longer than Rg

such as 2π/(1.0 σ−1) ≈ 6.3 nm in the laboratory frame even
though Rg = 3.92 nm. This is probably because most beads
are within Rg of the center of mass but separations between
beads of 2Rg are common and is the relevant length scale in
the laboratory frame.

The upper k-bound of 2.4 σ−1 in Figs. 13(a) and 13(b)
corresponds to a distance of 2.6 σ at which the normalized
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FIG. 13. The dynamic structure factor for a 32-bead polymer calculated (a) in the laboratory frame of reference and (b) in the center-of-mass frame of reference.
Figures (a) and (b) show collapses of eight curves in the range k ∈ [1.0, 2.4]σ−1 and in (b) k = 1.0 σ−1 fails to collapse as it exceeds the maximal length scale
present on the average in that frame. The collapse for N = 64 in (c) in the center-of-mass frame is quite good, but the data still suffer from insufficient statistics
for (kσ )2(t/τLJ)2/3 > 60.

bond–bond correlation function of Fig. 9 drops roughly to
1/3. Larger k values fail to collapse as well. The data in (a)
and (b) collapses well up to t = 400 τLJ and 270 τLJ consis-
tently with the estimates of tZ for N = 32 in Sec. IV E 2.

Longer chains, such as the 64-bead polymer in Fig. 13(c),
have longer relaxation times and it becomes increasingly dif-
ficult to obtain sufficient statistical averaging. Nevertheless,
we observe the 64-bead chain to collapse in the center-of-
mass reference frame over a decade, but for a smaller range
of k values. To understand this, we computed also the off-
diagonal terms, C p,q (t) ≡ 〈Xp(t + s) · Xq (s)〉s, p 
= q, of the
Rouse matrix and found persistent correlations for (p, q)
= (1, 2), . . . , (1, 5) at a level of C1,q (t)/C1,1(0) ≈ 0.1 even
at t = 2000 τLJ, but for N = 32 the same normalized matrix
elements were of the order of O(10−2), . . . ,O(10−3) already
at t = 100 τLJ.

V. SUMMARY AND CONCLUSIONS

In this work, we have formulated the fluctuating LB
equation using the well-known theory of linear stochas-
tic differential equations and presented the connection be-
tween the variance of the underlying SDE and how it ties to
the fluctuation–dissipation relation for the fluctuating stress
tensor. We have presented how thermal fluctuations are im-
plemented in an isothermal LB model in a way that main-
tains the desired local temperature stemming from fluctua-
tions in the stress tensor, and how the ghost modes may be
tuned to adjust the temperature, T (Ls), as a function of sub-
system size Ls . We have pointed out explicitly, in the context
of the D3Q15 model, how hydrodynamic modes are coupled
to lattice-specific modes and what is required for consistent
thermalization. Also, we have applied a center-of-mass ther-
mostat to our system by which it is possible to attain the same
temperature at all length scales while momentum is still ex-
actly conserved in any interaction between the solute and the
solvent. This scheme also generalizes the model to a broader
range of the speed of sound, which should allow straightfor-
ward generalization to nonideal fluids. Moreover, when MD
particles such as colloids or polymer chains are coupled prop-
erly to the LB fluid, there is no longer any need to add ex-

ternal Langevin noise to the solute. This leads to quantitative
predictions of static and dynamical quantities that depend on
the hydrodynamic coupling. Our method produces results for
the center-of-mass diffusion coefficient of polymers whose
finite-size effects are well approximated by theoretic calcu-
lations in the Oseen limit.60
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APPENDIX A: DETAILS FOR THE D3Q15 LATTICE

For a 15-velocity D3Q15 model in three dimensions,
the mass density ρ(r, t) is M0(r, t), where m0

i = 1 ∀ i ; the
momentum densities ρux , ρuy , ρuz are M1, M2, and M3,
where m1

i = eix , m2
i = eiy , m3

i = eiz ; M4 through M9 are as-
sociated with the six independent stress densities (in three
dimensions), where ma

i with a ranging from 4 to 9 are the
upper triangular components of the tensor eiαeiβ − (v2

c /3)δαβ ,
where vc is the lattice velocity �x/�t ; M10 through M13

are referred to as “ghost” densities and are associated with
the third velocity moments of the distribution, where ma

i ,
with a from 10 to 13, are the four independent components
(which we take to be the xxy, xxz, xyy, and xyz components)
of eiαeiβeiγ − (v2

c /3)(eiαδβγ + eiβδαγ + eiγ δαβ); and finally
M14 is a ghost density associated with the (xxyy) one inde-
pendent fourth moment of the distribution, with m14

0 = √
2,

m14
1 through m14

6 = −1/
√

2, and m14
7 through m14

14 = √
2.

These vectors are written out in full in Table II.
The weights of Eq. (10) for the D3Q15 are w0 = 2/9,

w1 through w6 are 1/9, and the rest are 1/72. Similarly, the



064902-17 Fluctuating LB model for complex fluids J. Chem. Phys. 134, 064902 (2011)

TABLE II. The eigenvectors ma of the moments Ma in the D3Q15 model are presented as row vectors of the transformation matrix. m12, m10, and m11

correspond to ghost momentum densities M12 = Jx , M10 = Jy , and M11 = Jz , respectively. The mixed diagonal vector eizei x eiy gives rise to mode M13 = Q.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m0

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 vc 0 −vc 0 0 0 vc −vc −vc vc vc −vc −vc vc
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3

0 0 0 0 0 0 0 v2
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c v2
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c −v2

c

0 0 0 0 0 0 0 v2
c v2
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⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

values of the normalization constants N a are

N a =
(

1, 3/v2
c , 3/v2

c , 3/v2
c ,︸ ︷︷ ︸

conserved densities

9/2v4
c , 9/2v4

c , 9/2v4
c , 9/v4

c , 9/v4
c , 9/v4

c ,︸ ︷︷ ︸
stress densities

27/2v6
c , 27/2v6

c , 27/2v6
c , 9/v6

c , 1︸ ︷︷ ︸
ghost densities

)
. (A1)

Due to Eq. (A1), the external forcing terms pi can be ex-
pressed analogously to Eq. (10) using the conversion matrix
ma

i of the D3Q15 lattice (see Table II) as

pi = wi

(3Fα

v2
c

eiα + 9(uα Fβ + Fαuβ)

2v4
c

Hαβ

)
, (A2)

where Hαβ = eiαeiβ − (v2
c /3)δαβ .

Equation (13) also yield expressions for the local relax-
ation of the second moment [a = 5, . . . , 9 in Eq. (13)] as

∂t�αβ + ∂γ

[
1

3
ρuγ v2

c + Jγ + δγα

(
2

3
ρuβv2

c − Jβ

)]

= − 1

τ

(
�αβ − �

eq
αβ

)
, if α = β, (A3)

∂t�αβ + ∂α

[
1

3
ρuβv2

c + Jβ

]
+ ∂β

[
1

3
ρuαv2

c + Jα

]

+(1 − δγα − δγβ)∂γ Q = − 1

τ

(
�αβ − �

eq
αβ

)
, if α 
= β,

(A4)

where Jx = M12, Jy = M10, and Jz = M11 are ghost momen-
tum densities corresponding to m12, m10, and m11, respec-
tively. Their name comes from the fact that they have exactly
the same nonzero components as their counterparts m1, m2,
and m3. Q = M13 is the third-order moment

∑
i fi ei x eiyeiz .

This is made evident by Table II that lists all basis vectors ma .

Equation (A4) reveals how the ghost momenta Jα function as
source terms for the second moment since they are inside the
divergence term. Equation (13) also reveal how the physical
second moments act as source terms for the ghost momenta
Jα [a = 10, 11, 12 in Eq. (13), but we write out only the x
component],

∂t Jx + 1

3
∂x

[
�yy + �zz − 2ρ +

√
2K

3

]

+ 2

3
(∂y�xy + ∂z�xz) = − Jx − J eq

x

τ
, (A5)

where K denotes the 14th density M14. Together these equa-
tions suggest that if the velocity field of the fluid is to exhibit
equipartition, the J s must not interfere with leading order
viscous stress39 nor drain fluctuations from the second mo-
ments as the J s are not present in the momentum equation
[see Eqs. (17) and (16b)]. This fact imposes J eq

α = 0 based
on Eq. (A4) and a lengthy analysis shows that Qeq may be
chosen to be ρux uyuz .

At this point, by adding the dynamic equations for Jy

and Jz to Eq. (A6) and by leaving only first-order terms of
the derivative expansion and the leading order stress �0

αβ

= Pαβ + ρuαuβ , we arrive at Eq. (18) in the text.

APPENDIX B: ON THE IMPLEMENTATION OF THE
ALGORITHM

We describe here the implementation of the present algo-
rithm. The program is organized as follows.

• Scale parameters to have units �x , �t , and mLJ.
• Define lattice structure, i.e., vectors ei , precom-

pute static transformation matrix ma
i (see our choice for

D3Q15 above in Appendix A) and normalization factors N a

[Eqs. (12) and (A1)]. Initialize fluid by setting ρ(x, 0) =
ρ0, uα(x, 0) = 0.0 and fi (x, 0) = wiρ(x, 0). The equilibria
heq

i (x, 0) are initialized using Eq. (10) from ρ(x, 0), uα(x, 0)
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and Pαβ (x, 0) = v2
s ρ(x, 0)δαβ together with ζ a(x, 0) as de-

scribed in Step 3 of Sec. III B.
• Place (possibly microcanonically equilibrated) MD

particles in fluid, set their CM velocity to zero.
• Run simulation:

loop n=1:(Neq+Nmax)

1. Compute heq
i (x, n − 1) ∀ x using Eq. (28), the

relation geq
i = f eq

i + τpi and via Eqs. (10)
and (31).

2. Compute fi (x, n) ∀ x using Eq. (27).
3. Compute ρ(x, n), uα(x, n) ∀ x using Eq. (9).
4. Update MD part, compute frictional force.
5. Sample data.

• Output end-of-run data.
We note that calculation of Pαβ(x, n) must take into ac-

count corrections to reduce errors in non-Galilean invariant
terms as presented in Ref. 43.

To set the center-of-mass velocity of the total system to a
desired value, we first focus on the momentum-conservation
equation with a constant shift U = (Ux , Uy, Uz) in velocity
that does not affect the stress as it is a Galilean-invariant trans-
formation and, as such, it does not result in velocity gradients,

∂t (ρ(uα − Uα) + ∂β(ρ(uα − Uα)(uβ − Uβ)) = ∂βσαβ

⇔ ∂t (ρuα) + ∂β(ρuαuβ)

−∂t (ρUα) − ∂β(ρuαUβ + ρuβUα − ρUαUβ)

= ∂βσαβ. (B1)

The constant shift is realized by generating populations
f (CM)
i (x, t) that are subtracted from the fi (x, t). The terms

containing Uα tell us what the first (M1
(CM) through M3

(CM))

and second (M4
(CM) through M9

(CM)) moments of f (CM)
i (x, t)

should be for the correct shift to be realized. The moments
are listed in Table III. The nonzero ghost moment M13

(CM) is

TABLE III. Moments Ma
(CM) that are used to construct the populations

f (CM)
i using Eq. (10) and to set the center-of-mass velocity to a desired

value.

a Ma
(CM)

0 0
1 ρUx

2 ρUy

3 ρUz

4 ρ(2ux Ux − U 2
x )

5 ρ(2uyUy − U 2
y )

6 ρ(2uzUz − U 2
z )

7 ρ(ux Uy + uyUx − Ux Uy )
8 ρ(uyUz + uzUy − UyUz)
9 ρ(ux Uz + uzUx − Ux Uz)

10 0
11 0
12 0
13 ρ(ux uyUz + ux Uyuz + Ux uyuz − ux UyUz − Ux uyUz −

Ux Uyuz + Ux UyUz)
14 0

constructed analogously noting that Qeq = M13
eq = ρux uyuz .

Figure 1 is the result of setting Uα(t) = Vα(t) − U (R)
α (t),

where Vα is the center-of-mass velocity of Eq. (38) and U (R)
α

is the random velocity due to the heat bath that is propagated
in time using the Euler–Maruyama approximation46 as

U (R)
α (t + �t) = (1 − χ�t)U (R)

α (t)

+
√

2kBT χ/MT

√
�tN (0,1); (B2)

U (R)
α (0) = 0,

where N (0,1) is a normally distributed random number of
zero mean and unit variance.

The choice of χ in Eq. (38) depends on the size of and
the speed of sound in the system. We found that χ = 700 ns−1

worked for the systems tested (L = 30 and 50 nm). The value
of χ corresponds to a time scale χ−1, which should be larger
than the simulation time step �t so that the relaxation is re-
solved by the explicit solver of Eq. (B2). Also, the solver does
not overshoot for χ�t < 1.
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