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We study the influence of disorder strength on the interface roughening process in a phase-field model with
locally conserved dynamics. We consider two cases where the mobility coefficient multiplying the locally
conserved current is either constant throughout the system �the two-sided model� or becomes zero in the phase
into which the interface advances �one-sided model�. In the limit of weak disorder, both models are completely
equivalent and can reproduce the physical process of a fluid diffusively invading a porous media, where
super-rough scaling of the interface fluctuations occurs. On the other hand, increasing disorder causes the
scaling properties to change to intrinsic anomalous scaling. In the limit of strong disorder this behavior prevails
for the one-sided model, whereas for the two-sided case, nucleation of domains in front of the invading front
are observed.

DOI: 10.1103/PhysRevE.78.031603 PACS number�s�: 81.15.Aa, 68.35.Ct, 46.65.�g, 47.56.�r

I. INTRODUCTION

Interface growth in disordered systems has been a subject
of great interest in nonequilibrium statistical physics for
more than a decade. Many different examples of interfaces
growing in heterogeneous systems have been found in phase
separation by nucleation and growth �1,2�, solidification
�3,4�, and fluid invasion in porous media �5,6�, among oth-
ers.

Phase-field models of increasing complexity have been
extensively used in recent years in studying interface rough-
ening as well as microstructure formation �5,7–13�. A par-
ticularly interesting problem of interface roughening is that
associated with a fluid invasion front moving into a disorder
medium �5�, which can be experimentally studied with the
Hele-Shaw cell setup �14–18�. In modeling such a fluid in-
vasion experiment, two different ways to consider the mobil-
ity parameter in a model B type of phase-field model, called
the one-sided and symmetric models, were used by
Hernández-Machado et al. �19� and Dubé et al. �20,21�, re-
spectively. The difference between these two cases is that in
the two-sided model, the mobility is constant throughout the
system, while in the one-sided model it becomes zero in the
phase that is being invaded.

In this paper, our aim is to carry out a detailed analysis
about the influence of the strength of the disorder in the two
types of models described above. Both cases can be de-
scribed by a generalized Cahn-Hilliard equation or model B
with quenched disorder in the background medium. The
boundary conditions are used to couple the system to a res-
ervoir of the invading phase with a constant mass flux. At the
linear level of small front fluctuations, both phase-field mod-
els can be analyzed through linearized interface equations,
that is, the evolution of the interface can be described in
terms of the interface profile alone. Moreover, the bulk dif-
fusion fields implicit in this description cause the interface
equation to become spatially nonlocal �19–21�. It is thus of
interest to examine how the models are influenced by vary-

ing disorder strength, which can be easily realized in the
experiments, too. To this end, we first define a critical value
of the disorder strength �c, above which the disorder be-
comes strong. We find that at weak disorder strengths ��
��c�, both models have the same interface scaling behavior
given by superrough anomalous scaling, which is also pre-
dicted by the linear theory. We observe clear deviation from
this scaling when the disorder strength comes close to �c,
where superroughness disappears and weak intrinsic anoma-
lous scaling arises. Furthermore, in the limit of strong disor-
der ����c�, the two models are no longer equivalent. The
one-sided model can still be applied to describe diffusive
liquid invasion in good agreement with the experimental re-
sults of Ref. �16�. However, in this limit the symmetric
model exhibits nucleation of the invading phase in front of
the advancing interface.

The structure of the paper is as follows. In Sec. II, we
introduce the two versions of the phase-field model, consider
the linearized interface equation �LIE� valid in the weak dis-
order limit, and give an estimate for the strong disorder limit,
thus introducing a scale for the disorder strength. Section III
defines the concepts of scaling in interface roughening, in-
cluding superrough and intrinsic anomalous scaling. In Sec.
IV, we present our numerical results, and finally give our
conclusions in Sec. V.

II. THE PHASE-FIELD MODEL

The phase-field model we are using describes a system of
two phases separated by an interface. We introduce a locally
conserved field � to represent the two phases of the problem
with the equilibrium values �e= �1 in such a way that the
interface position is at ��x ,h�=0. The dynamics of the field
is then assumed to follow a conserved equation based on a
time-dependent Ginzburg-Landau Hamiltonian �model B
�7��,

��/�t = − � · j , �1�

where the current is proportional to the gradient of the
chemical potential j=−M�����. Here, the chemical poten-
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tial is �=�F /�� and the free energy is taken to be of the
form F���=�dr�V���+ �	���2 /2�. A simple double-well
potential is chosen with a linear random term,

V��� = −
1

2
�2 +

1

4
�4 − 
�r�� . �2�

The variable 
�r� is taken to be stochastic and it plays the
role of spatially quenched disorder in the system. The disor-
der is characterized by its average �
� and its standard de-
viation �, which characterizes the disorder strength. The dis-
order also has a correlation length lcorr, which in a numerical
scheme is most conveniently set to the lattice spacing. Note
that by considering 
 as local average over area of size lcorr,
the choice of the length lcorr also enters the disorder strength.
That is, the standard deviation of 
 is � when observed at
scale lcorr. The surface tension of this model can be calcu-
lated with the disorder-free “kink” solution �0, or the Gold-
stone mode, given by the lowest-energy solution of the
boundary conditions ��−��=−1 and ��+��=1. The result-
ing dimensionless surface tension is �=�2 /3	0.47 �9�.

The equation for the dynamics of the phase field reads

��

�t
= �M��� � � = �M��� � �− � + �3 − 	2�2� − 
�r�� ,

�3�

where M��� is a mobility parameter that may depend on the
phase field. In the sharp interface limit 	→0, the normal
velocity of the interface can be obtained by integrating Eq.
�3� in a region around the interface,

vn 	 
jn
� = 
M����n�
+ − 
M����n�
−, �4�

where the subscripts � and  correspond to the two phases
of the system. In our study, two different functional forms for
the mobility M��� will be considered. First, we assume a
symmetric parameter M =M0 constant for the whole system
independent of the field �. In this case, the velocity of the
interface is controlled by the difference between incoming
and outgoing currents. Second, we will consider a one-sided
parameter M =M0����, ���� being the Heaviside step func-
tion, which is zero in the phase where ��0. Note that the
normal velocity of the interface then reduces to vn	

−M0�n�
−, that is, it is only proportional to the outgoing
current. As we will see in our numerical results, the two
models can give different results and describe different
physical situations depending on the strength of the disorder.

Here we consider the so-called driven case, where the
mean velocity of the interface is fixed to a constant value.
The relevant boundary condition is to impose a fixed gradi-
ent of the chemical potential at the bottom of the system,
��=−Vŷ. Combined with the initial condition of

� = �+ 1 y � Hinit,

− 1 y � Hinit,
� �5�

the boundary condition leads to phase �= +1 invading phase
�=−1 and the interface moving with a constant average ve-
locity. In the general context of the phase-field model, we
will refer to these phases as A and B, respectively. In terms

of liquid front invasion into a Hele-Shaw cell, these phases
would be liquid and air, respectively, whereas in terms of
phase separation they would be the phases rich in compo-
nents A and B.

A. The linearized interface equation

The dynamics of a front in the phase field model de-
scribed above can also be considered in terms of an integro-
differential equation for the interface, which reduces the di-
mensionality of the problem by one, obviously a desirable
property. However, this description can only be obtained as a
perturbation expansion around a flat front with small fluctua-
tions, and since the fluctuations are caused by the disorder,
this also means weak disorder. Because the front dynamics
are only obtained to first order in small fluctuations, we call
it the linearized interface equation �LIE�. It is noteworthy
that the long-ranged effects of mass conservation in the
phase field result in the LIE being spatially nonlocal, even
though it is linear. This means that the LIE takes the form of
convolutions in position, which can be made local in Fourier
space.

The LIE can be obtained using the Green’s function G to
express the phase-field equation, Eq. �3�, in terms of an
integro-differential equation �20�, and then projecting it to an
interfacial description with the operator P�·�=�du�u�0�u��·�.
The LIE takes the form of dispersion relation for Fourier

components of small front fluctuations ĥ�k , t� around the av-
erage interface height H0�t� �i.e., H�x , t�=H0�t�+h�x , t��,

�tĥ�k,t� = − �Ḣ0
k
 + �
k
3�ĥ�k,t� + 
k

̂�k,t� , �6�

where � is surface tension, Ḣ0=V is the �constant� average
front propagation velocity, and the disorder term is the Fou-
rier transform of the two-dimensional �2D� disorder along
the front, or 
̂�k , t�=�dxe−ikx
(x ,H�x , t�). From the disper-
sion relation �6�, one immediately obtains the crossover
length scale

�� = 2�� �

Ḣ0

, �7�

when the two dispersion terms are equally strong. Physically
the dominant dispersion mechanism then changes from sur-
face tension to mass transport. In addition, because of the
conservative character of the capillary disorder term

k

̂�k , t�, it turns out that the crossover length �� acts as an
upper cutoff for the correlation length of fluctuations. This
means that in the long-wavelength region, where mass trans-
port controls the dissipation of front fluctuations, the inter-
face is asymptotically flat. This effect has been numerically
shown in Refs. �5,20–22�, and also in a general context of
kinetic roughening �23�.

B. Definition of disorder strength

In order to study the influence of disorder strength in the
phase-field model of Eq. �3�, we need to define a measure for
the relative strength of the disorder. This can be achieved by
comparing the disorder contribution in the dimensionless
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bulk free energy of Eq. �2� to the surface energy. We do this
by considering a domain of linear size r, where the local
disorder average �
�r is a stochastic variable with standard
deviation �r�r−1�, where � is the standard deviation of a
single disorder site, which is of linear size lcorr. The under-
lying disorder then has a correlation length lcorr. Considering
a circular domain of radius r, it is energetically favorable for
this domain to be of the opposite phase than its surroundings
if

2�r� � �r2���
�r, �8�

where the miscibility gap in our model is ��=2. The left-
hand side is the energy cost of the interface, whereas the
right-hand side is the energy gain due to disorder. We con-
sider the local disorder average �
�r on the fluctuation site to
be as large as its standard deviation �r=�lcorr /��r. Then Eq.
�8� gives the condition

� �
��

lcorr
� , �9�

for when the disorder can locally dominate the bulk energy
and thus is defined to be strong. The order-of-magnitude es-
timate for strong disorder in our dimensionless units �lcorr
=1, 	=1� is thus obtained as the variance being of the same
order as the surface tension �=�c�. Note in particular that
no r dependence remains in the estimate, and thus the rela-
tive disorder strength will be the same at all length scales
�larger than the interface width 	 and disorder site size lcorr�.

III. SCALING OF ROUGH INTERFACES

The statistical treatment of a 1D interface H�x , t� is usu-
ally done by studying the scaling properties of its fluctua-
tions over the whole system of total size L �24�. For scale-
invariant growth, the lateral correlation length of the
fluctuations is expected to grow in time following a power
law �c� t1/z until it reaches the system size L, defining a
saturation time ts�Lz. Alternatively, the global width of the

interface W�L , t�= ��H�x , t�− H̄�2�1/2 increases as W�L , t�� t�

for t� ts and becomes constant W�L , t��L� for t� ts. Here,
� � denotes average over different noise realizations and the
overbar is a spatial average in the x direction. The quantities
�, �, and z are the roughness, growth, and dynamical expo-
nent, respectively, and they are related through the scaling
relation �=�z. In the standard Family-Vicsek scaling frame-
work �25�, this set of scaling exponents fully describes the
scaling properties of the interface fluctuations.

However, experimental results and several growth models
have appeared in the last decade showing that global and
local scales are not always equivalent. This is called anoma-
lous scaling �26,27�. Therefore, one has to compute the in-
terface width at different window sizes, w�� , t�= ���H�x , t�
− �H���2���1/2, where � �� denotes an average over x in win-
dows of size ��L. For scale-invariant interfaces, local fluc-
tuations are expected to increase as

w��,t� = ��g��/t1/z� , �10�

with the corresponding scaling function

g�u� � �u−��−�loc� for u � 1,

u−� for u � 1,
� �11�

where �loc is the local rough exponent and it characterizes
the roughness at small scales. One of the implications of
anomalous scaling is that the local width saturates when the
correlation length reaches the system size, i.e., at the time ts
and not at the local time t���z as occurs in the Family-
Vicsek scaling. There is an intermediate regime between t�

and ts where the local width grows as w�� , t�� t�* with �*

=�−�loc /z.
Another useful technique to determine the whole set of

scaling exponents is to study the power spectrum of the in-

terface S�k , t�= �h̃�k , t�h̃�−k , t��. In the presence of anomalous
scaling, it is expected to show the following scaling:

S�k,t� = k−�2�+1�sA�kt1/z� , �12�

where the scaling function has the general form

sA�u� � �u2��−�s� for u � 1,

u2�+1 for u � 1,
� �13�

and �s defines the spectral roughness exponent. Different
scaling arises from this scaling function �26�. For �s�1, it is
always valid that �loc=�s and the Family-Vicsek scaling is
recovered whenever �loc=�. In contrast, the so-called intrin-
sic anomalous scaling is observed when �s��. Note that for
this kind of anomalous scaling, a temporal shift in the power
spectrum is observed. The quantification of this shift based
on the above scaling form is unreliable and inaccurate, how-
ever, and thus we refrain from giving a measure for �−�s in
the one case in which we observe scaling of this type. On the
other hand, for �s�1, �loc=1 and the superrough scaling
appears when �=�s.

It is worthwhile to remember here that the crossover
length �� present in the imbibition phenomenon becomes a
very important scale in the kinetic roughening process. More
precisely, extensive numerical studies �5,20–22� have shown
that fluctuations of the interface do not evolve in time be-
yond this crossover length. Therefore, the interface fluctua-
tions reach the steady state at ts	��

z instead of saturating at
Lz. Additionally, since the interface is asymptotically flat at
scales larger than the crossover length, the crossover shows
up as a maximum at the corresponding wave vector in the
saturated structure factor S�k , t→��.

IV. NUMERICAL RESULTS

Our study will be focused on the influence of the disorder
on the scaling behavior of the fluctuating interface for the
two cases of the mobility M in the phase-field model, that is,
the one-sided model and the symmetric case. In our simula-
tions, we have used Gaussian distributed disorder with zero
mean �
�=0, and different disorder strengths �standard de-
viation of 
� �. In the numerical scheme, the disorder will
have a correlation length as long as the lattice spacing, mean-
ing that the lattice spacing normalizes the standard deviation
when dimensionless numbers in the numerical scheme are
turned to physical units.
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For the driven boundary condition, the methods used to
obtain the interface description, and ultimately the LIE, pre-
dict that the mean value of the disorder will be irrelevant, as
it has no contribution for the interface propagation. This has
been numerically verified by our simulations of the full
phase-field models using different values for the disorder av-
erage. Here we only report results with �
�=0.

As a numerical method, we chose the simple explicit Eu-
ler scheme, where the disorder can be straightforwardly
added. In two dimensions, the time step requirement of this
method is not too restrictive for systems large enough for
present consideration.

A. Weak disorder

For weak disorder, both models of the phase field �one-
sided and symmetric� are expected to be equivalent, since the
same LIE describes both cases in this limit. The weak disor-
der regime corresponds to ���, where � is the surface ten-
sion. In our dimensionless units �	=1 in Eq. �3��, �	0.47.
Numerically the roughness and growth exponents of �s
	1.3 and �	0.4, within the superrough scaling description
��loc=1, �=�s�, were observed by integrating the LIE �22�.
This is in agreement with our results for both phase-field
models at weak disorder, which are shown in Figs. 1 and 2
on the left. From Figs. 2�a� and 2�b�, we observe �=�s, since
no temporal shift in the structure factor is present �unlike
Fig. 2�c��. Moreover, in Fig. 3 we observe that at small dis-
order strengths, ��0.2 in accordance with ���, the spec-
tral roughness exponent saturates to the LIE value, and is
independent of the disorder strength.

We also find that numerical artifacts in the interpretation
of the interface from the phase-field model appear when the
disorder is so small that the global interface width W�L , t� is
much less than the numerical lattice constant. This is due to
the interpolation required to obtain the location of the inter-
face between two sites of the numerical grid, and shows up
as prominent periodic oscillation in interface width with os-

cillation time �x / Ḣ0. While this numerical artefact can be
removed by decreasing �x, it means that in the convenient
and typically used �5,19,21,22� dimensionless units, which
lead to Eq. �3� with 	=1, only a very limited disorder
strength range leads to the universal weak disorder limit.
This range is roughly 0.1���0.2, when �x=1.

B. Strong disorder

In the regime of strong disorder, ��0.5, different sce-
narios occur depending on which model is used. Below, we
discuss the cases of the symmetric and two-sided models
separately.

1. Symmetric model

According to the analysis of the disorder strength above,
in this limit it is favorable for the phase-field model to spon-
taneously create disperse domains of one phase �A� within
the region that is initially of the other phase �B�. Droplets of
phase A will form in phase B, and this mixture will initially
cover most of the system. However, local mass conservation
must still be valid regardless of any nucleation events. This
means that mass must be diffusively transported from the A
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FIG. 1. Interface widths for the two models at different disorder strengths �in dimensionless units�. Results from the symmetric and
one-sided model are given in the upper �a,b,c� and lower �d,e,f� panels, respectively. Disorder strength is varied from left to right as follows:
weak disorder ��=0.2�, intermediate disorder ��=0.5�, and strong disorder ��=1�. Fitted growth exponents for the smallest and largest
slopes are given in the figures, with solid lines representing the fits.
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phase to the location where it nucleates within the B phase to
facilitate a growing droplet.

This is exactly what happens in the symmetric model �see
Fig. 4�, when one imposes the initial condition of Eq. �5�.
Since there is no characteristic scale for the domain creation,
the droplets are not restricted by the crossover length ��,
which acts as a cutoff for the interface fluctuations and,
therefore, the surface roughening at large scales is different
with respect to a weaker disorder strength. This is observed
in Fig. 2�c�, where the interface power spectrum is plotted
for a higher disorder strength at different times using the
symmetric model. We can see that the fluctuations are not
saturated, indicating that the crossover length �� �repre-
sented by the dashed line� is not acting anymore as an upper
cutoff. In addition, our numerical results for the symmetric

model at strong disorder show three differences in the weak
disorder case. First, the local growth exponent �* approaches
the global exponent � �see Fig. 1�c��. Second, the spectral
roughness exponent decreases drastically to the range of �s
	0.5 �see Fig. 3�. Third, a temporal shift appears in the
power spectrum �see Fig. 2�c��. We can thus conclude that
the scaling picture of interface fluctuations changes from su-
perrough to intrinsic anomalous scaling, where �s��.

The picture becomes problematic for strong disorder,
however, because the interface becomes less and less repre-
sentable by a single valued function H�x , t�. This is due to
the interfacial area becoming more and more tattered by
overhangs, droplets, and bubbles. This also means that some
numerical tricks are needed to distinguish the interface from
these bubbles and droplets. This distinction is essentially
made by finding a path for the phase boundary across the
system that locally has as small height jumps as possible.
This works relatively well as long as the disorder is not much
stronger than �=1 in our dimensionless units. However, note
anomalous fluctuations in Fig. 1�c� around value 2.6 on the
vertical axis, which are due to the above-mentioned reason.

2. One-sided model

Using the one-sided model allows us to suppress the do-
main creation in phase B, where the mobility parameter is
zero. Then, the position of the interface H�x , t� can be found
by taking the largest height where the phase A has advanced
to at time t, coming from the phase B when the phase field is
above zero. In Fig. 4, we show an example of the interface
profile at different times for a strong disorder, �=1.0.

The growth exponent �	0.5 measured for strong disor-
der strength �see Figs. 1�e� and 1�f�� agrees with the experi-
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FIG. 2. Structure factors at ten equidistant time intervals for the two models at different disorder strengths �in dimensionless units�.
Results from the symmetric and one-sided model are given in the upper �a,b,c� and lower �d,e,f� panels, respectively. Disorder strengths are
varied from left to right as weak ��=0.2�, intermediate ��=0.5�, and strong ��=1�. Fitted roughness exponents are given in the figures, with
solid lines corresponding to the fits. The dashed vertical line corresponds to the crossover point k�=2� /�� as obtained from the LIE.

0 0.2 0.4 0.6 0.8 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

variance σ

χ

symmetric
one−sided

FIG. 3. Spectral roughness exponent �s for both phase-field
models as a function of disorder strength.
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mental value of �=0.50�0.02 reported in Ref. �16� for liq-
uid front dynamics into a Hele-Shaw cell. Likewise, a similar
variation in the spectral roughness exponent �s, which
changes from �s	1.23 to �s	0.91 when the disorder
strength is increased �see Fig. 3�, was also experimentally
observed in the same reference, with a variation from �s
=1.1�0.1 to �s=0.9�0.1 when the capillary forces of the
Hele-Shaw cell were increased �see Fig. 15 in Ref. �16��. On
the other hand, we numerically observe that the crossover
length �� still acts as a cutoff length for the interface fluc-
tuations at strong disorder �see Fig. 2�. These results indicate
that the model can still describe the imbibition phenomenon
at strong disorder.

V. CONCLUSIONS AND DISCUSSION

In this work, we have studied two different ways of con-
sidering the influence of the mobility parameter in a Model B
type of phase-field model with a Ginzburg-Landau-type free
energy. The main experimental context considered here is
liquid front invasion into a Hele-Shaw cell with quenched
disorder �16�. We have focused on the case of driven front
invasion, where there is a forced constant mass flux into the
system that follows locally conserved dynamics. The sym-
metric model, studied, for example, in Refs. �5,21,22�, uses a
constant mobility factor, whereas the one-sided model, stud-
ied, for example, in Refs. �19,28�, uses a mobility that is zero
in the receding phase, which we call phase B.

We note that both models have previously been turned
into nonlocal linear interface equations �LIEs� in the limit of
small front fluctuations, which is equivalent to weak disorder
�19,21,22�. These LIEs are identical for both models, and
therefore both models are expected to have identical scaling
behavior at the weak disorder limit. This is verified by direct
comparison of numerical simulations. Furthermore, these re-
sults also agree with the relevant Hele-Shaw experiments
�16�.

We give an estimate for the strong disorder limit by com-
paring the disorder contribution to bulk energy to the surface
tension. We find that the linear weak disorder limit is found
well below this disorder value, and that only in this limit
does the roughness exponent not continuously depend on the
disorder strength in either model. This means that a well-
defined region of universality only exists at the weak disor-
der limit.

Numerically we study the dependence of the growth and
roughness exponents of the invasion fronts as a function of
the disorder strength. Our results are consistent with a �con-
tinuous� change of scaling behavior from superrough to in-
trinsic anomalous scaling, when the disorder strength is in-
creased from weak to strong.

At strong disorder, the symmetric model is no longer
found to correspond to the Hele-Shaw experiment due to
domain creation of the invading phase in front of the propa-
gating interface. As our analysis shows, the domain growth
can occur at all length scales �larger than the disorder site
size lcorr of the system� without any characteristic radius,
which is a phenomenon observed in other experimental situ-
ations such as nucleation on dislocations �29� or binary mix-
tures �2�. In contrast, the results for the one-sided model do
agree well with the Hele-Shaw experiments �16�, even as the
disorder strength is increased.

We hypothesize that the change in scaling behavior is due
to a decreased effect of surface tension and mass transport in
interface roughening as the disorder becomes strong. Since
the argument of strong disorder is the dominance of disorder
over surface tension, the scaling in the regime dominated by
the surface tension �characterized by having a correlation
length �c���� should change for both models at strong dis-
order. In the one-sided model, mass transport still restricts
interface roughening, and thus the crossover scale �� per-
sists. Conversely, in the symmetric model the nucleated do-
mains create roughening by avalanches that are not con-
trolled by mass transport from the reservoir, and thus the
crossover scale �� becomes irrelevant.
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FIG. 4. An example of a set of rough fronts for strong disorder
�=1 using both models: one-sided model �top� and symmetric
model �middle�. The bottom figure shows points of zero � at fixed
time in the symmetric model, demonstrating the nucleating
domains.
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