
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Hinz, Michael; Tölle, Jonas M.; Viitasaari, Lauri
Variability of paths and differential equations with BV-coefficients

Published in:
Annales de l'Institut Henri Poincaré B, Probabilités et Statistiques

DOI:
10.1214/22-AIHP1308

Published: 04/11/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Hinz, M., Tölle, J. M., & Viitasaari, L. (2023). Variability of paths and differential equations with BV-coefficients.
Annales de l'Institut Henri Poincaré B, Probabilités et Statistiques, 59(4), 2036–2082. https://doi.org/10.1214/22-
AIHP1308

https://doi.org/10.1214/22-AIHP1308
https://doi.org/10.1214/22-AIHP1308
https://doi.org/10.1214/22-AIHP1308


Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2023, Vol. 59, No. 4, 2036–2082
https://doi.org/10.1214/22-AIHP1308
This research was funded, in whole or in part, by [European Research Council, 741487, 818437]. A CC BY 4.0 license
is applied to this article arising from this submission, in accordance with the grant’s open access conditions

Variability of paths and differential equations with BV-coefficients

Michael Hinz1,a, Jonas M. Tölle2,b and Lauri Viitasaari3,c

1Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, 33501 Bielefeld, Germany, amhinz@math.uni-bielefeld.de
2Aalto University, Department of Mathematics and Systems Analysis, PO Box 11100 (Otakaari 1, Espoo), 00076 Aalto, Finland, bjonas.tolle@aalto.fi

3Department of Mathematics, Uppsala University, 751 06, Uppsala, Sweden, clauri.viitasaari@math.uu.se

Received 16 July 2021; revised 12 August 2022; accepted 23 August 2022

Abstract. We define compositions ϕ(X) of Hölder paths X in R
n and functions of bounded variation ϕ under a relative condition

involving the path and the gradient measure of ϕ. We show the existence and properties of generalized Lebesgue–Stieltjes integrals of
compositions ϕ(X) with respect to a given Hölder path Y . These results are then used, together with Doss’ transform, to obtain existence
and, in a certain sense, uniqueness results for differential equations in R

n driven by Hölder paths and involving coefficients of bounded
variation. Examples include equations with discontinuous coefficients driven by paths of two-dimensional fractional Brownian motions.

Résumé. Nous définissons les compositions ϕ(X) de trajectoires Hölder X dans R
n et les fonctions de variation bornée ϕ sous une

condition relative qui fait intervenir la trajectoire et la mesure de gradient de ϕ. Nous montrons l’existence et les propriétés des
intégrales généralisées de Lebesgue–Stieltjes des compositions de ϕ(X) par rapport à un trajectoire donnée de Hölder Y . Ces résultats
sont ensuite utilisés, ensemble avec la transformation de Doss, pour obtenir des résultats d’existence et d’unicité pour des équations
différentielles dans R

n conduites par des trajectoires Hölder et avec des coefficients de variation bornée. Les exemples incluent des
équations avec des coefficients discontinus conduits par des trajectoires de mouvement brownien fractionnaire à deux dimensions.

MSC2020 subject classifications: Primary 31B10; 34A12; 34A34; secondary 26A33; 26A42; 26B30; 26B35; 28A78; 31B99; 60G22

Keywords: Functions of bounded variation; Generalized Lebesgue–Stieltjes integrals; Occupation measure; Hölder path; Riesz potential; Systems of
nonlinear differential equations

1. Introduction

We prove new results on the existence and regularity of generalized Lebesgue–Stieltjes integrals

(1.1)
∫ t

0
ϕ(Xu)dYu, t ∈ [0, T ],

as in [81,98,99], where X : [0, T ] → R
n and Y : [0, T ] → R are Hölder continuous functions with sum of Hölder orders

greater than one and ϕ : Rn → R is a function locally of bounded variation, [5,102], possibly discontinuous. We then
employ these results to study equations in R

n of form

(1.2) Xt = x̊ +
∫ t

0
σ(Xu)dYu, t ∈ [0, T ],

where Y is a given path in R
n, Hölder of order γ > 1

2 , and σ is a (bounded) matrix valued function of locally bounded
variation. We implement a Doss transform, [27,95], and use it to construct Hölder continuous solutions X to (1.2),
unique in a certain class. This produces novel first results for discontinuous coefficients σ in dimensions n ≥ 2. The main
difficulties are to provide a meaningful definition of the compositions ϕ(X) (resp. σ(X)) and to show they are regular
enough for the integrals in (1.1) or (1.2), respectively, to make sense and for the Doss transformation method [27,95]
to work. Our main tool is a quantitative condition which ensures that X spends little time in regions where the gradient
measure of ϕ (resp. σ ) is very concentrated.
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1.1. Related literature

To study equations of type (1.2) for deterministic integrators Y of low regularity or for probabilistic integrators Y lacking
semimartingale or other good distributional properties, the use of Stieltjes type integrals, [81,97–99], and much more
generally, the theory of rough paths, [47,73–75], have become established tools. However, rather little is known about
equations with irregular diffusion coefficients σ , and we are only aware of the few references mentioned below. In view
of possible applications it seems particularly desirable to obtain results for discontinuous diffusion coefficients. They
become necessary if one wants to model sharp interfaces between different media at which the solution X abruptly
changes its speed. If n = 1 and X solves (1.2) with σ = a + b1(−c,c), where a > 0, b > 0 and c ∈ R, then the movement
of X, dictated by the driver Y , is faster inside the sharply bounded strip (−c, c) than outside. If n = 2 and Y = (Y 1, Y 2),
then a (2 × 2)-matrix σ , with each entry being such a discontinuous function, could be used to determine polygonal
regions inside of which the accelerating effect of Y 1 or Y 2 on the respective components X1 and X2 of X = (X1,X2) is
amplified or damped; this may be of interest for mixed market models [10,11,22].

Stochastic differential equations with respect to Brownian motion involving non-Lipschitz (drift or diffusion) coeffi-
cients can be discussed in several different ways, [83]. Most classical and recent results for singular, irregular, or degen-
erate coefficients, and notions of uniqueness such as [25,33,37,64,69,91,101], and results specific to the one-dimensional
case, [29,30,68,79], are built upon the connection to diffusion theory and partial differential equations. For equations (1.2)
driven by rough deterministic or fractional Gaussian signals Y , such tools are not available.

For an integrator Y that is Hölder of order γ > 1
2 , Peano existence for solutions to (1.2) in R

n is well known for
coefficients σ that are s-Hölder continuous provided that γ > 1

1+s
. Moreover, Picard existence and uniqueness holds if

the coefficient is C1,s (with the same s), [47,75]. See [76,81,98,99] for the more classical Lipschitz resp. C2-cases. In [70],
new results have been obtained for equations (1.2) in R

n for the case γ < 1
1+s

. For n = 1 and continuous coefficients σ

whose reciprocal is integrable on compact intervals around zero, the authors of [70] constructed solutions to (1.2) by
means of a Lamperti transform [66], see [70, Theorem 3.7]. For n ≥ 1 they can solve (1.2) if the components of the
coefficient σ are bounded from below by |x|s , their gradients are Hölder continuous of order 1

γ
− 1 away from zero, and

the integral is understood in terms of Riemann sum approximations, [70, Theorem 4.15]. The first results on the existence
of Stieltjes integrals with discontinuous coefficients (in the case n = 1) were obtained in [20] (see also [19, Chapter 5]).
There the authors proved the existence of (1.1) if ϕ is of locally finite variation and X is a sufficiently active path,
[20, Theorem 3.1 and Remark 3.3]. For random X an integrability assumptions on its probability densities ensures this
condition. They also prove a change of variable formula and several results on the approximation of (1.1) by Riemann–
Stieltjes sums. A first study for differential equations (1.2) was provided in [43], where the authors prove existence and
uniqueness of solutions to (1.2) for n = 1 if Y is a fractional Brownian motion with Hurst index greater 1

2 and ϕ is a
(scaled) Heaviside step function. The authors of [43] used a Lamperti transform and smoothing arguments. Merging the
assumptions from [20] and the transform used in [43], the authors of [89] were able to prove existence and uniqueness
for (1.2) in the case n = 1 and in a probabilistic setup. Finally, we mention [96], where an alternative existence proof
for integrals of type (1.1) was given using Riemann–Stieltjes approximations and suitable controls (avoiding fractional
calculus), extending the results of [20].

1.2. Brief description of our approach

In the present paper we use a quantitative condition on the given individual path X w.r.t. the given coefficient ϕ (or
σ ), which we call (s,p)-variability, Definition 2.1. It may be seen as an deterministic version of the probabilistic As-
sumption 2.1 of [89], and as a higher dimensional analog of a condition in [96, Corollary 3]. Our first main result is
Theorem 2.12, where we state that the composition ϕ(X) of ϕ with a Hölder path that is (s,1)-variable w.r.t. ϕ is well
defined and a member of a certain fractional Sobolev space, ensuring the existence of (1.1). The stronger assumption
of (s,p)-variability with large p guarantees that (1.1) is Hölder continuous. A key step to obtain these results is a mul-
tiplicative estimate for Gagliardo seminorms of ϕ(X), Proposition 4.29, that can be viewed as a generalization of [20,
Proposition 4.6] ([89, Proposition 4.1]) to higher space dimensions. To obtain this estimate, one bounds differences of
type |ϕ(Xt ) − ϕ(Xu)| in terms of a fractional maximal functions of the total variation ‖Dϕ‖ of the gradient measure of
ϕ, Proposition C.1; this is a fractional version of a prominent argument, [23, Lemma A.3]. Then one estimates further
using the fact that the fractional maximal functions of order 1 − s are trivially bounded by Riesz potentials of ‖Dϕ‖ of
order (1 − s), evaluated at Xt (resp. Xu). The (s,p)-variability condition just means that these functions have the desired
integrability in time. The (s,1)-variability of X w.r.t. ϕ is tantamount to saying that the total variation ‖Dϕ‖ of the gra-
dient measure of ϕ and the occupation measure μ

[0,T ]
X on [0, T ] have a finite mutual Riesz energy of order 1 − s, see

Remark 4.2. Phenomenologically this means that these two measures are sufficiently disperse with respect to each other to
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make the singular (repulsive) interaction kernel of order −n+1− s integrable, which is a polarized version of well known
arguments, see [31,67,77] for background and [49] for a related application. Mutual Riesz energies are not necessarily
easy to handle, but they encode dimensional properties in a neat way and this permits to easily connect to the well known
scaling properties of gradient measures of BV-functions, [5, Section 3.9], and well known scaling properties of fractal
curves, [31], such as realizations of prominent stochastic processes, [7,31,58,94]. If in a certain region of space ϕ has a
jump or strong oscillation so that ‖Dϕ‖ is too concentrated, this can be compensated if X is so fast moving in that part of
space that the Hausdorff dimension of μ

[0,T ]
X is sufficiently high to guarantee sufficient integrability, see Corollary 4.16.

The idea that increased activity of a path can compensate low coefficient regularity is also central in regularization by
noise, [18,25,35,37,42,45,48,64], see Remark 4.3. It is closely related to the notion of irregularity studied in [18] and
[41], see Section 4.5. However, while irregularity is a property of the path alone, variability is a property of a path relative
to a given coefficient. We begin our discussion of differential equations (1.2) by showing that a uniform boundedness
condition on the Riesz potential of order 1 − s of the total variations of the gradient measures naturally takes us back to
the case of γ -Hölder coefficients with γ > 1

1−s
, so that a well known Peano existence argument applies, Theorem 3.6.

This is the extreme case, where the activity of the solution path is not used. To obtain existence results taking into account
the activity of the solution path, we implement a Doss transform for BV-coefficients σ under the main assumptions that σ

is invertible, Assumption 3.12, its inverse has curl-free columns, Assumption 3.15, and an angle condition holds, (3.10).
Of course in particular the curl free condition is quite restrictive, but as in classical implementations of the Doss method,
[95], it is inevitable. In lack of other existence results for equations with BV-coefficients it seems reasonable to establish
a BV-variant of Doss’ transformation under these assumptions. They guarantee the existence of a Lipschitz function f so
that, roughly speaking, a solution X is obtained as an image of the driver Y under f . This uses the fact that dimensional
lower bounds for Y are stable under Lipschitz transformations and produces our second main result, Theorem 3.24, which
states the existence of Hölder continuous solutions X to (1.2) with BV-coefficients σ . A one-dimensional version of this
result, partially under less restrictive assumptions, is formulated in Theorem 3.8. In Theorem 3.25 we assume that the
occupation measure of Y satisfies a kind of weighted upper regularity condition and that the gradient measures of the
coefficient obey a specific moment condition ‘at the starting point’. Under these assumptions we can again observe the
existence of Hölder solutions. These theorems are purely deterministic, the regularization effect of the irregular path is
rather mild. Our third main result is Corollary 3.26. It is a probabilistic variant of Theorem 3.25, in which we assume that
Y is a stochastic process satisfying the weighted upper regularity condition in a mean value sense and obtain Hölder con-
tinuous solutions for almost every realization of Y . It may be applied to fractional Brownian motions Y in R

n with n ≥ 2
and Hurst index H > 1

2 . One can regard Corollary 3.26 as (a partial) extension of the probabilistic [89, Theorem 2.1].
Our fourth main result is a related uniqueness result, Theorem 3.28. It shows that Assumptions 3.12 and 3.15 guarantee
uniqueness in the class of variability solutions.

It would be desirable to replace the Doss transform by standard fixed point arguments. The main open problem to
be settled is to prove that – under reasonable assumptions – the integral process itself will be variable. Another goal for
future research is to target equations that, in addition to a BVloc-diffusion coefficient, involve a drift vector field of low
regularity. First results on variability and compositions involving discontinuous paths can be found in [55].

1.3. Structure of the article

The structure of the article is as follows: In Section 2 we introduce the notion of (s,p)-variability, define compositions
ϕ(X) (σ(X), respectively), and state our results on existence and properties of (1.1). We also provide a change of vari-
able formula and a result on Riemann sum approximation. Section 3 contains our results on existence and uniqueness of
variability solutions to (1.2). In Section 4 we provide a systematic discussion of (s,1)-variability, some of its immedi-
ate consequences, conditions sufficient to ensure it, and some probabilistic examples. We briefly compare variability to
irregularity, verify the mentioned multiplicative estimate, the properties of (1.1) and the change of variable formula; we
also point out links to currents. The Doss transformation and the claimed existence and uniqueness results for (1.2) are
proved in Section 5. Basic facts on Riesz kernels, mollification, maximal functions, and fractional calculus are collected
in Appendices.

By | · | we denote the Euclidean norm in R
n. We write B(x, r) for the open ball of radius r > 0 centered at x ∈ R

n. The
symbol Ln stands for the n-dimensional Lebesgue measure and the symbol Hd for the d-dimensional Hausdorff measure
on R

n. For spaces of Rm-valued functions we use notations like BV(Rn)m (to stay close to reference [5]) or L1
loc(R

n,Rm)

(because it is more practical for other function spaces). For m = 1, we suppress R
m from notation and write L1

loc(R
n).

For a Borel measure ν on R
n, we denote its (topological) support by suppν.
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2. Stieltjes integrals and BV-coefficients

2.1. Compositions of paths with BV-functions

Recall that a function ϕ ∈ L1
loc(R

n) is of locally bounded variation, denoted ϕ ∈ BVloc(R
n), if its distributional partial

derivatives Diϕ are signed Radon measures, i = 1, . . . , n. We write Dϕ = (D1ϕ, . . . ,Dnϕ) for its R
n-valued gradient

measure, and ‖Dϕ‖ for the total variation of Dϕ. If ϕ ∈ L1(Rn) and ‖Dϕ‖(Rn) < +∞, then ϕ is said to be of bounded
variation, ϕ ∈ BV(Rn).

Let T > 0. We consider continuous paths from [0, T ] into R
n, that is, continuous functions X = (X1, . . . ,Xn) :

[0, T ] → R
n. The following definition is our key tool to provide a meaningful and sufficiently regular definition of

the composition ϕ ◦ X of a BVloc-function ϕ and a path X. As usual, Lp(0, T ) denotes the Lebesgue space of classes of
p-integrable functions on (0, T ).

Definition 2.1. Let ϕ ∈ BVloc(R
n), p ∈ [1,+∞] and s ∈ (0,1). We say that a path X = (X1, . . . ,Xn) : [0, T ] → R

n is
(s,p)-variable with respect to ϕ if there is a relatively compact open neighborhood U of X([0, T ]) such that

(2.1)
∫
U

|X· − z|−n+1−s‖Dϕ‖(dz) ∈ Lp(0, T ).

We write V (ϕ, s,p) for the class of paths X that are (s,p)-variable w.r.t. ϕ and use the short notation V (ϕ, s) :=
V (ϕ, s,1).

Note that V (ϕ, s,p) ⊂ V (ϕ, s, q) for any q < p and V (ϕ, s,p) ⊂ V (ϕ, r,p) for any r < s. The (s,p)-variability
condition (2.1) is a quantitative and relative condition on the path X and the function ϕ. Roughly speaking, it ensures
that X varies sufficiently around sites where ϕ has strong oscillations or jumps, encoded in the requirement that the
Riesz potential of order 1 − s of the restriction of ‖Dϕ‖ to U is in Lp(0, T ), see Section 4 for a systematic discussion.
The use of an open neighborhood U of X([0, T ]) in (2.1) simplifies several arguments (e.g. mollification). We admit a
component-wise point of view upon functions with values in R

m.

Definition 2.2. Let ϕ = (ϕ1, . . . , ϕm) ∈ BVloc(R
n)m, p ∈ [1,+∞] and s ∈ (0,1). We say that a path X : [0, T ] → R

n is
(s,p)-variable with respect to ϕ if it is (s,p)-variable with respect to each component ϕi of ϕ. That is, V (ϕ, s,p) :=⋂m

i=1 V (ϕi, s,p). Similarly as before, we write V (ϕ, s) := V (ϕ, s,1).

Recall the following classical definition.

Definition 2.3. A function ϕ ∈ L1
loc(R

n,Rm) is said to have an approximate limit at x ∈ R
n if there exists λϕ(x) ∈ R

m

such that

lim
r→0

1

Ln(B(x, r))

∫
B(x,r)

∣∣ϕ(y) − λϕ(x)
∣∣dy = 0.

In this situation, the unique value λϕ(x) is called the approximate limit of ϕ at x. The set of points x ∈ R
n for which this

property does not hold is called approximate discontinuity set (or exceptional set) and is denoted by Sϕ .

The set Sϕ does not depend on the choice of the representative for ϕ. If ϕ̃ is a representative of ϕ ∈ L1
loc(R

n,Rm)

then a point x /∈ Sϕ with ϕ̃(x) = λϕ(x) is called a Lebesgue point of ϕ̃, and the set of all Lebesgue points of ϕ̃ is called
the Lebesgue set of ϕ. See for instance [5, Definition 3.63]. The set Sϕ is Borel and of zero Lebesgue measure, [5,
Proposition 3.64]. If ϕ = (ϕ1, . . . , ϕm) ∈ BV(Rn)m then by the Federer–Vol’pert theorem, [5, Theorem 3.78], the set Sϕ

is countably Hn−1-rectifiable.
We say that a Borel function ϕ̃ : Rn →R

m is a Lebesgue representative of ϕ = (ϕ1, . . . , ϕm) ∈ L1
loc(R

n,Rm) if

(2.2) ϕ̃(x) = λϕ(x), x ∈R
n \ Sϕ.

Using Definition 2.3 and the equivalence of norms on R
n it is easy to see that

(2.3) Sϕ =
m⋃

i=1

Sϕi
.
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In particular, if for any i the function ϕ̃i : Rn → R is a Lebesgue representative of ϕi then (ϕ̃1, . . . , ϕ̃m) is a Lebesgue
representative of ϕ, and we refer to such representatives as component-wise Lebesgue representatives.

The following observation will be proved in Section 4.

Lemma 2.4. Let ϕ = (ϕ1, . . . , ϕm) ∈ BVloc(R
n)m and X ∈ V (ϕ, s) for some s ∈ (0,1). Then for any component-wise

Lebesgue representatives ϕ̃(1) and ϕ̃(2) of ϕ we have

ϕ̃(1)(Xt ) = ϕ̃(2)(Xt )

at L1-a.e. t ∈ [0, T ].

Lemma 2.4 could be rephrased by saying that under the (s,1)-variability condition the equivalence class ϕ has a
well defined trace on the range X([0, T ]) ⊂ R

n of X, endowed with a suitable measure. See [2] or [57] for pointwise
redefinitions of functions and traces to closed subsets of Rn in other contexts.

Definition 2.5. Let ϕ ∈ BVloc(R
n)m and suppose that X ∈ V (ϕ, s) for some s ∈ (0,1). We define the composition ϕ ◦ X

to be the L1-equivalence class of t 	→ ϕ̃(Xt ) on [0, T ], where ϕ̃ is a component-wise Lebesgue representative of ϕ. Given
p ∈ [1,+∞] we say that ϕ is p-integrable w.r.t. X, in symbols ϕ ∈ Lp(X,Rm), if ϕ ◦ X is an element of Lp(0, T ,Rm).
In the case n = 1 we write Lp(X) instead of Lp(X,R).

Thanks to Lemma 2.4 the composition and the notion of p-integrability w.r.t. X are well defined. The component-wise
choice of representatives is not essential, but it is convenient in conjunction with Definitions 2.1 and 2.2.

We discuss (s,1)-variability in some examples.

Example 2.6. If ϕ : Rn → R is locally Lipschitz, then for any s ∈ (0,1) any path X is in V (ϕ, s,∞). This follows from
the fact that ‖Dϕ‖ = |∇f | ·Ln with |∇f | ∈ L∞(U) on any relatively compact open set U ⊂ R

n.

Example 2.7. Let C ⊂ [0,1] be the classical middle third Cantor set and νC the unique self-similar probability mea-
sure with support C, see [31]. Let ϕC : Rn → [0,1] be the function that satisfies ϕC(x) = νC((0, x1)) for all x =
(x1, x2, . . . , xn) ∈ [0,1] × R

n−1, ϕC(x) = 0 for all x ∈ (−∞,0) × R
n−1 and ϕC(x) = 1 for all x ∈ (1,+∞) × R

n−1.
Then ϕC ∈ BVloc(R

n), and on [0,1]n we have ‖DϕC‖ = DϕC = νC ⊗ Hn−1. Writing dC = log 2
log 3 for the Hausdorff di-

mension of C, we find that for s ∈ (0, dC) any path X in R
n is in V (ϕC, s,∞). Now suppose s ∈ (dC,1). The constant

path X ≡ ( 1
2 ,0, . . . ,0) in R

n is in V (ϕC, s,∞), but the constant path X ≡ (0,0, . . . ,0) is not in V (ϕC, s). For n = 1
any smooth function X : (0, T ) → (0,1) with a finite number of critical points is in V (ϕC, s,∞). For n = 2 a smooth
curve X : (0, T ) → (0,1)2, parametrized to have unit speed, does not have to be in V (ϕC, s). On the other hand, a path
of Brownian motion is in V (ϕC, s,∞) with probability one. For n ≥ 3 paths of fractional Brownian motions with Hurst
index H ∈ (0, 1

n−1+s
) are in V (ϕC, s,∞) with probability one. See Example 4.18 and Section 4.4 for details.

The function ϕ in Example 2.7 is Hölder continuous. The next example discussed variability with respect to discon-
tinuous functions.

Example 2.8. Suppose that O ⊂ R
n is a smooth domain with Hn−1(∂O) < +∞. By [5, Proposition 3.62] the function

1O is in BV(Rn) and O has finite perimeter P(O) = ‖D1O‖(Rn) < +∞. Let s ∈ (0,1) be arbitrary. If a smooth unit
speed curve X : [0, T ] → R

n hits ∂O in finitely many points then we have X ∈ V (1O, s), but if n ≥ 2 and X spends L1-
positive time in ∂O then it cannot be an element of V (1O, s), see Example 4.19. For n = 1 or n = 2 the path of a Brownian
motion is in V (1O, s,∞) with probability one. For arbitrary n ≥ 1, the path of a fractional Brownian motion with Hurst
index H ∈ (0, 1

n−1+s
) is in V (1O, s,∞) with probability one. For arbitrary n ≥ 1 it also follows that if H ∈ (0, 1

s
) and

the fractional Brownian motion is started in (∂O)c then it is in V (1O, s) with probability one, see Section 4.4.

2.2. Existence and properties of Stieltjes integrals

As mentioned, we are interested in generalized Lebesgue–Stieltjes integrals defined in terms of fractional calculus, [84],
introduced in [98,99] and used e.g. in [81].

We introduce suitable function spaces to discuss the existence and the continuity properties of the integral. Let p ∈
[1,+∞) and 0 < θ < 1. The Gagliardo seminorm of order θ with exponent p of a measurable function f : (0, T ) → R

m
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is defined as

(2.4) [f ]θ,p =
(∫ T

0

∫ T

0

|f (t) − f (u)|p
|t − u|1+θp

dudt

) 1
p

.

By Wθ,p(0, T ,Rm) we denote the space of measurable functions f : (0, T ) → R
m such that

‖f ‖Wθ,p(0,T ,Rm) := ‖f ‖Lp(0,T ,Rm) + [f ]θ,p < +∞.

Recall that for m = 1 we agreed to suppress Rm from notation and simply write Wθ,p(0, T ), which we do similarly for
the spaces in the sequel. The Hölder seminorm of order 0 < θ < 1 of a measurable function f : [0, T ] → R

m is denoted
by

[f ]θ,∞ = sup
0≤u<t≤T

|f (t) − f (u)|
|t − u|θ ,

and we write Cθ ([0, T ],Rm) to denote the space of Hölder continuous functions f : [0, T ] → R
m, endowed with the

norm

‖f ‖Cθ ([0,T ],Rm) := sup
t∈[0,T ]

∣∣f (t)
∣∣ + [f ]θ,∞.

Remark 2.9. The spaces Wθ,p(0, T ) and Cθ ([0, T ]) are classical Besov spaces of type Bθ
p,p and Bθ∞,∞, see for instance

[90].

Because they appear naturally in connection with Stieltjes integrals we also consider the following more specific types
of spaces, which (in this or a similar form) were introduced in [81]. Accepting a slight abuse of notation we use the
symbol Wθ,∞(0, T ,Rm) to denote the space of all measurable f : (0, T ) →R

m such that

‖f ‖Wθ,∞(0,T ,Rm) := ‖f ‖L∞(0,T ,Rm) + ess sup
t∈[0,T ]

∫ t

0

|f (t) − f (u)|
|t − u|1+θ

du < +∞.

By W
θ,∞
T (0, T ,Rm) we denote the space of measurable functions f : (0, T ) → R

m such that f (T −) ∈ R
m exists and

‖f ‖
W

θ,∞
T (0,T ,Rm)

= sup
t∈(0,T )

|f (T −) − f (t)|
(T − t)θ

+ sup
t∈(0,T )

∫ T

t

|f (t) − f (u)|
|t − u|1+θ

du < ∞.

It is well known and easily seen that

(2.5) Cθ+ε
([0, T ],Rm

) ⊂ Wθ,∞(
0, T ,Rm

)
and Cθ+ε

([0, T ],Rm
) ⊂ W

θ,∞
T

(
0, T ,Rm

)
.

We write W
θ,p

0 (0, T ,Rm) for the space of measurable functions f : (0, T ) → R
m such that

‖f ‖
W

θ,p
0 (0,T ,Rm)

:=
∫ T

0

|f (t)|p
tθp

dt + [f ]θ,p < +∞.

We emphasize that in the present paper the symbols Wθ,∞(0, T ) and W
θ,p

0 (0, T ) do not have the standard meaning.
The following definition is due to [98,99], see also [81]. By Dθ

0+ and D1−θ
T − we denote the (left and right sided)

fractional Weyl–Marchaud derivatives of orders θ and 1 − θ , respectively, see formulas (D.1) and (D.2) in Appendix D.
Background information on fractional derivatives can be found in [84].

Definition 2.10. Let f ∈ W
θ,1
0 (0, T ) and g ∈ W

1−θ,∞
T (0, T ) for some θ ∈ (0,1). Then we define the integral by

(2.6)
∫ T

0
ft dgt = (−1)θ

∫ T

0
Dθ

0+f (t)D1−θ
T −

(
g − g(T −)

)
(t) dt.
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The right hand side of (2.6) is a real number; the complex prefactor (used in [98] to ensure natural formulas) com-
pensates with another complex prefactor in the right sided Weyl–Marchaud derivative, cf. (D.2). The definition is correct:
for f and g that satisfy the respective hypotheses, the value of the integral in (2.6) is independent of the choice of θ ,
[98, Proposition 2.1]. If f and g are as in the definition and g has bounded variation, then (2.6) equals to the classical
Lebesgue–Stieltjes integral of f w.r.t. g, [98, Theorem 2.4]. The following duality estimate and restriction property are
well known, see [98,99] or [81]. By 
 we denote the Euler gamma function.

Proposition 2.11. Assume that f ∈ W
θ,1
0 (0, T ) and g ∈ W

1−θ,∞
T (0, T ) for some θ ∈ (0,1). Then the integral in (2.6)

admits the bound

(2.7)

∣∣∣∣
∫ T

0
ft dgt

∣∣∣∣ ≤
‖f ‖

W
θ,1
0

‖g‖
W

1−θ,∞
T


(θ)
(1 − θ)
.

Hence, for every t ∈ [0, T ] the restriction 1[0,t]f belongs to W
θ,1
0 (0, T ) and the integral

∫ t

0
fu dgu =

∫ T

0
1[0,t](u)fu dgu

is well-defined.

Our first new contribution is the following Theorem 2.12 on the regularity and integrability of the composition ϕ ◦ X

of a Hölder path X with a BV-function ϕ, the existence of the generalized Lebesgue–Stieltjes integral

(2.8)
∫ t

0
ϕ(Xu)dYu

of ϕ(X) with respect to a given Hölder path Y in the sense of (2.6), and the Hölder regularity of this integral, seen as a
function of t ∈ [0, T ].

Theorem 2.12. Suppose that ϕ ∈ BVloc(R
n) and that X ∈ Cα([0, T ],Rn) is (s,1)-variable with respect to ϕ for some

s ∈ (0,1).

(i) For any 0 < β < αs the composition ϕ ◦ X is an element of W
β,1
0 (0, T ).

(ii) If in addition Y ∈ Cγ ([0, T ],R) and αs + γ > 1 then for any t ∈ [0, T ] the integral (2.8) exists.
(iii) Moreover, if X is (s,p)-variable with respect to ϕ for some p ∈ (1,+∞], then for any 0 < β < αs we have ϕ ◦ X ∈

Wβ,p(0, T ). If in addition Y ∈ Cγ ([0, T ],R) with 1
p

< 1 − β < γ , where we write 1
+∞ := 0, then

∫ ·

0
ϕ(Xu)dYu ∈ C1−β−1/p

([0, T ],R)
and

(2.9)

∥∥∥∥
∫ ·

0
ϕ(X)dY

∥∥∥∥
C1−β−1/p([0,T ])

≤ c‖ϕ ◦ X‖Wβ,p(0,T )‖Y‖Cγ ([0,T ]).

In Sections 4.6 and 4.7 of Section 4 we provide a proof of Theorem 2.12, along with quantitative estimates for the
integral (2.8) involving (2.1).

Variability permits the following change of variable formula.

Theorem 2.13. Let F ∈ W
1,1
loc (Rn) be such that ∂kF ∈ BVloc(R

n) for k = 1, . . . , n. If X ∈ Cα([0, T ],Rn) with α > 1
2 is a

path which is (s,1)-variable w.r.t. each ∂kF for some s ∈ ( 1−α
α

,1), then we have

(2.10) F(Xt ) = F(x̊) +
n∑

k=1

∫ t

0
∂kF (Xu)dXk

u

for L1-a.e. t ∈ [0, T ], provided that x̊ ∈ R
n \ SF . If in addition F is continuous, then (2.10) holds for all t ∈ [0, T ] and

no matter where x̊ ∈R
n is located.
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The proof of this theorem can be found in Section 4.9 of Section 4.
The following result on the coincidence of (2.8) and the corresponding Riemann–Stieltjes integral under the (s,p)-

variability condition with large enough p is immediate from Proposition 4.29 and Lemma 4.31 below together with [98,
Theorems 4.1.1 and 4.2.1]. We provide this result for systematic reasons while it will not be used in the sequel.

Theorem 2.14. Let ϕ ∈ BVloc(R
n), let X ∈ Cα([0, T ],Rn) be a path which is (s,p)-variable with respect to ϕ for some

s ∈ (0,1) and p ∈ ( 1
αs

,+∞]. Then ϕ ◦ X has a (unique) Borel version which is Hölder continuous of any order less

than αs − 1
p

. If in addition Y ∈ Cγ ([0, T ],R) for some γ > 1 − αs + 1
p

, where 1
+∞ := 0, then both the generalized

Lebesgue–Stieltjes integral
∫ T

0 ϕ(Xu)dYu as in (2.8) and the Riemann–Stieltjes integral of ϕ(X) w.r.t. Y over [0, T ] exist
and agree.

Moreover, if in this case we are given 0 < ε < αs − 1/p − 1 + γ , a refining sequence (πk)k≥1 of finite partitions
πk = {0 = t

(k)
0 < t

(k)
1 < · · · < t

(k)
Nk

= T } of [0, T ] and points ξ
(k)
i ∈ [t (k)

i−1, t
(k)
i ], then we have

∣∣∣∣∣
∫ T

0
ϕ(X)dY −

Nk∑
i=1

ϕ(X
ξ

(k)
i

)(Y
t
(k)
i

− Y
t
(k)
i−1

)

∣∣∣∣∣ ≤ c|πk|αs−1/p−1+γ−ε

for all k, where |πk| = maxi (t
(k)
i − t

(k)
i−1) denotes the mesh of the partition πk and c > 0 is a constant depending on α, γ ,

s, p and Y .

3. Systems of differential equations

In this section we discuss equations of the form

(3.1) Xt = x̊ +
∫ t

0
σ(Xu)dYu, t ∈ [0, T ],

where T > 0, x̊ ∈ R
n, σ : Rn → R

n×n is a coefficient function σ = (σjk)1≤j,k≤n and Y = (Y 1, . . . , Y n) : [0, T ] → R
n

is a given Hölder path. As usual, (3.1) is to be understood in the sense that all components Xj of X = (X1, . . . ,Xn) :
[0, T ] → R

n satisfy the equations

(3.2) X
j
t = x̊j +

n∑
k=1

∫ t

0
σjk

(
X1

u, . . . ,X
n
u

)
dY k

u ,

where x̊ = (x̊1, . . . , x̊n). Each integral in these sums is a generalized Lebesgue–Stieltjes integral as in (2.8).
We employ Definition 2.2 for matrix coefficients: Given σ = (σjk)1≤j,k≤n with σjk ∈ BVloc(R

n) for all j and k and
parameters s ∈ (0,1) and p ∈ [1,+∞], a path X = (X1, . . . ,Xn) : [0, T ] → R

n is called (s,p)-variable with respect to
σ , in symbols X ∈ V (σ, s,p), if it is (s,p)-variable with respect to all σjk . We consider the following notion of solution.

Definition 3.1. Let σ = (σjk)1≤j,k≤n be such that σjk ∈ BVloc(R
n)∩L∞(Rn) for all j and k and let Y ∈ Cγ ([0, T ],Rn).

A path X : [0, T ] → R
n is called a variability solution for σ and Y started at x̊ ∈ R

n if

(i) X0 = x̊

(ii) the path X is in Cα([0, T ],Rn) and also in V (σ, s) for some s ∈ (
1−γ
α

,1)

(iii) X satisfies (3.1).

Examples 3.2. Let n = 1 and let σ = ϕC be as in Example 2.7 (with n = 1). If Y is a typical realization of fractional
Brownian motion with Hurst index H >

log 3
log 3+log 2 then by Theorem 3.6 below, variability solutions for σ and Y started

at zero exist. Also the zero function X ≡ 0 is a variability solution.

Not every solution is a variability solution as the following example shows.

Examples 3.3. If n = 1, κ ∈ (0,1), σ(x) = |x|κ for x ∈ (−1,1) and σ(x) ≡ 1 for x ∈ R \ (−1,1) and Y ∈ Cγ ([0, T ]) is
nowhere constant then by Theorem 3.8 there are (non-constant) variability solutions for σ and Y started at zero. Also the
zero function X ≡ 0 is a solution, but it can be a variability solution only if γ + κ > 1: Since in a neighborhood of zero
‖Dσ‖(dx) = |x|κ−1 dx the zero solution is a variability solution only if we can find s ∈ (1 − γ,1) such that |x|−s+κ−1 is
integrable around the origin.
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Remark 3.4. In [70] the authors considered monotone and continuous σ having power-type non-linearity at the origin
similarly as in the preceding example. The assumptions of [70, Theorem 3.6] ensure that their solution candidate is
actually an (s,1)-variable solution. As pointed out in [70], one cannot expect unique solutions, because also the zero
function is a solution.

3.1. Upper regularity and Hölder continuity of coefficients

To put our results in perspective we begin with a case that encodes a known result.
Recall that, given d ≥ 0, a Borel measure μ on R

n is said to be upper d-regular on a Borel set B ⊂ R
n if there are

constants c > 0 and r0 > 0 such that

μ
(
B(x, r)

) ≤ crd, x ∈ B ∩ suppμ,0 < r < r0.

We call a function ϕ ∈ BVloc(R
n) upper d-regular on B if ‖Dϕ‖ is upper d-regular on B . We say that a function

ϕ = (ϕ1, . . . , ϕm) ∈ (BVloc(R
n))m is upper d-regular on B if each of its components ϕi is. If B = R

n we simply say
upper d-regular.

The following is verified in Proposition 4.9.

Proposition 3.5. Let σ = (σjk)1≤j,k≤n be such that σjk ∈ BVloc(R
n) for all j and k, let s ∈ (0,1), and assume that σ

is upper d-regular with d > n − 1 + s. Then σ has a (unique) Borel version which is Hölder continuous of order s and
extends any component-wise Lebesgue representative. Moreover, any path is (s,∞)-variable w.r.t. σ .

Concerning (3.1) we are led back to a well known Peano type existence result.

Theorem 3.6. Let σ = (σjk)1≤j,k≤n be such that σjk ∈ BVloc(R
n) for all j and k, let s ∈ (0,1), and assume that σ is

upper d-regular with d > n − 1 + s. If Y ∈ Cγ ([0, T ],Rn) for some γ ∈ ( 1
1+s

,1), then for any x̊ ∈ R
n there exists a

variability solution X ∈ Cγ ([0, T ],Rn) for σ and Y starting at x̊, and X ∈ V (σ, s,∞).

For a proof, see for instance [47, Proposition 5] or, in a slightly different formulation, [75, Theorem 1.20].
We also consider upper regularity conditions for paths. If for a given number s > 0, a Borel set B ⊂ R

n and a path
Y : [0, T ] → R

n we have

(3.3) sup
x∈Y([0,T ])∩B

∫ T

0
|Yt − x|−s dt < +∞,

then there are constants c > 0 and r0 > 0 such that

(3.4) L1({t ∈ [0, T ] : |Yt − Yu| < r
}) ≤ crs, u ∈ {

τ ∈ [0, T ] : Yτ ∈ B
}
,0 < r < r0.

If (3.4) holds with some d > s in place of s, then (3.3) holds. These facts are standard, see Proposition 4.12. Condition
(3.4) says that the occupation measure of Y on [0, T ] is upper s-regular on B , and for B = R

n this encodes a lower
bound on its Hausdorff dimension, see Remark 4.11. If (3.4) holds, we also say that Y is upper s-regular on B and upper
s-regular if B =R

n.

Remark 3.7.

(i) No non-constant ϕ ∈ BVloc(R
n) can be upper d-regular with d > n, as a Lebesgue differentiation argument shows.

(ii) Suppose n = 1. Then we trivially have dimH Y([0, T ]) ≤ 1 for any path Y , with equality if Y is non-constant. For
a constant path clearly dimH Y([0, T ]) = 0. If Y is upper d-regular, then d ≤ dimH Y([0, T ]), [31, Theorem 4.13].
A path Y constant on some nonempty open interval cannot be upper d-regular for any d > 0. A nowhere constant
Lipschitz path Y on [0, T ] that is upper d-regular for a given number d ∈ (0,1] but not upper d ′-regular for any

d ′ > d is Yt = t
1
d , t ∈ [0, T ]. In this case we have μ

[0,T ]
Y ([0, r)) = rd for any 0 < r < T

1
d .

3.2. Solutions in dimension one

For the case n = 1 we obtain the following slight modification of the constructive existence results [43, Theorem 3.3] and
[89, Theorem 2.1], see Example 3.9 below. It allows to compensate the failure of σ to be Hölder of sufficiently high order
in some space region by sufficient activity of Y in some other space region, stated in terms of (3.3).
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Theorem 3.8. Let σ ∈ BVloc(R) ∩ L∞(R) be nonnegative L1-a.e. such that 1
σ

∈ L1
loc(R).

(i) The function g(x) = ∫ x

0
dz

σ (z)
, x ∈ R, is absolutely continuous and strictly increasing on R. Its inverse f := g−1 is

Lipschitz and satisfies σ(f ) = f ′ L1-a.e. on R.
(ii) Let s ∈ (0,1), γ ∈ ( 1

1+s
,1), Y ∈ Cγ ([0, T ]) with Y0 = 0 and x̊ ∈R. Let −∞ ≤ a < b ≤ +∞. Suppose that Y satisfies

(3.3) for B = (g(a), g(b)) or that σ is upper d-regular on (a, b) with d > s, and similarly for R \ (g(a), g(b)) and
R \ (a, b), respectively. Then the function X ∈ Cγ ([0, T ]), defined by

Xt = f
(
Yt + g(x̊)

)
, t ∈ [0, T ],

satisfies (3.1). If 1
σ

∈ L∞
loc(R), then X ∈ Cγ ([0, T ]) ∩ V (σ, s) is a variability solution for σ and Y started at x̊.

In the case that in Theorem 3.8 no upper regularity of σ is used but Y is assumed to be upper dY -regular, the Hölder
continuity and upper regularity of Y together can produce sufficient regularity: The hypotheses in Theorem 3.8 force the
condition

(3.5)
1

γ
< 1 + dY ,

and for s ∈ ( 1
γ

− 1, dY ) the theorem yields solutions. If the Hölder order γ of Y is higher (lower), lower (higher) upper
regularity of Y is needed.

Example 3.9. A real valued fractional Brownian motion (BH
t )t∈[0,T ] of arbitrary Hurst index H ∈ (0,1) is almost surely

γ -Hölder for any γ < H . On the other hand, it is upper 1-regular almost surely, as can for instance be concluded from
the joint continuity of its local times, see [13, p. 1271], [14, Theorem] or [92], which entails their local boundedness, see
Proposition 4.14 below. If H > 1

2 then for any γ ∈ ( 1
2 ,H) condition (3.5) holds and for almost every realization (seen as

a deterministic path) in place of Y , Theorem 3.8 yields variability solutions for any starting point x̊ and no matter whether
σ is upper regular of any order or not. This recovers the fractional Brownian motion special case of [89, Theorem 2.1],
which roughly speaking made use of the facts that, for any γ < H , the paths of BH are γ -Hölder almost surely and that

(3.6) sup
x∈R

E

∫ T

0
|Yt − x|− 1

H dt < +∞,

[89, Assumption 2.1 and Example 2.1]. Condition (3.6) implies that for any s ∈ (0,1) with probability one we have
Y ∈ V (σ, s,1) for any BV-function σ .

Example 3.10. Functions Y : [0,1] → R having Hölder and upper regularity properties satisfying the assumptions of
Theorem 3.8 can be found in the class of self-affine functions [59, Definition 1]. A self-affine function of order H ∈ (0,1]
is Hölder continuous of order H but of no order H ′ > H , see [59, Theorem 1] or [61]. For any choice of integers
2 ≤ b < a one can construct self-affine functions Y of order H = logb

loga
which have bounded local times LY

1 , see [15,
Proposition 7 et sa preuve], and for any such Y Theorem 3.8 yields variability solutions no matter whether σ is upper
regular of any order or not. Although Theorem 3.8 does not apply to this case, it is interesting to note that one can find
self-affine functions of order H = 1

2 having square integrable local times, [15, p. 438, Remarques], what ensures Y is
upper 1

2 -regular, Proposition 4.14.

Example 3.11. Suppose that σ(x) = ϕC( x
3 )1[0,3](x)+ 4 · 1(3,+∞)(x), x ≥ 0, where ϕC is as in Example 2.7, and σ(x) :=

σ(−x), x < 0. Then σ(0) = 0 and σ is dC -Hölder except at x = ±3, where it jumps. Since νC is lower dC -regular, we
have ϕC(r) ≥ crdC for small r > 0, which implies that σ−1 is locally integrable. Since νC is upper dC -regular, σ is upper

dC -regular on (−2,2). Let d, δ ∈ (0,1] and let Z : [0,2] → R be the function defined by Zt = t
1
d for t ∈ (0,1] and

Zt = (1 − (1 − t))δ for t ∈ (1,2]. Let g be as in Theorem 3.8 and suppose that Y is such that on each of the intervals
[0, 1

2g(1)], [ 1
2g(1), 3

4g(1)], [ 3
4g(1), 7

8g(1)] etc. it equals a scaled down copy of Z, and on [g(1),+∞) it equals a typical
path of fractional Brownian motion with Hurst index H started at zero. Then Y is Hölder of any order γ < H ∧ δ,
upper d-regular on (g(−1), g(1)) and upper 1-regular on R \ (g(−1), g(1)). If d = 1

2 and δ = H = 3
4 then Theorem 3.8

yields variability solutions for all starting points, note that on (−2,2) we can use the upper dσ -regularity of σ and on
R \ (−g(1), g(1)) the upper 1-regularity of Y .
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3.3. Doss’ transformation

To understand analogs of Theorem 3.8 for n ≥ 2 we implement a multidimensional Doss transformation, [27,95]. Let
σ : Rn → R

n×n be a matrix coefficient as before, and let σj = (σj1, . . . , σjn) denote its j th row. Suppose that f =
(f1, . . . , fn) :Rn → R

n is a function with components fk : Rn →R which satisfies the deterministic equation

(3.7) ∇f = σ(f ),

where we have used the symbol

∇f = (∂kfj )1≤j,k≤n

for the Jacobian matrix of f to avoid confusion with the symbol for gradient measures. The j th row of ∇f is the gradient
∇fj = (∂1fj , . . . , ∂nfj ) of fj , and (3.7) states that ∇fj = σj (f ) for all j . If we set

X
j
t = fj

(
Y 1

t , . . . , Y n
t

)
,

then X = (X1, . . . ,Xn) is a solution to (3.1) since

(3.8)

X
j
t = fj

(
Y 1

0 , . . . , Y n
0

) +
n∑

k=1

∫ t

0
∂kfj

(
Y 1

u , . . . , Y n
u

)
dY k

u

= fj

(
Y 1

0 , . . . , Y n
0

) +
n∑

k=1

∫ t

0
σjk

(
f1

(
Y 1

u , . . . , Y n
u

)
, . . . , fn

(
Y 1

u , . . . , Y n
u

))
dY k

u

= X
j

0 +
n∑

k=1

∫ t

0
σjk

(
X1

u, . . . ,X
n
u

)
dY k

u ,

provided that we can justify the use of the change of variable formula (2.10) with fj in place of F and (3.7). As in the
classical case, [95], one needs strong assumptions to find solutions f to (3.7), and in our case an additional difficulty is
that the components of σ are BVloc only.

Our first main assumption on σ is as follows.

Assumption 3.12.

(i) σ = (σjk)1≤j,k≤n with components σjk ∈ BVloc(R
n) ∩ L∞(Rn) for all j and k,

(ii) det(σ ) > ε Ln-a.e. on R
n for some ε > 0.

Remark 3.13. Since all paths are continuous and T is finite, it suffices to have σ with the respective properties defined
on a bounded domain in R

n. To save notation and have shorter proofs we formulate Assumption 3.12 as stated.

The following lemma is a direct consequence of Assumption 3.12 and the Cayley–Hamilton theorem, see Section 5.1.

Lemma 3.14. Let Assumption 3.12 be satisfied. Then there exists a matrix σ̂ = (σ̂jk)1≤j,k≤n of functions σ̂jk ∈
BVloc(R

n) ∩ L∞(Rn) so that

σ σ̂ = σ̂ σ = I Ln-a.e.

and this matrix is unique up to Ln-a.e. equivalence. Moreover, there exists some ε̂ > 0 such that det(σ̂ ) > ε̂ Ln-a.e. on
R

n.

By Assumption 3.12 and Lemma 3.14 our second main assumption makes sense. We write Di to denote the partial
differentiation in direction of the ith coordinate in the sense of tempered distributions.

Assumption 3.15 (curl-free assumption). For all i, j , and k we have

(3.9) Diσ̂kj − Dj σ̂ki = 0

in the sense of tempered distributions, that is,
∫
Rn σ̂kj ∂iϕ dx −∫

Rn σ̂ki∂jϕ dx = 0 for any i, j and k any Schwartz function
ϕ ∈ S(Rn).
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Example 3.16. Let σ be a diagonal matrix with entries σii ∈ BV(Rn) ∩ L∞(Rn) such that σii > ε L1-a.e. on R for some
ε > 0 and for all i = 1,2, . . . , n. Then Assumption 3.12 is clearly satisfied. If also Assumption 3.15 is satisfied, it follows
that σii depends only on xi . Consequently, we are led back to one-dimensional equations as discussed in Section 3.2.

Example 3.17. Let n = 2, c > 1 and consider

σ(x1, x2) =
(

c 1
1{cx1<x2} c

)
, (x1, x2) ∈ R

2.

The function σ is bounded and in BVloc(R
2), and it jumps across the straight line J = {x2 = cx1}. Obviously detσ ≥

c2 − 1, and we find

σ̂ (x1, x2) = 1{cx1<x2}
c2 − 1

(
c −1

−1 c

)
+ 1{cx1≥x2}

c2

(
c −1
0 c

)
.

Since σ̂11, σ̂12 and σ̂22 are constant and by [5, (3.90)] the measure Dσ̂21 is a constant multiple of H1|J , (3.9) trivially
holds.

Assumptions 3.12 and 3.15 allow the following result for solutions to (3.7).

Proposition 3.18 (angle condition). Suppose that σ satisfies Assumption 3.12. For n ≥ 2 suppose also that it satisfies
Assumption 3.15 and that there exists δ > −1 such that for Ln-a.e. x ∈ R

n we have

(3.10)
〈
ξ, σ (x)ξ

〉 ≥ δ
∣∣σ(x)ξ

∣∣|ξ |, ξ ∈R
n.

Then there exists a bi-Lipschitz function f :Rn → R
n which solves (3.7).

Condition (3.10) ensures the applicability of a global inversion result, Proposition 5.4, which yields a global Lipschitz
solution f to (3.7).

Remark 3.19. Let n ≥ 2. Then σ ∈ L1
loc(R

n,Rn×n) satisfies (3.10) if and only if spec(σ (x)) ∩ (−∞,0) =∅ for Ln-a.e.
x ∈ R

n, where spec(σ (x)) denotes the spectrum of the square matrix σ(x), see [62, p. 3], [6] and [72, Proposition 2.1].
This holds in particular if σ has an Ln-a.e. nonnegative definite symmetric part.

Example 3.20. The coefficient σ in Example 3.17 is positive definite, and hence (3.10) is immediate. Moreover, the
function

f (y1, y2) = (cy1 + y2, y11{y1<0} + cy2), (y1, y2) ∈R
2,

solves (3.7) for this σ .

Example 3.21. Let n = 2, 0 < a < b and consider the cone C = { a
b
x1 < x2 < b

a
x1}. The function

σ(x1, x2) =
(

b a1C(x1, x2)

a1C(x1, x2) b

)
, (x1, x2) ∈ R

2,

satisfies Assumptions 3.12 and 3.15 and (3.10). A solution to (3.7) is given by

f (y1, y2) = (by1 + ay21{y1>0,y2>0}, ay11{y1>0,y2>0} + by2), (y1, y2) ∈ R
2.

Example 3.22. Let n = 2, let ϕC : R → R be as in Example 2.7 (with n = 1), and �(z) = ∫ z

0 (1 + ϕC(z)) dz, z ∈ R. The
function

σ(x1, x2) = 1{x1≤0}
(

1 0
0 1 + ϕC

(
�−1(x2)

)) + 1{x1>0}
(

1 0
1 1 + ϕC

(
�−1(x2 − x1)

)) , (x1, x2) ∈R
2,

satisfies Assumptions 3.12 and 3.15 and (3.10), the fact that σ22 ∈ BVloc(R
n) follows using [5, Theorem 3.16]. For this

choice of σ the function

f (y1, y2) = (
y1, y11{y1>0} + �(y2)

)
, (y1, y2) ∈R

2,

solves (3.7).
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Remark 3.23. The existence of almost everywhere defined local inverses of Sobolev functions is treated in [39,40]. In [8,
Section 5] fine properties of a.e. local inverses are studied under the requirement that det(σ̂ (x)) > 0 for Ln-a.e. x ∈ R

n.
The local inverse becomes an everywhere defined local homeomorphism on open subsets where the determinant of σ̂

equals a positive constant, see [40, Corollary 6.3].

3.4. Solutions in arbitrary dimensions

The following is a version of Theorem 3.8 for arbitrary n ≥ 1.

Theorem 3.24. Suppose that σ is as in Assumption 3.12 and f : Rn → R
n is a bi-Lipschitz function which solves (3.7).

Let s ∈ (0,1), γ ∈ ( 1
1+s

,1), Y ∈ Cγ ([0, T ],Rn) with Y0 = 0, B ⊂ R
n is a Borel set and x̊ ∈ R

n. Suppose that σ is upper
d-regular on B with d > n − 1 + s or that

(3.11) sup
x∈Y([0,T ])∩(f −1(B)−f −1(x̊))

∫ T

0
|Yt − x|−n+1−s dt < +∞,

and suppose the same is true for Bc in place of B . Then the path

(3.12) Xt = f
(
Yt + f −1(x̊)

)
, t ∈ [0, T ],

is a variability solution X ∈ Cγ ([0, T ],Rn) ∩ V (σ, s) for σ and Y started at x̊.

By Proposition 3.18, the first sentence in Theorem 3.24 could be replaced by requiring σ to satisfy Assumptions
3.12 and, if n ≥ 2, also Assumption 3.15 and (3.10). Note that for n = 1, Theorem 3.8 gives the same result under less
restrictive assumptions on σ .

If only the upper regularity of σ is used, Theorem 3.24 complements Theorem 3.6 by constructing a solution. If also the
upper regularity of Y is used one can, in some cases, obtain solutions for discontinuous σ . However, the upper regularity
condition on Y is quite restrictive: Already if n = 2 and σ has jumps one cannot hope to use Theorem 3.24 to obtain
solutions to (3.1) when Y is a typical path of a fractional Brownian motion BH with Hurst index H > 1

2 : On the one hand,
BH is almost surely γ -Hölder of any order γ < H , what forces 1

H
< 1 + s. On the other hand, the Hausdorff dimension

dimH BH ([0, T ]) of BH ([0, T ]) is known to equal 1
H

almost surely, see [31, Chapter 11] or [58, Section 18.3, Theorem 1
and Corollary], so that we would run into the contradictory chain of inequalities s < dY ≤ dimH Y([0, T ]) = 1

H
< 1 + s.

For n = 1 one has dimH BH ([0, T ]) = 1 almost surely, and this contradiction does not occur.
The next result uses a weighted version of (3.3) together with a moment condition on the gradient measures of the

coefficient.

Theorem 3.25. Suppose that σ satisfies Assumption 3.12 and f :Rn → R
n is a bi-Lipschitz function which solves (3.7).

Let s ∈ (0,1), γ ∈ ( 1
1+s

,1), Y ∈ Cγ ([0, T ],Rn) with Y0 = 0 and let x̊ ∈ R
n. Suppose that there are ε ∈ (0,1 − s), c > 0,

and δ ∈ (0, n − 1 + s + ε) such that

(3.13)
∫ T

0
|Yt − x|−n+ε dt < c|x|−n+δ, x ∈R

n,

and for all j and k we have

(3.14)
∫
Rn

|x − x̊|−n+1−s−ε+δ‖Dσjk‖(dx) < +∞.

Then (3.12) defines a variability solution X ∈ Cγ ([0, T ],Rn) ∩ V (σ, s) for σ and Y started at x̊.

In comparison with (3.6) conditions (3.3) and (3.13) are quite restrictive. They ensure a rather weak regularization
solely due to dimensional effects. Condition (3.6) encodes a strong additional regularization by randomness. Also The-
orem 3.25 becomes efficient in a probabilistic context. The following corollary may be seen as a generalization of [43,
Theorem 3.3], and [89, Theorem 2.1].

Corollary 3.26. Suppose that σ satisfies Assumption 3.12 and f :Rn → R
n is a bi-Lipschitz function which solves (3.7).

Let s ∈ (0,1), γ ∈ ( 1
1+s

,1), let Y = (Yt )t∈[0,T ] be an R
n-valued stochastic process with Y0 = 0 on a probability space
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(�,F,P) with paths P-a.s. Hölder continuous of order γ , and let x̊ ∈ R
n. Suppose that there are ε ∈ (0,1 − s), c > 0,

and δ ∈ (0, n − 1 + s + ε) such that

(3.15) E

∫ T

0
|Yt − x|−n+ε dt < c|x|−n+δ, x ∈R

n,

and for all j and k we have (3.14). Then for P-a.e. ω ∈ � the path

(3.16) Xt(ω) = f
(
Yt (ω) + f −1(x̊)

)
, t ∈ [0, T ],

is a variability solution X ∈ Cγ ([0, T ],Rn) ∩ V (σ, s) for σ and Y started at x̊.

At any time t > 0 the averaging effect of the process Y leads to a regularization. The moment condition (3.14) excludes
a too bad behavior of σ at the starting point x̊ at time t = 0 when this effect is not yet present.

Example 3.27. Let n = 2 and let Y = BH be a fractional Brownian motion with Hurst index H > 1
2 . It satisfies (3.15)

with 0 < ε < 2 − 1
H

and δ = 1
H

+ ε, see Example 4.26. To apply Corollary 3.26 suppose that s ∈ (0,1) and that ε above
also satisfies 0 < ε < 1 − s. If σ satisfies Assumptions 3.12 and 3.15, (3.10), and x̊ is such that

(3.17)
∫
Rn

|x − x̊|−n+1−s+ 1
H ‖Dσjk‖(dx) < +∞, j, k = 1,2,

then for P-a.s. realization of Y the path X as in Corollary 3.26 is a variability solution for σ and Y started at x̊, and
X ∈ Cγ ([0, T ],R2) ∩ V (σ, s) for any γ < H . Note that if all σjk are actually in BV(Rn) then (since obviously s < 1

H
)

condition (3.17) is automatically satisfied for Hn−1-a.e. x̊ ∈ R
2, see Remark 4.6.

3.5. A uniqueness result

We establish a uniqueness result for variability solutions.

Theorem 3.28. Suppose that σ = (σjk)1≤j,k≤n satisfies Assumptions 3.12 and 3.15, Y ∈ Cγ ([0, T ],Rn) for some γ ∈
(0,1), and x̊ ∈ R

n. Then there exists at most one variability solution of Hölder order greater 1
2 for σ and Y started at x̊.

The proof of Theorem 3.28 shows that the only solution candidate is (3.12). We can conclude the following results.

Corollary 3.29. Suppose that Assumptions 3.12 and 3.15 hold and let f be the solution to (3.7). If assumptions of
Theorem 3.24 (or Theorem 3.8 in the case n = 1) are satisfied, then for any x̊ ∈ R

n there exists a unique variability
solution X ∈ Cγ ([0, T ],Rn) for σ and Y starting at x̊, given by (3.12).

Corollary 3.30. Suppose that Assumptions 3.12 and 3.15 hold and let f be the solution to (3.7). If assumptions of
Corollary 3.26 are satisfied, then for any x̊ ∈ R

n and P-a.e. ω ∈ � there exists a unique variability solution X(ω) ∈
Cγ ([0, T ],Rn) for σ and Y(ω) starting at x̊, given by (3.16).

Remark 3.31. Following the ideas of [89], we could replace det(σ ) > ε in Assumption 3.12 with det(σ ) ≥ 0. In this
case we would obtain a uniqueness result similar to Theorem 3.28 up to the first time when det(σ (Xt )) = 0. However, the
existence of the solution becomes more complicated.

4. Variability and consequences

We provide a potential theoretic interpretation of the (s,1)-variability. This allows to prove that ϕ ◦ X is a well defined
class in W

β,1
0 (0, T ).

4.1. Riesz potentials and occupation measures

The Riesz potential of order 0 < γ < n of a nonnegative Borel measure ν on R
n is defined by

(4.1) Uγ ν(x) := cγ

∫
Rn

|x − y|−n+γ ν(dy), x ∈R
n,
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where cγ > 0 is a well-known constant depending only on n and γ , see for instance [67, Chapter I, Section 3] or [17,
Section V.4]. The mutual Riesz energy of order 0 < γ < n of two nonnegative Borel measures ν1 and ν2 on R

n is defined
by

(4.2) I γ (ν1, ν2) := cγ

∫
Rn

∫
Rn

|x − y|−n+γ ν1(dy)ν2(dx).

This quantity takes values in [0,+∞], is symmetric in ν1 and ν2, and we have

I γ (ν1, ν2) =
∫
Rn

Uγ ν1(x)ν2(dx),

see [67, Chapter I, Section 4]. We write Iγ ν := I γ (ν, ν).
Given a path X = (Xt )t∈[0,T ] we can define a finite nonnegative Radon measure μ

[0,T ]
X on R

n by the identity

(4.3)
∫
Rn

g(y)μ
[0,T ]
X (dy) =

∫ T

0
g(Xt ) dt,

valid for any bounded Borel function g :Rn → R. To μ
[0,T ]
X one usually refers as the occupation measure of X and to (4.3)

as the occupation time formula. The measure μ
[0,T ]
X is supported on the compact set X([0, T ]). Clearly the occupation

measure depends on the parametrization of the path X.

Remark 4.1.

(i) Discussions of absolutely continuous occupation measures in terms of their densities, referred to as local times, are
a classical subject in probability theory, [12,13,44,94]. As mentioned in [44, Section 3], applications of occupation
densities to nonrandom functions are much less discussed. Results on possibly singular occupation measures are
rather sparse and have mainly been used to obtain results on dimensions of images or graphs of stochastic processes,
see for instance [31, Section 16] and [93, Section 4] and the references cited there.

(ii) In the special case that X is an absolutely continuous curve parametrized to have unit speed the right hand side of (4.3)
is just the line integral of g along X, and formula (4.3) may be seen as a special case of the area formula for the path X,
[32, Theorem 3.2.6]. Another interpretation of formulas of type (4.3) in the spirit of geometric measure theory have
been established in [16]. There the authors proved an occupation time formula for Rn-valued semimartingales which
has features of a coarea formula for C2(Rn)-functions. They observed that the fluctuations of the semimartingale can
lead to the existence of certain ‘transversal’ (in a Rokhlin sense) densities which may be seen as generalizations of
local times of one-dimensional semimartingales, see [16, Theorems 1 and 3].

The definitions (4.1) and (4.2) and the identity (4.3) now immediately allow to rewrite (2.1) in terms of Riesz energies.
Given a function ϕ ∈ BVloc(R

n) and a set U ⊂R
n we use

μϕ,U := ‖Dϕ‖|U
to abbreviate the restriction of ‖Dϕ‖ to U .

Remark 4.2. Let ϕ ∈ BVloc(R
n), p ∈ [1,+∞] and s ∈ (0,1). A path X is (s,p)-variable with respect to ϕ if and only if

there is a relatively compact open neighborhood U of X([0, T ]) such that

(4.4) U1−sμϕ,U ∈ Lp
(
R

n,μ
[0,T ]
X

)
.

In particular, X is (s,1)-variable with respect to ϕ if and only if there is a relatively compact open neighborhood of
X([0, T ]) such that the mutual Riesz energy of order 1 − s of μϕ,U and μ

[0,T ]
X is finite,

(4.5)
∫
Rn

U1−sμϕ,U (x)μ
[0,T ]
X (dx) < +∞.

Remark 4.3.

(i) Both ideas, the variability of curves and the use of Riesz energies, also appear in connection with regularization
properties of operators in harmonic analysis, see for instance [88] for the first idea and [46,50] for the second.
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(ii) Occupation measures appear naturally in connection with regularization by noise, [18,25,35,37,42,45,48,64,80,91].
The addition (in the simplest case) of a ‘fast moving’ perturbation to an equation can provoke well-posedness for
otherwise non well-posed equations. A typical key step is to observe the Hölder (or even C1+α-) regularity of integrals
of functions (with certain continuity or integrability properties) w.r.t. occupation measures, seen as a function of the
starting point of the path. See for instance [35, Section 2.1 and in particular, Theorems 2.5 and 2.6].

The following consequence of Remark 4.2 allows to define compositions of paths and BV-functions. It views (4.5) as
a condition on X relative to ϕ. Recall the meaning of the symbols Sϕ and L∞(X) from Definitions 2.3 and 2.5.

Proposition 4.4. Let ϕ ∈ BVloc(R
n) and suppose that X is (s,1)-variable with respect to ϕ for some s ∈ (0,1). Then the

discontinuity set Sϕ of ϕ is a zero set for the occupation measure μ
[0,T ]
X of X,

(4.6) μ
[0,T ]
X (Sϕ) = 0.

In particular, we have

(4.7) L1({t ∈ [0, T ] : Xt ∈ Sϕ

}) = 0

and

(4.8) ‖ϕ‖L∞(X) ≤ ‖ϕ‖L∞(Rn).

Proposition 4.4 immediately implies Lemma 2.4, and therefore the correctness of Definition 2.5.

Proof of Lemma 2.4. If ϕ̃(1) and ϕ̃(2) both are (component-wise) Lebesgue representatives of ϕ = (ϕ1, . . . , ϕm) ∈
BVloc(R

n)m and X is (s,1)-variable w.r.t. each ϕi , then by (2.2), (2.3) and (4.7) we have∫ T

0

∣∣ϕ̃(1)(Xt ) − ϕ̃(2)(Xt )
∣∣dt =

∫
{t∈[0,T ]:Xt∈Rn\Sϕ}

∣∣ϕ̃(1)(Xt ) − ϕ̃(2)(Xt )
∣∣dt = 0. �

Recall that for any γ ≥ 0 the upper γ -density �∗
γ ν(x) of a Borel measure ν on R

n at a point x ∈R
n is defined by

(4.9) �∗
γ ν(x) = lim sup

r→0

ν(B(x, r))

rγ
,

see for instance [5, Definition 2.2.5] or [77, Definition 6.8]. We prove Proposition 4.4.

Proof of Proposition 4.4. Let U ⊂ R
n be a relatively compact open set containing the support X([0, T ]) of μ

[0,T ]
X as in

(4.5). Since the integral is finite we can find a Borel set N ⊂R
n such that μ

[0,T ]
X (N) = 0 and, for all x ∈ R

n \ N , we have
U1−sμϕ,U (x) < +∞. Therefore, by a standard conclusion, cf. [77, Chapter 8],

(4.10)

�∗
n−1+sμϕ,U (x) = lim sup

r→0
r−n+1−sμϕ,U

(
B(x, r)

)

≤ lim
r→0

∫
B(x,r)

|x − y|−n+1−sμϕ,U (dy) = 0

for all such x. Since μϕ,U = D(ϕ|U ), where ϕ|U ∈ BV(U) is the restriction of ϕ to U , (4.10) trivially implies

(4.11) �∗
n−1

∥∥D(ϕ|U )
∥∥(x) = lim sup

r→0
r−n+1

∥∥D(ϕ|U )
∥∥(

B(x, r)
) = 0

and, with suitable r0(x) > 0,

(4.12)
∫ r0(x)

0
r−n

∥∥D(ϕ|U )
∥∥(

B(x, r)
) ≤

∫ r0(x)

0
rs−1 dr < +∞

for all x ∈ U \ N . However, from (4.11) and (4.12) it then follows that ϕ|U has an approximate limit at all x ∈ U \ N ,
see [5, Remark 3.82]. In other words, Sϕ ∩ U ⊂ N , and since μ

[0,T ]
X (Sϕ \ U) ≤ μ

[0,T ]
X (Rn \ U) = 0, (4.6) follows. By
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monotone convergence (4.3) extends to all nonnegative Borel function g : Rn → [0,+∞], and for g = 1Sϕ we obtain
(4.7). Estimate (4.8) follows from (2.2): For any x ∈ R

n \ Sϕ we have

∣∣ϕ(x)
∣∣ ≤ lim sup

r→0

1

Ln(B(x, r))

∫
B(x,r)

∣∣ϕ(y)
∣∣dy ≤ ‖ϕ‖L∞(Rn). �

Remark 4.5. Condition (4.5) may also be seen as a requirement on ϕ relative to the path X: The measure μ
[0,T ]
X is

concentrated on R
n \ N with N as in the above proof. Potential theory forbids μϕ,U to charge subsets of Rn \ N with

finite Hn−1+s -measure: Any such set A would have (1− s)-Riesz capacity zero, [67, Chapter III, Theorem 3.14], and this
would imply the existence of some point x̊ ∈ A with U1−sμ

[0,T ]
X (x̊) = +∞, [67, Chapter II, Theorem 2.4]. An alternative,

geometric proof of this fact can be given in terms of upper densities: Suppose that A is a Borel subset of Rn \ N with
Hn−1+s(A) < +∞. Then by (4.10) together with the density comparison theorem, [5, Theorem 2.56] (or [77, Chapter 6,
Theorem 6.9]), we have

μϕ,U (A) ≤ sup
x∈A

�∗
n−1+sμϕ,K(x)Hn−1+s(A) = 0.

Remark 4.6. The density comparison theorem also implies that for any ϕ ∈ BVloc(R
n) the set of points x ∈R

n at which
�∗

n−1‖Dϕ‖(x) = +∞ is a Hn−1-null set, see [5, proof of Lemma 3.75].

The following example gives a coarse sufficient condition for (4.5).

Example 4.7. If s ∈ (0,1),

(4.13) I 1−sμ
[0,T ]
X < +∞

and I 1−sμϕ,U < +∞, then (4.5) holds by the Cauchy-Schwarz inequality for the energy, see [67, Chapter I, Section 4].

4.2. Upper regularity and bounded potentials

The first maximum principle, [67, Chapter I, Theorem 1.10], states that, for any s ∈ (0,1) and any Borel measure ν, a
bound

(4.14) U1−sν(x) ≤ M,

valid with some M > 0 for ν-a.e. x ∈ R
n, implies (4.14) for all x ∈R

n.

Proposition 4.8. Let s ∈ (0,1). Suppose that there is a constant M > 0 such that

(4.15) U1−sμ
[0,T ]
X (x) < M

for μ
[0,T ]
X -a.e. x ∈ X([0, T ]). Then (4.5) holds with any ϕ ∈ BVloc(R

n) and all relatively compact open U , and μ
[0,T ]
X

cannot charge any set of A of finite Hn−1+s -measure.

Proof. Since μ
[0,T ]
X is supported in X([0, T ]), the bound (4.15) holds for μ

[0,T ]
X -a.e. x ∈ R

n. By the maximum principle
it then holds for all x ∈R

n and as a consequence, (4.5) holds with any ϕ ∈ BVloc(R
n) and all relatively compact open U .

The second part of the statement follows as in Remark 4.5. �

Note that (4.15) implies (4.13), but in contrast to Example 4.7 no assumption is made on the measures μϕ,U .
We prepare a counterpart of Proposition 4.8 in terms of ‖Dϕ‖. The gradient measure Dϕ of a function ϕ ∈ BV(Rn)

does not charge any Hn−1-null set, [5, Lemma 3.76]. Let Daϕ denote the part of Dϕ which is absolutely continuous
w.r.t. Ln and Dsϕ the part that is singular w.r.t. Ln. Clearly Daϕ vanishes on Ln-null sets. The Cantor part Dcϕ of Dϕ is
defined as Dcϕ = Dsϕ|Rn\Sϕ

, [5, Definition 3.91], and in general it can, roughly speaking, charge subsets of any Hausdorff
dimension between n−1 and n. There is an (n−1)-dimensional Borel subset Jϕ of the approximate discontinuity set Sϕ ,
called the set of approximate jump points, [5, Definition 3.67], and the jump part of the gradient measure is defined to be
Djϕ = Dsϕ|Jϕ , [5, Definition 3.91]. The set Sϕ \ Jϕ is of zero Hn−1-measure, [5, Theorem 3.78]. The gradient measure
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of ϕ admits the unique decomposition

(4.16) Dϕ = Daϕ + Djϕ + Dcϕ.

A description of the different summands in terms of geometric scaling properties can be found in [5, Proposition 3.92].

Proposition 4.9. Let ϕ ∈ BVloc(R
n) and s ∈ (0,1). Suppose that for any compact K there is a constant MK > 0 such

that

(4.17) U1−sμϕ,K(x) < MK

for μϕ,K -a.e. x ∈ K . Then ϕ cannot have jumps and the Cantor part Dcϕ of Dϕ cannot charge sets of finite Hn−1+s -
measure. The function ϕ has a unique continuous Borel version, Hölder of order s, and any Lebesgue representative
coincides with this version on the Lebesgue set. Moreover, (4.4) holds for any path X, any relatively compact open
U ⊃ X([0, T ]) and any p ∈ [1,+∞].

Condition (4.17) does not impose any restrictions on Daϕ.

Proof. Again by the maximum principle (4.17) holds for all x ∈R
n. Taking into account (4.16) we can conclude that if ϕ

satisfies (4.17) for all compact K , then ϕ cannot have jumps: Since the set Jϕ of approximate jump points has Hausdorff
dimension n−1 it has zero Hn−1+s -measure, and as before we can see such sets cannot be charged by Dϕ. The statement
on Hölder continuity follows using large closed balls in place of K , a simple cut-off argument and Corollary C.3. �

Remark 4.10. If Dϕ is absolutely continuous, then the upper n − 1 + s-regularity of ϕ for s ∈ (0,1) implies the local
s-Hölder continuity of ϕ on C1-smooth domains by a variant of Morrey’s inequality in Sobolev–Morrey spaces by [65,
Theorem 2.2].

Remark 4.11. Given a Borel measure ν on R
n the pointwise lower Hausdorff dimension of ν at x ∈ R

n is defined as

dimH ν(x) = sup
{
γ ≥ 0 : �∗

γ ν(x) = 0
} = inf

{
γ ≥ 0 : �∗

γ ν(x) = +∞}
,

where �∗
γ ν(x) is as in (4.9). Its lower Hausdorff dimension is defined as dimH ν = ess infx∈Rn dimH ν(x), and it is well

known that dimH ν = inf{dimH A : A ⊂ R
n Borel and ν(A) > 0}. See for instance [9,78]. Conditions (4.15) and (4.17)

imply that dimH μ
[0,T ]
X ≥ n − 1 + s and, respectively, dimH ‖Dϕ‖ ≥ n − 1 + s.

The following is well known.

Proposition 4.12. Let ν be a finite Borel measure on R
n with compact support. If with some M > 0 we have

∫
Rn |x −

y|−sν(dy) < M for all x ∈ suppν, then there is some c > 0 such that ν(B(x, r)) ≤ crs for all x ∈ suppν and r > 0. If
there is some r0 > 0 such that ν(B(x, r)) ≤ crd for all x ∈ suppν and 0 < r < r0, then for any s < d there is some M > 0
such that

∫
Rn |x − y|−sν(dy) < M for all x ∈ suppν.

We briefly sketch the folklore proof for the convenience of the reader.

Proof. The first statement is immediate from (C.2). To see the second claim note that since ν is finite, we can readjust c

to obtain ν(B(x, r)) ≤ crd for all x ∈ suppν and r > 0. If R > 0 is such that B(0,R/2) contains suppν, then a classical
argument, [77, p. 109], shows that for any x ∈ suppν we have∫

Rn

|x − y|−sν(dy) = s

∫ 2R

0
r−s−1ν

(
B(x, r)

)
dr ≤ cs

∫ 2R

0
rd−s dr. �

Corollary 4.13.

(i) If X is upper d-regular with d > n − 1 + s, then (4.15) holds.
(ii) If ϕ is upper d-regular with d > n − 1 + s, then (4.17) holds for any compact K .

For certain paths X the occupation measure μ
[0,T ]
X of X is absolutely continuous. To the Radon–Nikodym derivative

dμ
[0,T ]
X

dLn = LX
T one refers as the local times of X.
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Proposition 4.14. Suppose that μ
[0,T ]
X of X is absolutely continuous with density LX

T ∈ Lp(Rn) for some p ∈ [1,∞].
Then X is upper n

q
-regular, where 1

p
+ 1

q
= 1 with the agreement 1

+∞ = 0. In particular, if the local times are bounded,

LX
T ∈ L∞(Rn), then X is upper n-regular.

Proof. We have

μ
[0,T ]
X

(
B(x, r)

) =
∫

B(x,r)

LX
T (y) dy ≤ ∥∥LX

T

∥∥
Lp(Rn)

Ln
(
B(x, r)

) 1
q ≤ c

∥∥LX
T

∥∥
Lp(Rn)

r
n
q . �

Remark 4.15. Existence and regularity of local times are well-studied in the case of Gaussian processes, see e.g. [7,12,
13,44]. A key property is the so-called local non-determinism which guarantees that, roughly speaking, the increments of
the process are not too degenerate.

In some situations it may be useful to localize the conditions on ϕ and X.

Corollary 4.16. Let ϕ ∈ BVloc(R
n), let X be a path and s ∈ (0,1). If B ⊂ R

n is a Borel set such that (4.15) holds for
μ

[0,T ]
X -a.e. x ∈ B and (4.17) holds for μϕ,U -a.e. x ∈ Bc, then (4.5) holds.

Of course this matters only if B ∩ X([0, T ]) �= ∅ and Bc ∩ X([0, T ]) �= ∅ and similarly for suppDϕ. In the situation
of Corollary 4.16 the Hausdorff dimension of X([0, T ]) ∩ B must be greater or equal to n − 1 + s, but on Bc the path X

may be arbitrary. On the other hand, ϕ may be arbitrary on B , in particular, it may have jumps there, but it cannot jump
on Bc .

Proof. The claim follows from

I 1−s
(
μϕ,U ,μ

[0,T ]
X

) = I 1−s
(
μϕ,U |B,μ

[0,T ]
X |B

) + I 1−s
(
μϕ,U |B,μ

[0,T ]
X |Bc

)
+ I 1−s

(
μϕ,U |Bc ,μ

[0,T ]
X |B

) + I 1−s
(
μϕ,U |Bc ,μ

[0,T ]
X |Bc

)
and the maximum principle for the restrictions μϕ,U |B etc. together with the preceding considerations. �

Example 4.17. Suppose that ϕC : R2 → R is as in Example 2.7 for n = 2. If X is a smooth unit speed curve outside
R \ [0,1] × R and a typical Brownian bridge path inside [0,1] × R, then X is (s,1)-variable w.r.t. ϕC . The same is true
if ϕ = 1O and O ⊂ [0,1] ×R is a set of finite perimeter.

We discuss details of Example 2.7 and 2.8.

Example 4.18. Let ϕC : Rn → R be as in Example 2.7. If s ∈ (0, dC), then the fact that ‖DϕC‖(B(x, r)) ≤ crn−1+dC

together with Corollary 4.13 (ii) shows that any path X is in V (ϕC, s,∞). From now on assume that s ∈ (dC,1). For a
constant path X ≡ x with fixed x ∈R

n we have

μ
[0,T ]
X = T δx,

where δx is the point mass probability measure at x. If x = ( 1
2 ,0, . . . ,0), then x has distance 1

6 to supp‖DϕC‖, and hence
U1−s‖DϕC‖(x) is bounded and X ∈ V (ϕC, s,∞). On the other hand, if x = (0, . . . ,0), then

I 1−s
(
μϕC ,U ,μ

[0,T ]
X

) = cT

∫
U

|y|−n+1−s‖DϕC‖(dy) = +∞

for any open neighborhood U of the origin, as follows from ‖DϕC‖(B(y, r)) ≥ crn−1+dC and standard arguments ([77,
p. 109]). Consequently X is not in V (ϕC, s) in this case. For a non-constant smooth function X on R

μ
[0,T ]
X

(
(x − r, x + r)

) ≤ cr

implies that X ∈ V (ϕC, s,∞), in the case n = 1. For n = 2 we have ‖DϕC‖(B(y, r)) ≥ cr1+dC , so that, again by standard
arguments, U1−s‖DϕC‖(y) = +∞ for any y ∈ { 1

3 } × [0,1]. For any M > 0 and any such y we can find an open neigh-
borhood Uy ⊂ R

2 of y on which we have U1−s‖DϕC‖ > M , [67, Chapter I, Theorem 1.3], and consequently this must
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hold on all of { 1
3 } × [0,1]. If T = 1 and X is the unit speed motion along X([0,1]) = { 1

3 } × [0,1], then

μ
[0,1]
X =H1|X([0,1]),

[32, Theorem 3.2.6], and I 1−s(‖DϕC‖|X([0,1],μ[0,1]
X ) = +∞. Hence X is not in V (ϕC, s).

Example 4.19. Let O ⊂ R
n be as in Example 2.8 and s ∈ (0,1). Suppose X is a unit speed smooth curve that hits

∂O finitely often. By the additivity of the occupation measures w.r.t. the time interval we may assume all hitting
points are different. By the smoothness of ∂O and X it suffices to show that we have I 1−s(μ, ν) < +∞, where μ =
H1|{(0,...,0,xn):|xn|<1} and ν =Hn−1|{(x1,...,xn−1,0):|(x1,...,xn−1)|<1}. For n ≥ 2 and ε > 0 we have

∫ 1
−1(ε

2 +|t |)(−n+1−s)/2 dt ≤
cε−n+3−s . Therefore ∫

B(0,2−k)\B(0,2−k−1)

∫
{(0,...,0,yn):|yn|<1}

|x − y|−n+1−sμ(dy)ν(dx) ≤ c2−k(2−s),

which is summable over k = 0,1,2, . . . For n = 1 the integral over t ∈ [−1,1] is even bounded. It follows that the mutual
energy of μ and ν is finite, and hence for such O, X and s we have X ∈ V (1O, s). If n = 2 and X spends L1-positive time
in ∂O, then we can find 0 ≤ a < b ≤ T such that X([a, b]) ⊂ ∂O and μ

[a,b]
X = H1|[a,b]. Since ‖D1O‖ equals a constant

times Hn−1|O , it follows that

I 1−s
(‖Dϕ‖X([0,T ]),μ[0,T ]

X

) ≥ c

∫
X([a,b])

∫
X([a,b])

|x − y|−n+1−sH1(dx)Hn−1(dy) = +∞,

so that X is not in V (1O, s).

4.3. Fourier transform and trading of regularity

Condition (4.13) requires that the Fourier transform

μ̂
[0,T ]
X (ξ) =

∫
Rn

e−i〈ξ,x〉μ[0,T ]
X (dx), ξ ∈ R

n

of the occupation measure μ
[0,T ]
X is square integrable w.r.t. |ξ |s−1 dξ , note that

(4.18) I 1−sμ
[0,T ]
X = c(s, n)

∫
Rn

|ξ |s−1
∣∣μ̂[0,T ]

X (ξ)
∣∣2

dξ

by [77, Lemma 12.12]. Increased activity of X allows larger s ∈ (0,1), see [58, Chapter 17, p. 250] for this classical
discussion. Since μ̂

[0,T ]
X is bounded, integrability w.r.t. |ξ |s−1 dξ already implies square integrability, giving (4.13). (Al-

ternatively, a Riemann–Lebesgue argument shows that integrability implies (4.15), which in turn implies (4.13).) The
integral in (4.5) is a polarized version of (4.18),

(4.19) I 1−s
(
μϕ,U ,μ

[0,T ]
X

) = c(s, n)Re
∫
Rn

|ξ |s−1μ̂ϕ,U (ξ)μ̂
[0,T ]
X (ξ) dξ,

here μ̂ϕ,U denotes the Fourier transform of the measure μϕ,U .
Formulas (4.5) and (4.19) suggest a trading of regularity between the measures.

Proposition 4.20. Let ϕ ∈ BVloc(R
n), X : [0, T ] →R

n and s ∈ (0,1). For any γ ∈ (0,1 − s) we have

(4.20)
∫
Rn

U1−sμϕ,U (x)μ
[0,T ]
X (dx) =

∫
Rn

Uγ μϕ,U (x)U1−s−γ μ
[0,T ]
X (x)dx.

Proof. Proposition A.1 (ii), applied with ν1 = μϕ,U , ν2 = μ
[0,T ]
X , γ1 = γ and γ2 = 1 − s − γ , yields the result. �

Since it only allows to trade the smoothness of the measures in n − (1 − s) and n with pivotal level at n − (1 − s)/2,
formula (4.20) and upper regularity in the form considered above do not improve the statements in Corollary 4.16.
However, if a coefficient ϕ is fixed and ‖Dϕ‖ satisfies a certain moment condition, a ‘weighted’ upper regularity condition
can ensure (s,1)-variability.
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Corollary 4.21. Let ϕ ∈ BVloc(R
n), let X be a path and s ∈ (0,1). Suppose that there are ε ∈ (0,1 − s), c > 0,

x1, . . . , xN ∈R
n and δ1, . . . , δN ∈ (0, n − 1 + s + ε) such that we have

(4.21)
∫ T

0
|Xt − x|−n+ε dt < c

N∑
k=1

|x − xk|−n+δk , x ∈ R
n,

and

(4.22)
N∑

k=1

∫
Rn

|x − xk|−n+1−s−ε+δk‖Dϕ‖(dx) < +∞.

Then X is (s,1)-variable w.r.t. ϕ.

For N = 1 conditions (4.21) and (4.22) (applied to the components of the coefficient) are exactly (3.13) and (3.14). In
Corollary 4.25 below the mechanism of Corollary 4.21 is used efficiently in a probabilistic context.

Proof. Under (4.21) and (4.22) we have, by (4.20) and Proposition A.1 (i),

I 1−s
(‖Dϕ‖,μ[0,T ]

X

) =
∫
Rn

Uεμ
[0,T ]
X (x)U1−s−ε‖Dϕ‖(x) dx ≤ c

N∑
k=1

∫
Rn

|x − xk|−n+δkU1−s−ε‖Dϕ‖(x) dx

= c

N∑
k=1

∫
Rn

∫
Rn

|x − xk|−n+δk |x − y|−n+1−s−ε dx‖Dϕ‖(dy)

= c

N∑
k=1

∫
Rn

|y − xk|−n+1−s−ε+δk‖Dϕ‖(dy).
�

4.4. Probabilistic examples

We connect to probabilistic examples. A condition of type (3.6) can ensure variability w.r.t. any BV-function.

Corollary 4.22. Let s ∈ (0,1) and suppose that Y = (Yt )t∈[0,T ] is an R
n-valued stochastic process with Y0 = 0 on a

probability space (�,F,P). If

(4.23) sup
x∈Rn

E

∫ T

0
|Yt − x|−n+1−s dt < +∞,

then we can find an event �0 ∈ F with P(�0) = 1 such that for all ω ∈ �0 the path Y(ω) is (s,1)-variable w.r.t. any
ϕ ∈ BV(Rn).

Proof. Using Fubini’s theorem and the above bound,

E

∫
Rn

∫ T

0
|Yt − x|−n+1−s dt‖Dϕ‖(dx) ≤ ‖Dϕ‖(Rn

)
sup
x∈Rn

E

∫ T

0
|Yt − x|−n+1−s dt < +∞. �

Example 4.23. Let BH = (BH
t )t≥0 be an n-dimensional fractional Brownian motion with Hurst index 0 < H < 1 over a

probability space (�,F,P). Let s ∈ (0,1). We claim that if

(4.24) n − 1 + s <
1

H
,

then there is a constant c(n, s,H) > 0 such that for all x ∈ R
n we have

(4.25) E

∫ T

0

∣∣BH
t − x

∣∣−n+1−s
dt < c(n, s,H).



Variability of paths and differential equations with BV-coefficients 2057

For Brownian motion – the special case H = 1
2 – we have (4.24) in dimensions n = 1 and n = 2 for any s ∈ (0,1). For

n = 3 a fractional Brownian motion with Hurst index H < 1
2 satisfies (4.24) for 0 < s < 1

H
− 2. A higher dimension n

of the ambient space forces a higher irregularity of the path in order to have an occupation measure supported on a set of
sufficiently small codimension. The arguments for (4.25) are rather standard, [31,58]. The expectation equals

1

(2π)n/2

∫ T

0
t−nH

∫
Rn

exp

(
− |y|2

2t2H

)
|x − y|−n+1−s dy dt

= 1

(2π)n/2

∫ T

0
t−nH

∫
|ξ |>tH

exp

(
−|x − ξ |2

2t2H

)
|ξ |−n+1−s dξ dt

+ 1

(2π)n/2

∫ T

0
t−nH

∫
|ξ |≤tH

exp

(
−|x − ξ |2

2t2H

)
|ξ |−n+1−s dξ dt.

The first summand is bounded by

1

(2π)n/2

∫ T

0
t−2nH+(1−s)H

∫
Rn

exp

(
−|x − ξ |2

2t2H

)
dξ dt

= 1

(2π)n/2

∫ T

0
t−2nH+(1−s)H

∫
Rn

exp

(
− |z|2

2t2H

)
dzdt

=
∫ T

0
t−(n−1+s)H dt.

The second summand does not exceed

1

(2π)n/2

∫ T

0
t−nH

∫
|ξ |≤tH

|ξ |−n+1−s dξ dt = 1

(2π)n/2

∫ T

0
t−(n−1+s)H dt.

The above idea can be generalized to link (s,1)-variability into upper regularity of the underlying probability measures.

Corollary 4.24. Let Y = (Yt )t∈[0,T ] be an R
n-valued stochastic process with Y0 = 0 on a probability space (�,F,P).

For any t ∈ [0, T ], let νt := PYt denote the law of Yt . Suppose that s ∈ (0,1) and that there exists some g ∈ L1(0, T ) such
that for L1-a.e. t ∈ (0, T ) we have

(4.26) νt

(
B(x, r)

) ≤ g(t)rd , x ∈R
n, r > 0,

with some d > n − 1 + s. Then (4.23) holds.

Proof. By Fubini’s theorem

E

∫ T

0
|Yt − x|−n+1−s dt =

∫ T

0

∫
Rn

|y − x|−n+1−sνt (dy) dt,

and as in Proposition 4.12 it follows that for L1-a.e. t ∈ (0, T ) the inner integral is bounded by

(n − 1 + s)

∫ ∞

0
r−n−sνt

(
B(x, r)

)
dr ≤ 1 + (n − 1 + s)g(t)

∫ 1

0
r−n−s+d dr < +∞. �

A probabilistic version of (4.21) gives similar results.

Corollary 4.25. Let ϕ ∈ BVloc(R
n) and s ∈ (0,1). Suppose that Y = (Yt )t∈[0,T ] is an R

n-valued stochastic process with
Y0 = 0 on a probability space (�,F,P). Suppose that there are ε ∈ (0,1 − s), c > 0, x1, . . . , xN ∈ R

n and δ1, . . . , δN ∈
(0, n − 1 + s + ε) such that we have

(4.27) E

∫ T

0
|Yt − x|−n+ε dt < c

N∑
k=1

|x − xk|−n+δk , x ∈R
n,
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and (4.22) holds. Then we can find an event �0 ∈ F with P(�0) = 1 such that for all ω ∈ �0 the path Y(ω) is (s,1)-
variable w.r.t. ϕ.

Proof. Under condition (4.27) identity (4.20) and Fubini’s theorem give

EI 1−s
(‖Dϕ‖,μ[0,T ]

Y

) =
∫
Rn

EUεμ
[0,T ]
Y (x)U1−s−ε‖Dϕ‖(x) dx ≤ c

N∑
k=1

∫
Rn

|x − xk|−n+δkU1−s−ε‖Dϕ‖(x) dx,

which by (4.22) and the arguments in the proof of Corollary 4.21 is seen to be finite. �

Example 4.26. For n ≥ 2, the fractional Brownian motion with H > 1
n

satisfies (4.27) with N = 1, any 0 < ε < n − 1
H

and δ1 = 1
H

+ ε: We have

E

∫ T

0
|Yt − x|−n+ε dt = 1√

2π

∫
Rn

|y − x|−n+ε

∫ T

0
t−nH exp

(
− |y|2

2t2H

)
dt dy.

Substituting u = 1
2 |y|2t−2H we see that for any y ∈ R

n \ {0} the inner integral equals

2n/2

21+ 1
2H H

|y| 1
H

−n

∫
1
2 |y|2T −2H

u
n
2 − 1

2H
−1 exp(−u)du ≤ c(n,H)|y| 1

H
−n.

Using the convolution identity for Riesz kernels,

E

∫ T

0
|Yt − x|−n+ε dt ≤ c(n,H)

∫
Rn

|y − x|−n+ε|y| 1
H

−n dy = c(n,H)|x| 1
H

+ε−n.

The following generalization of this example is immediate.

Corollary 4.27. Let Y = (Yt )t∈[0,T ] be an R
n-valued stochastic process with Y0 = 0 on a probability space (�,F,P).

For any t ∈ [0, T ], let νt := PYt denote the law of Yt . Suppose that s ∈ (0,1), ε, c, xk and δk are as in Corollary 4.25, and
that there exists some g ∈ L1(0, T ) such that for L1-a.e. t ∈ (0, T ) we have

∫
Rn

|y − x|−n+ενt (dy) ≤ g(t)

N∑
k=1

|x − xk|−n+δk , x ∈R
n.

Then (3.15) holds.

Remark 4.28. Corollary 4.25 can also be applied to Gaussian bridges: Suppose that n ≥ 2, let BH be a fractional
Brownian motion with H > 1

n
, and let Y be the Gaussian bridge obtained by conditioning to have BH

T = 1, where
1 = (1, . . . ,1) ∈ R

n. Then using [86, Theorem 3.1] it can be shown that

E

∫ T

0
|Yt − x|−n+ε dt < c

[|x| 1
H

+ε−n + |x − 1| 1
H

+ε−n
]
, x ∈ R

n.

Similar arguments can be applied also to more general bridges conditioned, e.g., on several time marginals, cf. [86,
Remark 3.6(ii)].

4.5. A brief discussion of variability versus irregularity

In [18] the authors studied ODEs of type dxt = b(t, xt ) dt +dwt , where b is an irregular vector field and w is a continuous
fast moving perturbation. Although our goal and methods are different from theirs, our point of view upon irregular paths
and occupation measures follow a similar spirit. In cases where b = b(x) is a bounded continuous function and w is ‘active
enough’ they can prove existence and uniqueness of a continuous solution x, [18, Theorem 1.9]. If b is a distribution only,
b(x·) must be defined appropriately, and in [18] this was done for paths x that differ from the sufficiently fast moving
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perturbation w only by a Hölder signal, [18, Definition 1.10 and Theorem 1.11]. The needed activity of w is encoded in
the boundedness and (temporal) Hölder continuity in a certain (spatial) Hölder norm of the image

T w
t b(x) =

∫ t

0
b(x + wu)du

of b under an operator T w taking the average of b along w. The more active w, the stronger is the averaging effect of this
operator, and under suitable quantitative assumptions the authors then obtain existence, uniqueness, and flow properties
for solutions x even if b is only a distribution, [18, Theorems 1.12, 1.13, 1.14]. To quantify how ‘fast moving’ a path
w ∈ C([0, T ],Rn) must be they look at the Fourier transform μ̂

[0,t]
w (ξ) of the occupation measure μ

[0,t]
w of w up to time t

and, given � > 0 and γ > 0, say that w is (�, γ )-irregular if

(4.28) sup
a∈Rn

sup
0≤u<t≤T

(
1 + |a|)� |μ̂[0,u]

w (a) − μ̂
[0,t]
w (a)|

|u − t |γ < +∞,

[18, Definition 1.3]. If a path w satisfies (4.28), then the averaging operator T w is bounded between certain Fourier-
Lebesgue (or Hölder) spaces, [18, Corollary 1.5, Theorem 1.6, Theorem 1.7]. Increased activity of w implies higher
regularity (diffusivity) of its occupation measure, and hence better decay of its Fourier transform (larger �), which encodes
a stronger regularization effect of T w . A refined and very systematical analysis of (�, γ )-irregularity is provided in [41].

Condition (4.28) is a condition for single paths, and it is later connected to the individual coefficient b via the mapping
properties of T w . In contrast, (2.1) is a condition on X relative to a given BV-function ϕ. In (4.18) and (4.19) the interval
[0, T ] is fixed, and the decay of the Fourier transforms at infinity is quantified in terms of integrability properties. It might
be interesting to investigate quantities that ‘interpolate’ between (2.1) and (4.28), for instance a version of (4.19) that
incorporates time dependencies. It might also be interesting to see whether a concept of variability relative to both a low
regularity diffusion coefficient σ and a low regularity drift vector field b could be useful.

4.6. Compositions of BVloc-functions and Hölder paths

Proposition 4.4 allows a multidimensional version of [20, Proposition 4.6], which ensures that compositions ϕ ◦ X are
elements of Wβ,p(0, T ). We first provide a bound for the Gagliardo seminorm part in the norm ‖ϕ ◦ X‖Wβ,p(0,T ).

Proposition 4.29. Let ϕ ∈ BVloc(R
n). Let X : [0, T ] → R

n be a path which is Hölder continuous of order α ∈ (0,1].
Suppose that s ∈ (0,1), p ∈ [1,+∞) and X ∈ V (ϕ, s,p). Then for any β ∈ (0, αs) there is a constant c > 0, depending
only on α, β , n, p and s, such that

(4.29) [ϕ ◦ X]pβ,p ≤ c[X]spα,∞
∫ T

0

[∫
U

‖Dϕ‖(dy)

|Xt − y|n−1+s

]p

dt.

If ϕ, X, α and s are as before but X ∈ V (ϕ, s,∞), then for any β ∈ (0, αs) there is a constant c > 0, depending only
on α, β , n and s, such that

(4.30) ess sup
t∈[0,T ]

∫ t

0

|ϕ(Xt ) − ϕ(Xτ )|
(t − τ)1+θ

dτ ≤ c[X]sα,∞ ess sup
t∈[0,T ]

∫
U

‖Dϕ‖(dy)

|Xt − y|n−1+s
.

The proof makes use of maximal functions and some of their basic properties, the necessary definitions and results can
be found in Appendix C.

Proof. By (4.7) we have

(4.31)
∫ T

0
g(Xτ ) dτ =

∫ T

0
1Rn\Sϕ

(Xτ )g(Xτ ) dτ

for any nonnegative Borel function g :Rn → [0,+∞]. For any fixed t ∈ [0, T ] we have∫ t

0

|ϕ(Xt ) − ϕ(Xτ )|p
(t − τ)1+βp

dτ =
∫ t

0

|ϕ(Xt) − ϕ(Xτ )|p
(t − τ)1+βp

1Rn\Sϕ
(Xτ ) dτ



2060 M. Hinz, J. M. Tölle and L. Viitasaari

by (4.31), and viewing this as a nonnegative function of t , also

(4.32)
∫ T

0

∫ t

0

|ϕ(Xt ) − ϕ(Xτ )|p
(t − τ)1+βp

dτ dt =
∫ T

0

∫ t

0

|ϕ(Xt ) − ϕ(Xτ )|p
(t − τ)1+βp

1Rn\Sϕ
(Xτ )1Rn\Sϕ

(Xt ) dτ dt.

Let μ := ‖Dϕ‖|U denote the restriction of ‖Dϕ‖ to U . By Proposition C.1 and the α-Hölder continuity of X the right
hand side of (4.32) is seen to be bounded by

c(n, s)p
∫ T

0

∫ t

0

|Xt − Xτ |sp
(t − τ)1+βp

[
M1−s,4|Xt−Xτ |μ(Xt) +M1−s,4|Xt−Xτ |μ(Xτ )

]p
dτ dt

≤ c(n, s)p[X]spα,∞
∫ T

0

∫ t

0
(t − τ)αsp−βp−1

× [
M1−s,4|Xt−Xτ |μ(Xt) +M1−s,4|Xt−Xτ |μ(Xτ )

]p
dτ dt;

here M1−s,Rμ denotes the fractional maximal function of μ of order 1 − s (and truncated at radius R > 0), see (C.1).
The trivial estimate (C.2) implies

(4.33) M1−s,4|Xt−Xs |μ(Xt) ≤ c

∫
Rn

μ(dy)

|Xt − y|n−1+s

for any t ∈ [0, T ] and with c > 0 depending only on n and s, and therefore∫ T

0

∫ t

0
(t − τ)αsp−βp−1[M1−s,4|Xt−Xτ |μ(Xt)

]p
dτ dt

≤ c

∫ T

0

∫ t

0
(t − τ)αsp−βp−1 dτ

[∫
Rn

μ(dy)

|Xt − y|n−1+s

]p

dt ≤ c
T (αs−β)p

(αs − β)p

∫ T

0

[∫
U

‖Df ‖(dy)

|Xt − y|n−1+s

]p

dt.

Using Fubini’s theorem we obtain the same upper bound for the summand with μ(Xτ ) in place of μ(Xt). Combining the
estimates and using the symmetry of the integrand in the Gagliardo seminorm, we arrive at (4.29). The estimate (4.30)
follows similarly. �

Remark 4.30. In [19, Proposition 5.0.3 and Remark 5.0.3] it has been shown that for discontinuous ϕ ∈ BV(R) one
cannot expect ϕ(X) to have finite p-variation for any p ≥ 1, if X visits a point of discontinuity of ϕ infinitely many
times. In particular, ϕ(X) cannot be Hölder continuous of any order in this case. This motivates to use Sobolev norms and
generalized Stieltjes type integrals rather than p-variation and Young integrals.

If X ∈ V (ϕ, s,p), a pinning argument shows that ϕ must be in Lp(X). This entails that, for appropriate β and p, the
composition ϕ ◦ X is in Wβ,p(0, T ) and, for large enough p, even Hölder continuous.

Lemma 4.31. Let ϕ ∈ BVloc(R
n). Let X : [0, T ] →R

n be a path which is Hölder continuous of order α ∈ (0,1). Suppose
that s ∈ (0,1), p ∈ [1,+∞] and X ∈ V (ϕ, s,p). Then ϕ ∈ Lp(X) and ϕ ◦X ∈ Wβ,p(0, T ) for any β ∈ (0, αs). Moreover,
if αs > 1

p
, then ϕ ◦ X has a (unique) Borel version which is Hölder continuous of any order smaller than αs − 1

p
. (We

again use the agreement that 1
+∞ := 0.)

Proof. Suppose first that p ∈ [1,+∞). Choose t0 ∈ [0, T ] such that Xt0 ∈ R
n \ Sϕ . By Proposition 4.4 such t0 clearly

exists. Then we have ∣∣ϕ(Xt)
∣∣p ≤ 2p−1[∣∣ϕ(Xt ) − ϕ(Xt0)

∣∣p + ∣∣ϕ(Xt0)
∣∣p]

.

for a.e. t ∈ [0, T ]. Using (4.33) we obtain∣∣ϕ(Xt ) − ϕ(Xt0)
∣∣p

≤ |Xt − Xt0 |sp
[
M1−s,4|Xt−Xt0 |μ(Xt) +M1−s,4|Xt−Xt0 |μ(Xt0)

]p
≤ c2p−1[X]spα,∞T αsp

([∫
U

‖Dϕ‖(dy)

|Xt − y|n−1+s

]p

+
[∫

U

‖Dϕ‖(dy)

|Xt0 − y|n−1+s

]p)
,
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and integration yields∫ T

0

∣∣(ϕ ◦ X)(t)
∣∣p dt ≤ c2p−1T

∣∣(ϕ ◦ X)(t0)
∣∣p + c4p−1[X]spα,∞T αsp+1

[∫
U

‖Dϕ‖(dy)

|Xt0 − y|n−1+s

]p

+ c4p−1[X]spα,∞T αsp

∫ T

0

[∫
U

‖Dϕ‖(dy)

|Xt − y|n−1+s

]p

dt.

(4.34)

In order to show that ϕ ◦ X ∈ Lp(0, T ) it now suffices to prove that there is some t0 ∈ [0, T ] such that Xt0 ∈ R
n \ Sϕ ,

(4.35)
∣∣ϕ(Xt0)

∣∣p < +∞,

and

(4.36)
∫
U

‖Dϕ‖(dy)

|Xt0 − y|n−1+s
< +∞.

Let N ⊂ [0, T ] be the set of all t such that Xt ∈ Sϕ . As seen before, N is a Lebesgue null set, and by Definition 2.5 and
(2.2) we have ϕ̃(Xt ) = λϕ(Xt ) < ∞ for all t ∈ [0, T ] \N since Xt ∈R

n \ Sϕ for such t . By (s,p)-variability, (4.36) must
hold for all t ∈ [0, T ] \ N ′, where N ′ is a Lebesgue null set. Thus both (4.35) and (4.36) must hold for any t0 ∈ [0, T ] \
(N ∪N ′), i.e. for a.e. t0 ∈ [0, T ]. In the case that p = +∞ the (s,∞)-variability of X guarantees (4.36) for all t0 ∈ [0, T ],
so that the desired result follows by obvious modifications of the above arguments. The membership in Wβ,p(0, T ) is
seen using Proposition 4.29 and the statement on continuity using Sobolev embedding, [26, Theorem 8.2]. �

Remark 4.32. By Remark 4.30 and Lemma 4.31 one cannot expect X to be (s,p)-variable with respect to ϕ for p > 1
αs

if X visits discontinuity points of ϕ infinitely often.

In the rest of this subsection we derive an estimate for the weighted Lp-term in the norm ‖ϕ ◦ X‖
W

β,p
0 (0,T )

. Only the

special case p = 1 will be used later on.

Proposition 4.33. Let ϕ ∈ BVloc(R
n). Let X : [0, T ] → R

n be a path which is Hölder continuous of order α ∈ (0,1] and
X ∈ V (ϕ, s,p) for some s ∈ (0,1) and p ∈ [1,+∞). Then for any β ∈ (0, αs ∧ 1

p
) there is a constant c > 0, depending

only on α, β , n, p and s, such that

(4.37)
∫ T

0

|(ϕ ◦ X)(t)|p
tβp

dt ≤ c

(
[X]spα,∞

∫ T

0

[∫
U

‖Dϕ‖(dy)

|Xt − y|n−1+s

]p

dt +
∫ T

0

∣∣(ϕ ◦ X)(t)
∣∣p dt

)
.

To prove Proposition 4.33 we make use of the following fact.

Lemma 4.34. Let β > 0 and q > 0 such that βq < 1. Then for all continuous functions u on [0, T ] we have

(4.38)
∫ T

0

|u(t)|q
tβq

dt ≤ c

(∫ T

0

∫ T

0

|u(t) − u(τ)|q
|t − τ |1+βq

dtdτ +
∫ T

0

∣∣u(t)
∣∣q dt

)
,

where c > is a constant depending only on β and q .

Lemma 4.34 is an slight adaption of the following result in [21] and [28]: Suppose D ⊂ R
d is a bounded Lipschitz

domain and let δD(x) = inf{|y − x| : y ∈ Dc} denote the distance of x to its complement Dc . Then, by [28, Equation
(17)], we have, for any q > 0 and α ∈ (0,1), that

(4.39)
∫
D

|u(x)|q
[δD(x)]α dx ≤ c

(∫
D

∫
D

|u(x) − u(y)|q
|x − y|d+α

dx dy +
∫
D

∣∣u(x)
∣∣q dx

)

for all u ∈ Cc(D).

Proof. An application of (4.39) to the case d = 1, α = βq and D = (0, T ) yields∫ T

0

|u(t)|q
tβ

dt ≤ c

(∫ T

0

∫ T

0

|u(t) − u(τ)|q
|t − τ |1+β

dt dτ +
∫ T

0

∣∣u(t)
∣∣q dt

)
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for all u ∈ Cc(0, T ). Note also that t−β ≤ [δD(t)]−β . Now suppose that u ∈ C([0, T ]). For each n let un be the continuous
function on [0, T ] such that un = u on [ 1

n
, T − 1

n
], un is linear on [ 1

2n
, 1

n
] ∪ [T − 1

n
, T − 1

2n
], and un ≡ 0 on [0, 1

2n
] ∪

[T − 1
2n

, T ]. Then obviously un ∈ Cc(0, T ) and we have

(4.40) sup
t∈[0,T ]

∣∣un(t)
∣∣ ≤ S,

where S := supt∈[0,T ] |u(t)|. Since bounded convergence implies

lim
n

∫ T

0

|un(t)|q
tβq

dt =
∫ T

0

|u(t)|q
tβq

dt and lim
n

∫ T

0

∣∣un(t)
∣∣q dt =

∫ T

0

∣∣u(t)
∣∣q dt,

it suffices to show that

lim sup
n

∫ T

0

∫ T

0

|un(t) − un(τ)|q
|t − τ |1+βq

dt dτ ≤ c

∫ T

0

∫ T

0

|u(t) − u(τ)|q
|t − τ |1+βq

dt dτ.

On [0, 1
n
] the function un obeys the Lipschitz bound |un(t) − un(τ)| ≤ nS|t − τ |, which implies

∫ n−1

0

∫ n−1

0

|un(t) − un(τ)|q
|t − τ |1+βq

dt dτ ≤ Sqnq

∫ n−1

0

∫ n−1

0
|t − τ |q−1−βq dτ dt ≤ cSqnβq−1.

This goes to zero as n → ∞. Similarly, using (4.40), and writing c for positive constants depending only on q and β and
possibly changing from line to line,

(4.41)

∫ n−1

0

∫ T

n−1

|un(t) − un(τ)|q
|t − τ |1+βq

dt dτ

≤ c

∫ n−1

0

∫ T

n−1

|un(t) − u(t) + u(τ) − un(τ)|q
|t − τ |1+β

dtdτ + c

∫ n−1

0

∫ T

n−1

|u(t) − u(τ)|q
|t − τ |1+βq

dt dτ

≤ cSq

∫ n−1

0

∫ T

n−1
|t − τ |−βq−1dtdτ + c

∫ T

0

∫ T

0

|u(t) − u(τ)|q
|t − τ |1+βq

dt dτ

≤ cSqnβq−1 + c

∫ T

0

∫ T

0

|u(t) − u(τ)|q
|t − τ |1+βq

dt dτ.

Treating the regions involving intervals [T − 1
n
, T ] similarly concludes the proof. �

A function ϕ ∈ L1
loc(R

n,Rm), ϕ = (ϕ1, . . . , ϕm), is locally of bounded variation, denoted ϕ ∈ BVloc(R
n)m, if locally

its distributional partial derivatives Diϕ are R
m-valued vector measures in the sense of [5, Definition 1.4 (a)]. We write

again ‖Dϕ‖ for the total variation of the gradient measure Dϕ of ϕ. Elementary norm comparison in R
m implies that

(4.42) ‖Dϕ‖ ≤
m∑

i=1

‖Dϕi‖,

where ‖Dϕi‖ is the total variation of the gradient measure Dϕi of ϕi . We record a consequence of the chain rule for
BV-functions, [5, Theorem 3.96]. See [4,71] for more general chain rules.

Lemma 4.35. If m ≥ 1, ϕ ∈ BVloc(R
n)m with ϕ = (ϕ1, . . . , ϕm) and � :Rm →R is a C1-function with bounded gradient

and �(0) = 0, then � ◦ ϕ ∈ BVloc(R
n) and

(4.43)
∥∥D(� ◦ ϕ)

∥∥ ≤ ‖∇�‖sup‖Dϕ‖.

If X ∈ V (ϕi, s,p) for all i, then also X ∈ V (� ◦ ϕ, s,p).
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Proof. By [5, Theorem 3.96 and its proof] we have � ◦ ϕ ∈ BVloc(R
n) and (4.43). Together with (4.42) this implies that

for any compact K ⊂R
n we have

U1−s
(∥∥D(� ◦ ϕ)

∥∥|K)
(x) ≤ ‖∇�‖supU

1−s
(‖Dϕ‖|K

)
(x) ≤ ‖∇�‖sup

m∑
i=1

U1−s
(‖Dϕi‖|K

)
(x), x ∈ R

n.

Now the second statement follows from (4.4). �

We prove Proposition 4.33.

Proof of 4.33. For any N ≥ 2 let �N ∈ C1(R) be an increasing function with ‖�′‖sup ≤ 1 and such that �N(y) = −N

for y ≤ −N , �N(y) = N for y ≥ N and �N(y) = y for −(N − 1) < y < N − 1. Then, by Lemma 4.35 (with m = 1) and
the hypotheses of Proposition 4.33, we have �N(ϕ) ∈ BVloc(R

n) and X is (s,p)-variable w.r.t. each �N(ϕ). Suppose
that (4.37) holds for all �N(ϕ) in place of ϕ. Then, by (4.43),∫ T

0

|(�N(ϕ) ◦ X)(t)|p
tβp

dt

≤ c[X]spα,∞
(∫ T

0

[∫
U

‖D(�N(ϕ))‖(dy)

|Xt − y|1−s

]p

dt +
∫ T

0

∣∣(�N(ϕ) ◦ X
)
(t)

∣∣p dt

)
.

≤ c[X]spα,∞
(∫ T

0

[∫
U

‖Dϕ‖(dy)

|Xt − y|1−s

]p

dt +
∫ T

0

∣∣(ϕ ◦ X)(t)
∣∣p dt

)
,

and (4.37) for ϕ follows using Fatou’s lemma. Consequently it suffices to prove (4.37) under the assumption that
supx∈Rn |ϕ(x)| ≤ N , and we do so in the sequel.

Let (ηε)ε>0 be a (radially symmetric) flat mollifier as in Appendix B. For each ε > 0 the composition ϕε ◦ X of the
mollified function ϕε := ϕ ∗ ηε with the path X is continuous on [0, T ], so that by (4.38),

(4.44)
∫ T

0

|ϕε(Xt )|p
tβp

dt ≤ c

(∫ T

0

∫ T

0

|ϕε(Xt ) − ϕε(Xτ )|p
|t − τ |1+βp

dtdτ +
∫ T

0

∣∣ϕε(Xt )
∣∣p dt

)

with a constant c > 0 depending only on β and p. By (B.2) we have

(4.45) lim
ε→0

ϕε(y) = ϕ(y), y ∈R
n \ Sϕ,

where Sϕ is the approximate discontinuity set of ϕ. Since

sup
x∈Rn

∣∣ϕε(x)
∣∣ ≤ sup

x∈Rn

∫
Rn

∣∣ϕ(y)
∣∣ηε(x − y)dy ≤ N

and μ
[0,T ]
X is finite, we can use (4.45) together with Proposition 4.4 and bounded convergence to conclude that

(4.46) lim
ε→0

∫ T

0

∣∣ϕε(Xt )
∣∣p dt = lim

ε→0

∫
Rn

∣∣ϕε(x)
∣∣pμ

[0,T ]
X (dx) =

∫
Rn

∣∣ϕ(x)
∣∣pμ

[0,T ]
X (dx) =

∫ T

0

∣∣ϕ(Xt)
∣∣p dt.

As before, let μϕ,U denote the restriction of ‖Dϕ‖ to a relatively compact open set U containing X([0, T ]). Let
με := ‖Dϕε‖|X([0,T ]). For sufficiently small ε the open ε-parallel set (X([0, T ]))ε of X([0, T ]) is contained in U , so that
by Corollary B.3 we have

(4.47) U1−s(με)(x) ≤ c(n, s)U1−sμϕ,U (x), x ∈R
n,

where c(n, s) > 0 is a constant depending only on n and s. Let next 0 < τ < t ≤ T be distinct and such that Xt,Xτ ∈
R

n \ Sϕ . Then Proposition C.1 and bound (4.33) imply∣∣ϕε(Xt ) − ϕε(Xτ )
∣∣ ≤ c(n, s)|Xt − Xτ |s

[
U1−sμε(Xt ) + U1−sμε(Xτ )

]
.

Combining with (4.47) gives

(4.48)
∣∣ϕε(Xt ) − ϕε(Xτ )

∣∣ ≤ c(n, s)|Xt − Xτ |s
[
U1−sμϕ,U (Xt ) + U1−sμϕ,U (Xτ )

]
.
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Therefore we have

|ϕε(Xt ) − ϕε(Xτ )|p
(t − τ)1+βp

≤ c(n, s)p[X]spα,∞(t − τ)αsp−βp−1[U1−sμϕ,U (Xt ) + U1−sμϕ,U (Xτ )
]p

for any such t and τ , and as at the end of the proof of Proposition 4.29 we see that, thanks to (s,p)-variability, the right
hand side is integrable over [0, T ]2. Since by (4.45) we have

lim
ε→0

|ϕε(Xt ) − ϕε(Xτ )|p
(t − τ)1+βp

= |ϕ(Xt ) − ϕ(Xτ )|p
(t − τ)1+βp

for any such t and τ , symmetry and dominated convergence imply

(4.49)

lim
ε→0

∫ T

0

∫ T

0

|ϕε(Xt ) − ϕε(Xτ )|p
|t − τ |1+βp

dτ dt

= lim
ε→0

∫ T

0

∫ T

0

|ϕε(Xt ) − ϕε(Xτ )|p
|t − τ |1+βp

1Rn\Sϕ
(Xτ )1Rn\Sϕ

(Xt ) dτ dt

=
∫ T

0

∫ T

0

|ϕ(Xt ) − ϕ(Xτ )|p
|t − τ |1+βp

dτ dt.

Applying Fatou’s lemma to the left hand side of (4.44) and using (4.46) and (4.49), we obtain

(4.50)

∫ T

0

|ϕ(Xt)|p
tβp

dt ≤ lim inf
ε→0

∫ T

0

|ϕε(Xt )|p
tβp

dt

≤ c lim
ε→0

(∫ T

0

∫ T

0

|ϕε(Xt ) − ϕε(Xτ )|p
|t − τ |1+βp

dtdτ +
∫ T

0

∣∣ϕε(Xt )
∣∣p dt

)

= c

(∫ T

0

∫ T

0

|ϕ(Xt ) − ϕ(Xτ )|p
|t − τ |1+βp

dtdτ +
∫ T

0

∣∣ϕ(Xt)
∣∣p dt

)
.

Using Proposition 4.29 on the first integral on the right hand side and readjusting constants, we arrive at (4.37). �

4.7. Proof of existence and regularity of the integral

Now the proof of Theorem 2.12 follows easily.

Proof of Theorem 2.12. To show that ϕ ◦ X ∈ W
β,1
0 (0, T ) as claimed in (i) we have to show that

‖ϕ ◦ X‖β,1 =
∫ T

0

|ϕ(Xt )|
tβ

dt + [ϕ ◦ X]β,1 < +∞.

Here, the finiteness of the weighted L1-term follows from Proposition 4.33 and Lemma 4.31, and the finiteness of the
Gagliardo seminorm follows from Proposition 4.29. Since Y ∈ Cγ ([0, T ],R) we have Y ∈ W

1−β,∞
T by (2.5), provided

that 1 − β < γ . Thus the existence of the integral (2.8) as claimed in (ii) follows from Proposition 2.11 by choosing
β ∈ (1 − γ,αs). To conclude the Hölder regularity claimed in (iii) we can follow [81, Proposition 4.1 (II)] and [100,
Proposition 6.2 (i)] and note that, with β and γ as stated and 0 ≤ τ < t ≤ T , we have∣∣∣∣

∫ t

0
ϕ(Xu)dYu −

∫ τ

0
ϕ(Xu)dYu

∣∣∣∣ ≤ ‖Y‖
W

1−β,∞
T (0,T )

(∫ t

τ

|ϕ(Xu)|
(u − τ)β

du +
∫ t

τ

∫ u

τ

|ϕ(Xu) − ϕ(Xr)|
(u − r)1+β

dr du

)
.

If X ∈ V (ϕ, s,p), then ϕ ◦ X ∈ Wβ,p(0, T ) by Propositions 4.29 and 4.33 and Lemma 4.31. For p = +∞ we have∫ t

τ

|ϕ(Xu)|
(u − τ)β

du ≤ c‖ϕ ◦ X‖Wβ,∞(0,T )(t − τ)1−β

and ∫ t

τ

∫ u

τ

|ϕ(Xu) − ϕ(Xr)|
(u − r)1+β

dr du ≤ c‖ϕ ◦ X‖Wβ,∞(0,T )(t − τ)
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as in [81]. For 1 ≤ p < +∞ we can proceed similarly as in [100] and use Hölder’s inequality to see that∫ t

τ

|ϕ(Xu)|
(u − τ)β

du ≤ c‖ϕ ◦ X‖Wβ,p(0,T )(t − τ)(1−β)−1/p.

Using β < β ′ < αs and 1
p

+ 1
q

= 1 we also have

∫ t

τ

∫ u

τ

|ϕ(Xu) − ϕ(Xr)|
(u − r)1+β

dr du

≤
∫ t

τ

∫ u

τ

|ϕ(Xu) − ϕ(Xr)|
(u − r)β

′+1/p

1

(u − r)β−β ′+1/q
dr du

≤
(∫ t

τ

∫ u

τ

|ϕ(Xu) − ϕ(Xr)|
(u − r)β

′p+1
dr du

)1/p(∫ t

τ

∫ r

τ

(r − u)(β
′−β)q−1 dudr

)1/q

≤ c‖ϕ ◦ X‖
Wβ′,p(0,T )

(t − τ)(1−β)−1/p+β ′
. �

The following quantitative estimates are a byproduct of the above proof, Propositions 4.29 and 4.33 and (2.7).

Corollary 4.36. If ϕ, X, and Y satisfy the hypotheses of Theorem 2.12 (ii), then for any 1−γ < β < αs and any t ∈ [0, T ]
we have

(4.51)

∣∣∣∣
∫ t

0
ϕ(Xu)dYu

∣∣∣∣ ≤ c‖Y‖
W

1−β,∞
T (0,T )

(
[X]sα,∞

∫ T

0

∫
U

‖Dϕ‖(dy)

|Xt − y|n−1+s
dt +

∫ T

0

∣∣ϕ(Xt)
∣∣dt

)
.

If ϕ, X, and Y satisfy the hypotheses of Theorem 2.12 (ii), then for any 1 − γ < β < αs and any t ∈ [0, T ] we have∥∥∥∥
∫ ·

0
ϕ(Xu)dYu

∥∥∥∥
C1−β([0,T ])

≤ c‖Y‖
W

1−β,∞
T (0,T )

(
[X]spα,∞

∫ T

0

[∫
U

‖Dϕ‖(dy)

|Xt − y|n−1+s

]p

dt +
∫ T

0

∣∣ϕ(Xt)
∣∣p dt

)

with straightforward modification for p = +∞.

4.8. Interpretation as currents

Although it will not be used in the sequel, we briefly comment on an alternative interpretation of (4.51) which is close to
the concept of stochastic currents investigated in [38] and [36]. Given a path X : [0, T ] → R

n and a number s ∈ (0,1), set

[ϕ]X,s := ∥∥U1−s‖Dϕ‖∥∥
L1(X)

, ϕ ∈ BV
(
R

n
)
.

Obviously this defines a seminorm on BV(Rn). Recall that a sequence (ϕn)n ⊂ BV(Rn) is said to strictly converge to
ϕ ∈ BV(Rn) if limn ϕn = ϕ in L1(Rn) and limn ‖Dϕn‖(Rn) = ‖Dϕ‖(Rn), [5, Definition 3.14].

Proposition 4.37. For any path X and any s ∈ (0,1) the seminorm [·]X,s is lower semicontinuous on BV(Rn) w.r.t. strict
convergence. Moreover,

(4.52)
{
ϕ ∈ BV

(
R

n
) : [ϕ]X,s < +∞}

is a subspace of BV(Rn), closed w.r.t. strict convergence.

Proof. If (ϕn)n ⊂ BV(Rn) strictly converges to ϕ ∈ BV(Rn), then, by [5, Proposition 3.15], also limn ‖Dϕn‖ = ‖Dϕ‖
vaguely. Hence, by [67, Chapter I, Theorem 1.3], we have

U1−s‖Dϕ‖(x) ≤ lim inf
n

U1−s‖Dϕn‖(x), x ∈ R
n,

and by Fatou’s lemma, used w.r.t. μ
[0,T ]
X , the lower semicontinuity follows. The closedness of the above subspace follows

similarly. �
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Although it is too strict for most applications, let us mention that the norm ‖ϕ‖BV := ‖ϕ‖L1(Rn) + ‖Dϕ‖(Rn) makes
BV(Rn) a Banach space, and convergence in this norm implies strict convergence. Consequently (4.52) is also closed
w.r.t. ‖ϕ‖BV, hence itself Banach with this norm.

We write VX,s(R
n,Rn) for the Banach space of all ϕ = (ϕ1, . . . , ϕn) ∈ (BV(Rn))n with [ϕi]X,s < +∞ for all i with

norm ‖ϕ‖X,s := ∑n
i=1(‖ϕi‖BV(Rn) + [ϕi]X,s).

The following interpretation of the integral as a bounded linear functional on VX,s(R
n,Rn) is a special case of (4.51)

and seems close to [36, Remark 12].

Corollary 4.38. Let X ∈ Cγ ([0, T ],Rn) with γ > 1
2 and let s ∈ ( 1

γ
− 1,1). Then the integral

∫ T

0 ϕ(Xu)dXu exists for
any ϕ ∈ VX,s(R

n,Rn) and satisfies

∣∣∣∣
∫ T

0
ϕ(Xu)dXu

∣∣∣∣ ≤ c‖X‖
W

1−β,∞
T (0,T ,Rn)

(
1 + [X]sγ,∞

)‖ϕ‖X,s

for any β ∈ (1 − γ, γ s).

4.9. Proof of the change of variable formula

We provide a proof of Theorem 2.13 which follows by mollification of the coefficient and taking the limit. The following
result yields convergence in W

β,1
0 (0, T ).

Lemma 4.39. Let ϕ ∈ BVloc(R
n) and X ∈ Cα([0, T ],Rn). Suppose that s ∈ (0,1), p ∈ [1,+∞), and X ∈ V (ϕ, s,p).

Set ϕε = ϕ ∗ ηε , where (ηε)ε>0 is a mollifier. Then for any β ∈ (0, αs) we have

(4.53) lim
ε→0

‖ϕ ◦ X − ϕε ◦ X‖
W

β,p
0

= 0.

Proof. Compare also with [34]. Consider first the seminorm part

(4.54) [ϕ ◦ X − ϕε ◦ X]β,p =
∫ T

0

∫ T

0

|ϕ(Xt ) − ϕ(Xτ ) − ϕε(Xt ) + ϕε(Xτ )|p
|t − τ |1+βp

dτ dt.

Since X ∈ V (ϕ, s,p), (B.2) and Proposition 4.4 imply that

(4.55) lim
ε→0

∣∣ϕ(Xt) − ϕε(Xt )
∣∣ = 0

for a.e. t ∈ [0, T ]. Thus it suffices to find an integrable upper bound in order to apply dominated convergence theorem.
For this we use∣∣ϕ(Xt) − ϕ(Xτ ) − ϕε(Xt ) + ϕε(Xτ )

∣∣p ≤ 2p−1
∣∣ϕ(Xt) − ϕ(Xτ )

∣∣p + 2p−1
∣∣ϕε(Xt ) − ϕε(Xτ )

∣∣p.

For the first summand on the right hand side we can use Proposition 4.29. For the second, Proposition C.1, the bound
(4.33), and Corollary B.3 imply that for ε sufficiently small and L1-a.e. t, τ ∈ [0, T ],

|ϕε(Xt ) − ϕε(Xτ )|p
|t − τ |1+βp

≤ c
|Xt − Xτ |sp
|t − τ |1+βp

[
U1−s

(‖Dϕε‖|X([0,T ])
)
(Xt ) + U1−s

(‖Dϕε‖|X([0,T )]
)
(Xτ )

]p
≤ c

|Xt − Xτ |sp
|t − τ |1+βp

[
U1−s

(‖Dϕ‖|U
)
(Xt ) + U1−s

(‖Dϕ‖|U
)
(Xτ )

]p(4.56)

with U ⊃ X([0, T ]) relatively compact open as in Definition 2.1. The quantity (4.54) goes to zero as ε → 0 by the
dominated convergence theorem. As in (4.44) and (4.50), we obtain

∫ T

0

|ϕ(Xt) − ϕε(Xt )|p
tβp

dt ≤ c

(∫ T

0

∫ T

0

|ϕ(Xt ) − ϕε(Xt ) + ϕε(Xτ ) − ϕ(Xτ )|p
|t − τ |1+βp

dtdτ

+
∫ T

0

∣∣ϕ(Xt) − ϕε(Xt )
∣∣p dt

)
.

(4.57)
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Recycling the pinning argument, we choose t0 ∈ [0, T ] such that Xt0 ∈ R
n \ Sϕ to see that∣∣ϕε(Xt )

∣∣p ≤ 2p−1[∣∣ϕε(Xt ) − ϕε(Xt0)
∣∣p + ∣∣ϕε(Xt0)

∣∣p]
,

and treat the difference |ϕε(Xt ) − ϕε(Xt0)| using the maximal inequalities and potential bounds as in the proof of Propo-
sition 4.29, which gives an integrable upper bound. By (4.55) and dominated convergence we have

lim
ε→0

∫ T

0

∣∣ϕ(Xt ) − ϕε(Xt )
∣∣p dt = 0,

and combining with the above, we see that also (4.57) goes to zero as ε → 0. �

We prove Theorem 2.13.

Proof of Theorem 2.13. Let Fε = F ∗ ηε , where (ηε)ε>0 is a mollifier. By Theorem 2.12 all integrals
∫ t

0 ∂kFε(Xu)dXk
u

are well defined. We have ∂kFε = ∂kF ∗ ηε and a standard Taylor approximation argument yields

(4.58) Fε(Xt ) = Fε(x̊) +
n∑

k=1

∫ t

0
∂kFε(Xu)dXk

u.

By Proposition 4.4, Xt ∈ R
n \⋃n

k=1 S∂kF for L1-a.e. t ∈ [0, T ]. Thus, by Lemma B.4, Xt ∈ R
n \SF for L1-a.e. t ∈ [0, T ]

as well and we have

lim
ε→0

Fε(Xt ) = F(Xt ) and lim
ε→0

Fε(x̊) = F(x̊).

By Lemma 4.39 we have

lim
ε→0

∥∥∂kFε(X·) − ∂kF (X·)
∥∥

W
β,1
0 (0,T )

= 0

for each k = 1,2, . . . , n and for some β ∈ (1 − α,αs). Using (2.7) we therefore arrive at (2.10). Finally, for continuous F

we have SF =∅ concluding the proof. �

5. Existence and uniqueness proofs

In this section we prove Theorems 3.8, 3.24, 3.25 and 3.28 and Corollary 3.26.
We make repeated use of the elementary facts that a function f = (f1, . . . , fm) is in the space Wβ,p(0, T ,Rm) if and

only if all its components fi are in Wβ,p(0, T ), and that, by the norm equivalence in R
m, the norm ‖f ‖Wβ,p(0,T ,Rm)

is comparable to
∑m

i=1 ‖fi‖Wβ,p(0,T ) (similarly for other function spaces). We apply the fact that estimates like (2.7) or
(2.9) remain valid for vector valued functions of compatible dimensions at the expense of having a different multiplicative
constant in front. We also use the symbol Lp(X,Rm) for a vector valued version of Lp(X).

5.1. Invertibility and BV-regularity

In this subsection we verify Lemma 3.14. Recall that by the Cayley–Hamilton theorem the inverse A−1 of an invertible
(n × n)-matrix A satisfies

(5.1) A−1 = (−1)n−1

det(A)

(
An−1 + cn−1A

n−2 + · · · + c1In

)
,

where In is the (n × n)-identity matrix and, for k = 0, . . . , n − 1, one has

cn−k = Bk

(
s1,−1!s2,2!s3, . . . , (−1)k−1(k − 1)!sk

)
,

with Bk denoting the k-th complete exponential Bell polynomial and sl = Tr(Al) being the trace of Al . We prove
Lemma 3.14.

Proof of Lemma 3.14. Suppose that σ satisfies Assumption 3.12. Recall that we always consider fixed Lebesgue repre-
sentatives of the components σij . Let N ⊂R

n be a Ln-null set such that

(5.2) det
(
σ(x)

)
> ε and

∣∣σij (x)
∣∣ ≤ ‖σ‖L∞(Rn,Rn×n) for all x ∈R

n \ N and any i and j .
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For such x the matrix σ(x) is invertible, and we set σ̂ (x) := (σ (x))−1. For x ∈ N we can set σ̂ (x) := 0. For x ∈ R
n \ N

the matrices σ̂ (x) of σ(x) satisfy (5.1) in place of A−1 and A. In particular, since for all quadratic matrices A the elements
of the matrix products Ak , traces tr(Ak), and the determinant det(A) are polynomials of the elements of A, we observe
that the coefficients σ̂ij (x) of σ̂ (x) are rational functions of the coefficients σij (x) of the form

(5.3) σ̂ij (x) = Pij (σ (x))

det(σ (x))
,

where for each i and j the function Pij (σ ) is a polynomial of degree n − 1 in the coefficients σkl , k, l = 1, . . . , n, of σ .
By the boundedness of the σkl we have Pij (σ ) ∈ L∞(Rn) and by (5.2) and (5.3) also σ̂ij ∈ L∞(Rn). For fixed i and j let
p := Pij −Pij (0) and let u ∈ C1

c (Rn×n,R2) be such that u := (p,det) on the image {σ(x) : x ∈R
n \N} ⊂R

n×n of Rn \N

under σ . Let F ∈ C1
c (R2) be such that F(a, b) = a

b
for (a, b) ∈ [−‖p(σ)‖L∞(Rn),‖p(σ)‖L∞(Rn)] × [ε,‖det(σ )‖L∞(Rn)].

Then � := F ◦ u is an element of C1(Rn×n), its gradient ∇� is bounded and

(5.4) σ̂ij (x) = � ◦ σ(x), x ∈R
n \ N.

As in Lemma 4.35 the chain rule, [5, Theorem 3.96], now shows that σ̂ij ∈ BVloc(R
n). To see the last statement of the

lemma, note that for x ∈R
n \ N we have detσ(x) ≤ n!‖σ‖L∞(Rn,Rn×n), so that

det
(
σ̂ (x)

) = 1

det(σ (x))
≥ 1

n!‖σ‖L∞(Rn,Rn×n)

. �

5.2. Solutions to the deterministic equation

In this subsection we provide a proof for Proposition 3.18. Assumptions 3.12 and 3.15 allow to conclude that σ̂ has a
Lipschitz potential.

Proposition 5.1. Suppose σ satisfies Assumptions 3.12 and 3.15. Then there exists a Lipschitz function g : Rn →R
n such

that its Jacobian matrix ∇g, defined a priori in distributional sense, satisfies

(5.5) ∇g = σ̂ Ln-a.e.

In particular, g ∈ W 1,∞(O) for any bounded domain O ⊂R
n.

We record a short helpful argument to conclude local continuity and boundedness. By S(Rn,Rn) and S ′(Rn,Rn) we
denote the spaces of Rn-valued Schwartz functions and tempered distributions, respectively.

Lemma 5.2. If n ≥ 2, 1 < p < +∞ and G ∈ S ′(Rn) is such that ∇G ∈ Lp(Rn,Rn), then G ∈ Lq(Rn), where 1
q

= 1
p

− 1
n

.

Proof. Given ϕ ∈ S(Rn) let ψ := −∇(−�)−1ϕ, where � denotes the Laplacian on R
n and (−�)−1 the Newton poten-

tial. Then ψ ∈ S(Rn,Rn) and

〈G,ϕ〉 = −〈G,divψ〉 = 〈∇G,ψ〉 =
∫
Rn

(∇G) · ψ dx,

so that ∣∣〈G,ϕ〉∣∣ ≤ ∥∥|∇G|∥∥
Lp(Rn)

∥∥|∇(−�)−1ϕ|∥∥
Lp′

(Rn)

≤ c
∥∥|∇G|∥∥

Lp(Rn)

∥∥(−�)−1/2ϕ
∥∥

Lp′
(Rn)

≤ c
∥∥|∇G|∥∥

Lp(Rn)
‖ϕ‖

Lq′
(Rn)

by the Lp′
-boundedness of the Riesz transform, [87, Chapter II, Section 4, Theorem 3 and Chapter III, Section 1], and

the fractional Sobolev inequality, [87, Chapter V, Section 1, Theorem 1]. Consequently G ∈ Lq(Rn) by duality. �

Remark 5.3. Recall that for q > n and for any smooth bounded domain O ⊂ R
n we have the Sobolev embedding

W 1,q (O) ⊂ Cδ(O), where 0 < δ ≤ 1 − n
q

. For instance, see [3, 4.27].
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Using Lemma 5.2 and Remark 5.3 we can prove Proposition 5.1.

Proof. In the case that n = 1 we can simply integrate σ̂ to find a locally bounded Lipschitz function g satisfying (5.5).
Suppose n ≥ 2. By Assumption 3.15 and a distributional version of Poincaré’s Lemma, there exists g = (g1, . . . , gn) ∈
S ′(Rn,Rn) such that ∇g = σ̂ holds in distributional sense. That is, the j th row ∇gj = (D1gj , . . . ,Dngj ) of ∇g equals
the j th row σ̂ = (σ̂j1, . . . , σ̂jn) of σ̂ in S ′(Rn,Rn). See [56, Chapter 4, Section 3, Proposition 9] of [85, Chapter II,
Section 6, Théorème VI] (the result is stated for the dual of smooth compactly supported functions, but the proof does not
change for Schwartz functions and tempered distributions). For any j and k we have Dkgj = σ̂jk ∈ L1(Rn)∩L∞(Rn) by
Assumption 3.12 and Lemma 3.14. Now suppose that O ⊂R

n is a bounded domain. By Lemma 5.2 and the boundedness
of O we can conclude that g ∈ W 1,q (O,Rn) for arbitrarily large q < +∞, and Remark 5.3 implies that g is continuous
on O, and hence also bounded on O. As a consequence, we have g ∈ W 1,∞(O,Rn), and a standard mollifier argument
yields |g(x) − g(y)| ≤ ‖∇g‖L∞(Rn,Rn×n)|x − y| for all x, y ∈O, see [52, Theorem 4.1]. �

Our proof of Proposition 3.18 is based on an inverse function theorem for Sobolev functions proved in [62, Theorem 1].
We quote a special case of this result sufficient for our purposes. See also [63].

Proposition 5.4. Let n ≥ 2. If g ∈ W
1,n
loc (Rn,Rn) is non-constant and there exist δ > −1 and κ ∈ [1,+∞) such that for

Ln-a.e. x ∈R
n we have

(5.6)
〈∇g(x)ξ, ξ

〉 ≥ δ
∣∣∇g(x)ξ

∣∣|ξ |, ξ ∈ R
n,

and

(5.7)
∣∣∇g(x)

∣∣n ≤ κ det
(∇g(x)

)
,

then g is a homeomorphism of Rn onto itself.

Remark 5.5. Condition (5.7) is usually rephrased by saying that g is κ-quasiregular or of bounded distortion, see for
instance [54, Section 1.2] or [82]. A result similar to Proposition 5.4 is [24, Theorem 1]. There condition (5.6) is replaced
by a Ln-a.e. nonnegativity condition on the sums of principal minors of σ .

We prove Proposition 3.18.

Proof of Proposition 3.18. By Assumption 3.12, Lemma 3.14, Assumption 3.15, and Proposition 5.1 there exists a
Lipschitz function g ∈ W

1,n
loc (Rn,Rn) such that (5.5) holds. In the case n = 1, Assumption 3.12 and (5.5) imply that

‖σ‖−1
L∞(R)

≤ σ̂ (x) = g′(x) for L1-a.e. x ∈ R, and hence g is strictly monotone and bi-Lipschitz with inverse f = g−1

having Lipschitz constant bounded by ‖σ‖L∞(R). Assume n ≥ 2. Again by Assumption 3.12 and Lemma 3.14 we have

1

n!‖σ‖n
L∞(Rn,Rn×n)

≤ 1

det(σ (x))
= det

(
σ̂ (x)

) = det
(∇g(x)

)

for Ln-a.e. x ∈ R
n, and by (5.5) also |∇g(x)|n ≤ ‖σ̂‖n

L∞(Rn,Rn×n)
. Hence (5.7) holds with

κ = n!‖σ̂‖n
L∞(Rn,Rn×n)

‖σ‖n
L∞(Rn,Rn×n)

.

Condition (5.6) is immediate from (3.10). Consequently g is a homeomorphism by Proposition 5.4, and we denote its
inverse by f = g−1. For any bounded domain O the restriction g|O is a homeomorphism with inverse f |g(O), and by

Proposition 5.1 also g|O ∈ W 1,n−1(O,Rn). This implies that f ∈ W
1,1
loc (g(O),Rn), see [54, Theorem 5.2]. Consequently

the chain rule can be applied to g ◦ f = id, and taking into account (4.1) we obtain

I = ∇(g ◦ f )(y) = (∇g)
(
f (y)

)∇f (y) = σ−1(f (y)
)∇f (y)

for Ln-a.a. y ∈ R
n. The invertibility of σ yields ∇f = σ(f ) Ln-a.e. and since σ ∈ L∞(Rn,Rn×n), it follows that f is

Lipschitz with Lipschitz constant bounded by ‖σ‖L∞(Rn,Rn×n). �
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5.3. Existence of solutions in the invertible case

We observe the following stability property of conditions of upper regularity type.

Lemma 5.6. Let Y : [0, T ] →R
n be a path, B ⊂R

n Borel and d > 0. Suppose that f :Rn → R
n is a Borel function with

Lipschitz inverse g = f −1. Then there is a constant M > 0 such that for all u ∈ [0, T ] we have∫ T

0

∣∣f (Yt ) − f (Yu)
∣∣−d

dt ≤ M

∫ T

0
|Yt − Yu|−d dt.

Proof. For any t, u ∈ [0, T ] we have |Yt − Yu| = |g(f (Yt )) − g(f (Yu))| ≤ Lip(g)|f (Yt ) − f (Yu)|, and consequently the
claimed estimate holds with M = Lip(g)d . �

In the next lemma we justify the application of the change of variable (2.10).

Lemma 5.7. Let g and f be as in Lemma 5.6. Let s ∈ (0,1), γ ∈ ( 1
1+s

,1), Y ∈ Cγ ([0, T ],Rn) with Y0 = 0, B ⊂ R
n a

Borel set, and x̊ ∈R
n. Suppose that σ is upper d-regular on B with d > n − 1 + s or that

(5.8) sup
x∈Y([0,T ])∩(f −1(B)−f −1(x̊))

∫ T

0
|Yt − x|−n+1−s dt < +∞,

and similarly for Bc. Then the path X : [0, T ] → R
n, defined by Xt := f (Yt + g(x̊)), t ∈ [0, T ], is (s,1)-variable w.r.t.

σ , and

(5.9) Xt = x̊ +
∫ t

0
σ(Xu)dYu, t ∈ [0, T ].

Proof. If Y satisfies (5.8), then by Lemma 5.6 we have

sup
u∈[0,T ],Xu∈B

∫ T

0
|Xt − Xu|−n+1−s dt < +∞,

and a similar conclusion is true for Bc . Therefore the hypotheses on σ , together with Corollary 4.16 and Remark 4.2,
imply that X is (s,1)-variable w.r.t. σ . If f is bi-Lipschitz on R

n it is proper, and applying [5, Theorem 3.16] component-
wise, we may conclude that for each j and k the function ∂kfj = σjk(f ) is in BVloc(R

n), see also [53]. By the same
theorem and the bijectivity of f we also have∥∥D(∂kfj )

∥∥ = ∥∥D
(
σjk ◦ g−1)∥∥ = ∥∥D(g#σjk)

∥∥ ≤ (
Lip(g)

)n−1
g#‖Dσjk‖,

with the notation g# from [5, Theorem 3.16], which is the pushforward operation on measures, however, defined differ-
ently when operating on functions. Using |f (Y

g(x̊)
t ) − z| ≤ Lip(g)|Yg(x̊)

t − g(z)|, the fact that g is proper, and the fact
that X = f (Y g(x̊)) is (s,1)-variable w.r.t. σ ,∫ T

0
U1−s

∥∥D(∂kfj )
∥∥|K

(
Y

g(x̊)
t

)
dt

≤ (
Lip(g)

)n−1
∫ T

0

∫
K

∣∣Yg(x̊)
t − a

∣∣−n+1−s
g#‖Dσjk‖(da) dt

= (
Lip(g)

)n−1
∫ T

0

∫
g−1(K)

∣∣Yg(x̊)
t − g(z)

∣∣−n+1−s‖Dσjk‖(dz) dt

≤ (
Lip(g)

)2n−2+s
∫ T

0

∫
f (K)

∣∣f (
Y

g(x̊)
t

) − z
∣∣−n+1−s‖Dσjk‖(dz) dt < +∞.

That is, Yg(x̊) is (s,1)-variable w.r.t. ∂kfj . Consequently, by Theorem 2.13,

Xt = f
(
Y

g(x̊)
t

) = f
(
Y

g(x̊)

0

) +
∫ t

0
∇f

(
Y

g(x̊)
u

)
dYu = x̊ +

∫ t

0
σ(Xu)dYu
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for all t ∈ [0, T ]. The stated Hölder regularity is clear since f is Lipschitz. Finally, if n = 1 and g is as in Theorem 3.8,
we can use the fact that f ′(Yt ) = σ(Xt ) for L1-a.e. t ∈ [0, T ] and arrive at the same conclusion. �

Lemma 5.8. Let g and f be as in Lemma 5.6. Let s ∈ (0,1), γ ∈ ( 1
1+s

,1), Y ∈ Cγ ([0, T ],Rn) with Y0 = 0 and let
x̊ ∈ R

n. Suppose that there are ε ∈ (0,1 − s), c > 0, and δ ∈ (0, n − 1 + s − ε) such that (3.13) and (3.14) hold. Then
Xt := f (Yt + g(x̊)), t ∈ [0, T ], defines a path X that is (s,1)-variable w.r.t. σ and satisfies (5.9).

Proof. By Lemma 5.6 and the hypotheses we have

∫ T

0
|Xt − x|−n+ε dt =

∫ T

0

∣∣f (
Y

g(x̊)
t

) − x
∣∣−n+ε

dt ≤ M

∫ T

0

∣∣Yg(x̊)
t − g(x)

∣∣−n+ε
dt

=
∫ T

0

∣∣Yt − (
g(x) − g(x̊)

)∣∣−n+ε
dt ≤ cM

∣∣g(x) − g(x̊)
∣∣−n+δ ≤ cM Lip(f )n−δ|x − x̊|−n+δ.

Consequently, Corollary 4.25 implies that for P-a.e. ω ∈ � the path X(ω) is (s,1)-variable w.r.t. σ . One can now follow
the arguments in the proof of Lemma 5.7. �

A slight modification gives a probabilistic version of the statement.

Corollary 5.9. Let g and f be as in Lemma 5.6. Let s ∈ (0,1), γ ∈ ( 1
1+s

,1), let Y = (Yt )t∈[0,T ] be a process with P-a.s.
Hölder continuous of order γ as in Corollary 3.26, and let x̊ ∈ R

n. Suppose that there are ε ∈ (0,1 − s), c > 0, and
δ ∈ (0, n − 1 + s − ε) such that (3.14) and (3.15) hold. Then for P-a.e. ω ∈ � the path X(ω) : [0, T ] → R

n, defined by
Xt(ω) := f (Yt (ω) + g(x̊)), t ∈ [0, T ], is (s,1)-variable w.r.t. σ , and satisfies

Xt(ω) = x̊ +
∫ t

0
σ
(
Xu(ω)

)
dYu(ω), t ∈ [0, T ].

Proof. In view of the preceding proof it suffices to note that

E

∫ T

0
|Xt − x|−n+ε dt = E

∫ T

0

∣∣Yt − (
g(x) − g(x̊)

)∣∣−n+ε
dt ≤ cM

∣∣g(x) − g(x̊)
∣∣−n+δ

. �

We can now verify our existence results.

Proofs of Theorems 3.8 and 3.24. Statement (i) in Theorem 3.8 is clear, the first part of statement (ii) follows as in [89,
Theorem 2.1], the second part of (ii) is easily seen using Lemma 5.6. By Proposition 3.18 also the hypotheses on σ in
Theorem 3.24 guarantee the existence of f and g are as required by Lemma 5.6. Consequently Lemma 5.7 applies and
yields the desired statement. �

Proofs of Theorem 3.25 and Corollary 3.26. Proposition 3.18 yields functions f and g as in Lemma 5.6. Lemma 5.8
then implies Theorem 3.25 and Corollary 5.9 gives Corollary 3.26. �

5.4. Uniqueness of solutions in the invertible case

In this subsection we prove Theorem 3.28. We follow the basic idea of [43, Lemma 3.5] and [89, Theorem 2.2], and
employ a smoothing argument which permits to use Riemann sum approximations.

The following Proposition is a multidimensional version of the results proved in [98, Theorem 4.3.1] and straightfor-
ward to see from there.

Proposition 5.10. Let h = (h1, . . . , hn) be an element of C2(Rn,Rn). Then for any X ∈ Cα([0, T ],Rn) with α > 1
2 and

any t ∈ [0, T ] we have

h(Xt ) = h(X0) +
∫ t

0
∇h(Xu)dXu.

Moreover, the integrals can be understood also as Riemann–Stieltjes integrals.
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Suppose now that σ satisfies Assumptions 3.12 and 3.15, let σ̂ be as in Lemma 3.14, and let g be the Lipschitz solution
to (5.5). That is, ∇g = σ̂ Ln-a.e on R

n. We denote by gδ = (g1,δ, . . . , gn,δ) the element-wise smooth approximation of
g = (g1, . . . , gn) defined by

(5.10) gi,δ = gi ∗ ηδ,

where (ηδ)δ>0 is a mollifier as in Lemma B.4. From the identity ∇(g ∗ ηδ) = ∇g ∗ ηδ it is immediate that

(5.11) ∇gδ = σ̂δ Ln-a.e.,

where σ̂δ = ((σ̂jk)δ)1≤j,k≤n is the element-wise mollified version of σ̂ defined by

(σ̂jk)δ = σ̂jk ∗ ηδ.

By the continuity of g, we have

(5.12) lim
δ→0

gδ(y) = g(y), y ∈ R
n,

and since gi ∈ W
1,1
loc (Rn) for all i and σ̂jk ∈ BV(Rn) for all j and k by Lemma 3.14, we have

(5.13) lim
δ→0

σ̂δ(y) = σ̂ (y), y ∈R
n \ Sσ̂

by Lemma B.4.

Proposition 5.11. Suppose that σ satisfies Assumptions 3.12 and 3.15, Y ∈ Cγ ([0, T ],Rn), and x̊ ∈R
n. If α ∈ ( 1

2 ,1) and
X ∈ Cα([0, T ],Rn) is a variability solution for σ and Y started at x̊, then for any δ > 0 and t ∈ [0, T ] we have

(5.14) gδ(Xt ) = gδ(x̊) +
∫ t

0
σ̂δ(Xu)σ (Xu)dYu,

where gδ and σ̂δ are as in (5.11).

To prove Proposition 5.11 we can follow the strategy of [98, Theorem 4.4.2] and proceed by Riemann sum approxi-
mation. We make use of the following elementary observation.

Lemma 5.12. Suppose that β ∈ (0,1), t ∈ [0, T ] and that B ∈ Wβ,1(0, t,Rn×n) ∩ L∞(0, t,Rn×n) is an (n × n)-matrix
valued function. If (Am)≥1 is a sequence of (n × n)-matrix valued functions Am ∈ W

β,1
0 (0, t,Rn×n) ∩ L∞(0, t,Rn×n)

satisfying

(5.15)

lim
m→∞‖Am‖

W
β,1
0 (0,t,Rn×n)

= 0, sup
m

‖Am‖L∞(0,t,Rn×n) < +∞ and

lim
m→∞

∣∣Am(u)
∣∣ = 0 for L1-a.e. u ∈ [0, t],

then

lim
m→∞‖AmB‖

W
β,1
0 (0,t,Rn×n)

= 0.

Proof. The boundedness of B and the first assumption in (5.15) give

lim sup
m→∞

∫ t

0

|Am(u)B(u)|
uβ

du ≤ ‖B‖L∞(0,t,Rn×n) lim
m→∞

∫ t

0

|Am(u)|
uβ

du = 0.

On the other hand, we have∣∣Am(u)B(u) − Am(r)B(r)
∣∣ ≤ ∣∣Am(u)

∣∣∣∣B(u) − B(r)
∣∣ + ∣∣B(r)

∣∣∣∣Am(u) − Am(r)
∣∣.

The second and the third assumption in (5.15) imply

lim
m→∞

∫ t

0

∫ t

0

|Am(u)||B(u) − B(r)|
|u − r|β+1

dudr = 0
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by bounded convergence, and the first assumption in (5.15) ensures that

lim sup
m→∞

∫ t

0

∫ t

0

|B(r)||Am(u) − Am(r)|
|u − r|β+1

dudr ≤ ‖B‖L∞(0,t,Rn×n) lim
m→∞‖Am‖

W
β,1
0 (0,t,Rn×n)

= 0.

Combining, we arrive at the result. �

We prove Proposition 5.11.

Proof. To show that the integral is well-defined we first claim that for any β < αs we have

(5.16)
∥∥σ̂δ(X·)σ (X·)

∥∥
W

β,1
0 (0,T ,Rn×n)

< ∞.

To see this, note that σ̂k is bounded on a locally compact neighborhood O containing X([0, T ]), and since X is a variability
solution, Proposition 4.33 implies that∫ T

0

|σ̂δ(Xu)σ (Xu)|
uβ

du ≤ sup
x∈O

∣∣σ̂δ(x)
∣∣ ∫ T

0

|σ(Xu)|
uβ

du < ∞.

Using (4.8) we obtain∫ T

0

|σ̂δ(Xu)σ (Xu) − σ̂δ(Xr)σ (Xr)|
|u − r|β+1

dudr

≤ sup
x∈O

∣∣σ̂δ(x)
∣∣ ∫ T

0

|σ(Xu) − σ(Xr)|
|u − r|β+1

dudr + ‖σ‖L∞(Rn,Rn×n)

∫ T

0

|σ̂δ(Xu) − σ̂δ(Xr)|
|u − r|β+1

dudr.

Proposition 4.29 implies the boundedness of the first integral on the right hand side, and the second integral is bounded
by Hölder continuity of X and differentiability of σ̂δ . Thus we have (5.16), and as a consequence, the integral in (5.14) is
well-defined.

To verify equation (5.14) we first note that, since gδ and σ̂δ are smooth and X is Hölder continuous of order α > 1
2 ,

Proposition 5.10 yields

gδ(Xt ) = gδ(x̊) +
∫ t

0
σ̂δ(Xu)dXu.

The integrals can be approximated by Riemann–Stieltjes sums

∫ t

0
σ̂δ(Xu)dXu = lim

m→∞

Nm∑
j=1

σ̂δ(Xt
(m)
j−1

) · (X
t
(m)
j

− X
t
(m)
j−1

),

where (πm)m is a refining sequence of finite partitions of [0, t] with subinterval endpoints t
(m)
j and mesh |πm| =

maxj |t (m)
j − t

(m)
j−1|. In particular, for

�m
X(u) =

Nm∑
j=1

σ̂δ(Xt
(m)
j−1

)1
(t

(m)
j−1,t

(m)
j ](u), u ∈ [0, t],

we have

lim
m→∞

∥∥σ̂δ(X·) − �m
X(·)∥∥

W
β,1
0 (0,t,Rn×n)

= 0,(5.17)

sup
m

∥∥σ̂δ(Xu) − �m
X(u)

∥∥
L∞(0,t,Rn×n)

< +∞ and lim
m→∞

∣∣σ̂δ(Xu) − �m
X(u)

∣∣ = 0, u ∈ [0, t],(5.18)

which can be seen similarly as in [98, Theorem 4.1.1]. Since X solves (3.1), we obtain

(5.19)
∫ t

0
σ̂δ(Xu)dXu = lim

m→∞

Nm∑
j=1

∫ t
(m)
j

t
(m)
j−1

σ̂δ(Xt
(m)
j−1

)σ (Xu)dYu = lim
m→∞

∫ t

0
�m

X(u)σ (Xu)dYu.
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Since σ(X) ∈ W
β,1
0 (0, t,Rn×n) ∩ L∞(0, t,Rn×n) we may, by (5.17) and (5.18), apply Lemma 5.12 with

Am(u) = σ̂δ(Xu) − �m
X(u) and B(u) = σ(Xu), u ∈ [0, t],

to obtain

lim
m→∞

∥∥σ̂δ(X·)σ (X·) − �m
X(·)σ (X·)

∥∥
W

β,1
0 (0,t,Rn×n)

= 0.

Then, by (2.7) and (5.19), ∫ t

0
σ̂δ(Xu)dXu =

∫ t

0
σ̂δ(Xu)σ (Xu)dYu

concluding the proof. �

Theorem 3.28 will follow from (5.14) as δ → 0 if taking limits can be justified. To provide this justification we note
that variability w.r.t. σ implies variability w.r.t. σ̂ .

Proposition 5.13. Suppose that σ = (σjk)1≤j,k≤n satisfies Assumption 3.12 and let σ̂ be as in Lemma 3.14. If for s ∈
(0,1) and p ∈ [1,+∞] we have X ∈ V (σ, s,p), then also X ∈ V (σ̂ , s,p).

Proof. Recall (5.4), i.e., that each component σ̂ij of σ̂ can be written in the form σ̂ij = � ◦ σ with a suitable function
� ∈ C1(Rn×n) (depending on i and j ) with �(0) = 0 and bounded gradient. Consequently X ∈ V (σ̂ij , s,p) for each i

and j by Lemma 4.35, and this means that X ∈ V (σ̂ , s,p). �

We prove Theorem 3.28.

Proof of Theorem 3.28. Since by Proposition 5.13 the path X is (s,1)-variable w.r.t. σ̂ , we have Xu ∈ R
n \Sσ̂ for L1-a.e.

u ∈ [0, t], and, together with (5.13),

lim
δ→0

∣∣σ̂δ(Xu)σ (Xu) − I
∣∣ = 0

for such u. Since also σ̂ (X·) ∈ L∞(0, t,Rn×n) by (4.8), dominated convergence, together with the boundedness of σ and
σ̂ , implies

lim
δ→0

∫ t

0

|σ̂δ(Xu)σ (Xu) − I |
uβ

du = 0.

For the Gagliardo seminorm we first note that∣∣σ̂δ(Xu)σ (Xu) − σ̂δ(Xr)σ (Xr)
∣∣ ≤ ∥∥σ̂ (X·)

∥∥
L∞(0,t,Rn×n)

∣∣σ(Xu) − σ(Xr)
∣∣

+ ∥∥σ(X·)
∥∥

L∞(0,t,Rn×n)

∣∣σ̂δ(Xu) − σ̂δ(Xr)
∣∣.

Since we have

[
σ(X·)

]
β,1 ≤ c[X]sα,∞

n∑
i,j=1

∥∥U1−s‖Dσ̂ij‖
∥∥

L1(X)

by (4.29) in Proposition 4.29 and, reasoning as in (4.56), also

[
σδ(X·)

]
β,1 ≤ c[X]sα,∞

n∑
i,j=1

∥∥U1−s‖Dσ̂ij‖
∥∥

L1(X)

with a constant c > 0 independent of δ, we can again use dominated convergence to conclude that

lim
δ→0

∫ t

0

∫ t

0

|σ̂δ(Xu)σ (Xu) − σ̂δ(Xr)σ (Xr)|
|u − r|β+1

dudr = 0.

This shows that

lim
δ→0

∥∥σ̂δ(X·)σ (X·) − I
∥∥

W
β,1
0 (0,t,Rn×n)

= 0,
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and using (2.7) we obtain

lim
δ→0

∫ t

0
σ̂δ(Xu)σ (Xu)dYu =

∫ t

0
dYu = Yt − Y0.

Taking into account (5.12) and (5.14), we arrive at

(5.20) g(Xt ) − g(x̊) = Yt − Y0, t ∈ [0, T ].
Now suppose that X and X̃ are two solutions. By (5.20) we must have

g(Xt ) = g(X̃t ), t ∈ [0, T ].
Since g is invertible with inverse f satisfying (3.7) (cf. Proof of Theorem 3.24), this implies that

Xt = X̃t = f (Yt ), t ∈ [0, T ]. �

Appendix A: Convolution of Riesz kernels

Statement (i) in the following proposition is well known, see [84, Lemma 25.2 and (25.38)], [67, Theorem 1.15 in Chapter
I] or [87, Chapter V, Section 1.1], and it can also be obtained by a quick subordination argument. Statement (ii) is a direct
consequence of (i) and Fubini’s theorem.

Proposition A.1. Let γ1, γ2 > 0 and γ1 + γ2 < n.

(i) We have

cγ1cγ2

∫
Rn

|x|−n+γ1 |x − y|−n+γ2 dx = cγ1+γ2 |y|−n+γ1+γ2, y ∈R
n \ {0}.

(ii) If ν1 and ν2 are finite nonnegative Borel measures with compact support, then∫
Rn

Uγ1ν1(x)Uγ2ν2(x) dx =
∫
Rn

Uγ2Uγ1ν1(x)ν2(dx) =
∫
Rn

Uγ1+γ2ν1(x)ν2(dx).

Appendix B: Mollification results

We collect some useful known approximation results used in the main text.
We begin with an approximation lemma for Riesz potentials that is a slight variant of [67, Section I.3, Theorem 1.11

and its proof]. As usual we say that (ηε)ε>0 is a (radially symmetric) mollifier if η ∈ C∞
c (Rn) is a nonnegative radial

function, compactly supported inside the unit ball and such that
∫
Rn η(x) dx = 1, and ηε(x) := ε−nη(ε−1x), x ∈ R

n, for
any ε > 0, cf. [5, p. 41]. We say that a mollifier (ηε)ε>0 is a flat mollifier if for all x ∈ R

n with |x| ≤ 1
2 we have η(x) = cη

with a suitable constant cη > 0. To have η constant in a small ball around the origin is useful to quickly see the following.

Lemma B.1. Let (ηε)ε>0 be a flat mollifier, let ν be a nonnegative Borel measure on R
n, and 0 < γ < n. Then:

(i) There is a constant c(n, γ ) > 0 depending only on n and γ such that for any ε > 0 and all x ∈R
n we have

Uγ (ν ∗ ηε)(x) ≤ c(n, γ )Uγ ν(x).

(ii) For any x ∈R
n we have

lim
ε→0

Uγ (ν ∗ ηε)(x) = Uγ ν(x).

The proof is as in [67, Section I.3, Theorem 1.11], but since we use a slightly different mollifier, we repeat the short
arguments for (i) for convenience.



2076 M. Hinz, J. M. Tölle and L. Viitasaari

Proof. We have

Uγ (ν ∗ ηε)(x) = cγ

∫
Rn

ηε(z − x)

∫
Rn

ν(dy)

|z − y|n−γ
dz

= cγ

∫
Rn

1

|x − y|n−γ

(∫
Rn

ηε(z − x)
|x − y|n−γ

|z − y|n−γ
dz

)
ν(dy).

The inner integral is bounded by �(x
ε
,

y
ε
), where

�(x,y) := |x − y|n−γ

∫
|ζ−x|≤ 1

2

dζ

|ζ − y|n−γ
.

The function � defines a continuous function of |x − y| which is zero if |x − y| = 0 and tends to 1 for |x − y| → +∞,
and denoting the maximum of this function by c(n, γ ), we obtain (i). For (ii) one can follow the proof in [67, p. 73]. �

The next lemma contain versions of a statement from [5, Theorem 2.2]. Given a Borel set E ⊂ R
n and ε > 0, write

Eε := {x ∈R
n : dist(E,x) < ε}.

Lemma B.2. Let ϕ ∈ BVloc(R
n) and let (ηε)ε be a mollifier. Then for any Borel set E ⊂ R

n and any Borel function
ψ :Rn → [0,+∞] we have

(B.1)
∫
Rn

ψ(y)
∥∥D(ϕ ∗ ηε)

∥∥|E(dy) ≤
∫
Rn

ψ(y)
(‖Dϕ‖|Eε ∗ ηε

)
(y) dy.

In particular, ∫
E

∣∣∇(ϕ ∗ ηε)
∣∣(y) dy ≤ ‖Dϕ‖(Eε).

The proof basically follows [5, Theorem 2.2].

Proof. Since ‖D(ϕ ∗ ηε)‖ = |∇(ϕ ∗ ηε)| · Ln and ∇(ϕ ∗ ηε) = (Dϕ) ∗ ηε , [5, Proposition 3.2], the left hand side of
inequality (B.1) is seen to equal∫

Rn

ψ(y)1E(y)

∣∣∣∣
∫
Rn

ηε(y − z)Dϕ(dz)

∣∣∣∣dy ≤
∫
Rn

∫
Rn

ψ(y)1E(y)ηε(y − z) dy‖Dϕ‖(dz)

≤
∫
Rn

∫
Rn

ψ(y)ηε(y − z) dy1Eε (z)‖Dϕ‖(dz),

where we have used Fubini’s theorem. Another application of the latter shows that the last integral equals the right hand
side of (B.1). The case ψ ≡ 1 yields the second statement because the mollifier has integral equal to one. �

We obtain the following consequence for potentials.

Corollary B.3. Let ϕ ∈ BVloc(R
n), 0 < γ < n, let K ⊂R

n be a compact set and (ηε)ε>0 a symmetric flat mollifier. Then

Uγ
(∥∥D(ϕ ∗ ηε)

∥∥|K
)
(x) ≤ c(n, γ )Uγ

(‖Dϕ‖|Kε

)
(x)

for any x ∈ R
n and ε > 0.

Proof. Given x ∈ R
n write ψx(y) := |x − y|−n+γ . Then

Uγ
(∥∥D(ϕ ∗ ηε)

∥∥|K
)
(x) =

∫
Rn

ψx(y)
∥∥D(ϕ ∗ ηε)

∥∥|K(dy)

≤
∫
Rn

ψx(y)
(‖Dϕ‖|Kε ∗ ηε

)
(y) dy = Uγ

(‖Dϕ‖|Kε ∗ ηε

)
(x)

by Lemma B.2, and an application of Lemma B.1 yields the desired bound. �
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Let (ηε)ε>0 be a mollifier. Recall that if ϕ ∈ L1
loc(R

n) and ϕ̃ is a Lebesgue representative of ϕ, then

(B.2) lim
ε→0

ϕ ∗ ηε(x) = ϕ̃(x), x ∈R
n \ Sϕ,

as shown in [5, Proposition 3.64 (b)].

Lemma B.4. Let F ∈ W
1,1
loc (Rn), such that σk := ∂kF ∈ BVloc(R

n) for k = 1, . . . , n. Then SF ⊂ ⋃n
k=1 Sσk

for k =
1, . . . , n. If (ηε)ε>0 is a mollifier, then

(i) limε→0 F ∗ ηε = F pointwise on R
n \ SF ,

(ii) limε→0 σk ∗ ηε = limε→0 F ∗ ∂kηε = σk pointwise on R
n \ Sσk

.

Proof. We show that
⋂n

k=1(R
n \ Sσk

) ⊂ (Rn \ SF ). Once this is shown, (i) and (ii) follow using (B.2) and F ∗ ∂kηε =
∂k(F ∗ ηε) = σk ∗ ηε .

Let x ∈ ⋂n
k=1(R

n \ Sσk
). Then, writing σ := (σ1, . . . , σn), we see that x ∈ R

n \ S|σ |. Let r > 0. For any ε > 0 there
exists r > δ > 0 such that∫ r

0
t−n

∫
B(x,t)

∣∣σ(y)
∣∣dy dt

=
∫ r

δ

t−n

∫
B(x,t)

∣∣σ(y)
∣∣dy dt + c(n)

∫ δ

0

1

Ln(B(x, t))

∫
B(x,t)

∣∣σ(y)
∣∣dy dt

≤ (r − δ)

δn
‖σ‖L1(B(x,r)) + δc(n)

(
λ|σ |(x) + ε

)
< +∞.

Moreover, for sufficiently small � > 0,

1

�n−1

∫
B(x,�)

∣∣σ(y)
∣∣dy = c(n)

�

Ln(B(x,�))

∫
B(x,�)

∣∣σ(y)
∣∣dy ≤ c(n)�

(
λ|σ |(x) + ε

)
that converges to zero as as � ↘ 0. Therefore, by [5, Remark 3.82 and Exercise 3.14], we have x ∈ R

n \ SF . �

Appendix C: Some properties of maximal functions

We record a version of [1, Corollary 4.3]. See also [51,60]. For any given measure ν on (Rn,B(Rd)), any γ ∈ [0,1), and
any R ∈ (0,+∞], let

(C.1) Mγ,Rν(x) := sup
0<r<R

rγ−nν
(
B(x, r)

)
, x ∈R

n,

denote the (truncated) fractional Hardy–Littlewood maximal function of ν of order γ . In the case R = +∞ we use the
standard notation Mγ ν =Mγ,+∞ν.

Proposition C.1. Let ϕ ∈ BVloc(R
n) and s ∈ (0,1]. Then there is a constant c = c(n, s) > 0 such that for all Lebesgue

points x, y ∈R
n of ϕ we have∣∣ϕ(x) − ϕ(y)

∣∣ ≤ c|x − y|s(M1−s,4|x−y|‖Dϕ‖(x) +M1−s,4|x−y|‖Dϕ‖(y)
)
.

In order to prove the claim, we quote [1, Lemma 4.1 and its proof]. For any 0 < s < +∞, any R > 0, and any locally
integrable function f : Rn →R, the fractional sharp maximal function f #

s,R of f is defined by

f #
s,R(x) := sup

0<r<R

r−s−n

∫
B(x,r)

|f − fB(x,r)|dy.

Lemma C.2. Let f : Rn → R be locally integrable and 0 < s < +∞. Then there is a constant c(n, s) > 0 such that for
all Lebesgue points x, y ∈ R

n of f we have∣∣f (x) − f (y)
∣∣ ≤ c(n, s)|x − y|s(f #

s,4|x−y|(x) + f #
s,4|x−y|(y)

)
.
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We prove Proposition C.1.

Proof. For any x ∈ R
n and r > 0 we have the 1-1-Poincaré inequality∫

B(x,r)

|f − fB(x,r)|dy ≤ cr‖Df ‖(B(x, r)
)
,

see [5, Remark 3.45]. Multiplying both sides by r−s−n and taking suprema we obtain

sup
0<r<R

r−s−n

∫
B(x,r)

|f − fB(x,r)|dy ≤ cM1−s,R‖Df ‖(x).

By [1, Lemma 4.1] there is a constant c(n, s) > 0 such that for all Lebesgue points x, y ∈ R
n of f we have∣∣f (x) − f (y)

∣∣ ≤ c(n, s)|x − y|s(f #
s,4|x−y|(x) + f #

s,4|x−y|(y)
)
. �

It is trivial to see that for any Borel measure ν on R
n, any γ ∈ (0,1), and any R ∈ (0,+∞] we have

(C.2) Mγ,Rν(x) ≤ cUγ ν(x), x ∈R
n

with a constant c > 0 depending only on n and γ . Together with Proposition C.1 we obtain the following immediate
consequence.

Corollary C.3. Let ϕ ∈ BVloc(R
n) and s ∈ (0,1). If

sup
x∈Rn

U1−s‖Dϕ‖(x) < +∞,

then ϕ has a Borel version that is Hölder continuous of order s, and any Lebesgue representative of ϕ coincides with this
version on the Lebesgue set of ϕ.

Appendix D: Elements of fractional calculus

We briefly recall the definitions of fractional integrals and derivatives, [84], and the generalized Lebesgue–Stieltjes inte-
gral introduced by Zähle in [98] and used in [81,99].

For fixed T < ∞, the fractional left and right Riemann–Liouville integrals of order θ > 0 of a function f ∈ L1(0, T )

are denoted by

I θ
0+f (t) = 1


(θ)

∫ t

0

f (s)

(t − s)1−θ
ds

and

I θ
T −f (t) = (−1)−θ


(θ)

∫ T

t

f (s)

(t − s)1−θ
ds.

The integral operators I θ
0+, I θ

T − : L1(0, T ) → L1(0, T ) are linear and one-to-one, and the inverse operators, denoted

by I−θ
0+ = (I θ

0+)−1 and I−θ
T − = (I θ

T −)−1, are known as (left and right sided) Riemann–Liouville fractional derivatives.
Furthermore, for any θ ∈ (0,1) and for any f ∈ I θ

0+(L1(0, T )) and g ∈ I θ
T −(L1(0, T )), the (left and right sided) Weyl–

Marchaud derivatives

(D.1) Dθ
0+f (t) = 1


(1 − θ)

(
f (t)

tθ
+ θ

∫ t

0

f (t) − f (s)

(t − s)θ+1
ds

)

and

(D.2) Dθ
T −g(t) = (−1)θ


(1 − θ)

(
g(t)

(T − t)θ
+ θ

∫ T

t

g(t) − g(s)

(s − t)θ+1
ds

)
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are well defined, and coincide with the Riemann–Liouville derivatives by relations Dθ
0+f (t) = I−θ

0+ f (t) and Dθ
T −g(t) =

I−θ
T −g(t) for almost every t ∈ (0, T ).

For functions f and g such that the limits f (0+), g(0+), g(T −) exist in R, set f0+(t) = f (t)−f (0+) and gT −(t) =
g(t) − g(T −). If f0+ ∈ I θ

0+(Lp(0, T )) and gT − ∈ I 1−θ
T − (Lq(0, T )) for some θ ∈ [0,1] and p,q ∈ [1,∞] such that 1/p +

1/q = 1, the fractional version of the Stieltjes integral introduced by Zähle [98] is defined by

(D.3)

∫ T

0
ft dgt := (−1)θ

∫ T

0
Dθ

0+
(
f − f (0+)

)
(t)D1−θ

T −
(
g − g(T −)

)
(t) dt

+ f (0+)
(
g(T −) − g(0+)

)
,

It can be shown that here the right side does not depend on θ . Moreover, if θp < 1, then

(D.4)
∫ T

0
ft dgt = (−1)θ

∫ T

0
Dθ

0+f (t)D1−θ
T −

(
g − g(T −)

)
(t) dt

which coincides with Definition 2.10.
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