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Abstract
Photometry contributes to our understanding how the world is perceived by the human visual
system, where a specific example is an early study of photographic plates. Nowadays
photometry has an important role in measurement of lighting, particularly in the transition from
incandescent lighting to LED lighting. In the context of sustainability and energy efficiency,
updated photometric methods are needed that address the spectral, color, geometrical, and
temporal characteristics of LED light sources. Highlights of the recent advances in these
measurement methods are reviewed. Furthermore, challenges and achievements are described in
the measurement of optical power, particularly related to the definition of the photometric SI
base unit, the candela. These achievements are based on progress in the development of
underpinning optical measurement standards, with a focus on technologies like the electrical
substitution radiometer and the predictable quantum efficient detector. As a conclusion, the
importance of ongoing research and development in photometry is emphasized considering its
crucial role in supporting the advances of LED lighting technology and sustainable development
goals of lighting industry.

Keywords: photometry, light emitting diode, optical power measurements

1. Introduction

Photometry aims to characterize the world around us in the
same way as it is sensed by the human visual system. One
of the early studies by Bull and Mills Cartwright [1] was
measurement of photographic density of negatives, where the
brightness matching of a human observer was essential for a
reliable result. The needs of printing industry have changed,
but the quality of printed and displayed images is still of their
utmost importance.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

The method used in [1] was similar as employed at the
same time for determining the photopic luminous efficiency
function [2–5] and later standardized by the International
Commission on Illumination (CIE) with a symbol V(λ) [6].
Those works are important for the lighting industry contribut-
ing to the sustainable development by reducing energy con-
sumption. Sustainable development goals are addressed by
transition from incandescent lighting to LED lighting [7, 8]
which has brought up new measurement needs and emphas-
ized the significance of reliable photometry for ensuring the
high quality of lighting.

As lighting is nowadays based on LEDs, it is appropri-
ate to revise the photometric methods from use of incan-
descent lamps to those of LED light sources. For example,
CIE has recently published a LED Reference Spectrum
for Photometer Calibration [9], largely based on research
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concerning the advantages of LED based calibration sources
for photometers used with LED lighting [10]. Future work in
photometry may take full advantage of the new reference spec-
trum and related LED based calibration sources when they
start to become widely available.

Many features of lighting change with LEDs, such as spec-
tral, color, geometrical and temporal characteristics. Lighting
industry needs reliable measurements on all these features
which forms a continuing challenge for research laboratories
aiming to develop measurement methods with low uncertain-
ties. Finally, the underpinning scales of optical power meas-
urements are needed to quantify the energy savings gained by
LED lighting as compared with earlier types of lighting. It is
noteworthy that there has been a simultaneous development of
optical power measurements during the past 100 years, which
is reflected in the gradually changing definitions of the photo-
metric base unit of the SI system–the candela [11–13].

2. LEDs for lighting

Technologies for artificial lighting have been under significant
development. The history of incandescent lighting dates back
to the early 19th century when inventors began experimenting
with electric light. Thomas Edison’s groundbreaking inven-
tion revolutionized the way of illuminating homes and cit-
ies, gradually replacing gas and oil lamps. Following the pro-
longed dominance of incandescent lighting throughout much
of the 20th century, the growing demand for environmentally
sustainable and economically viable alternatives prompted the
emergence of new lighting technologies. Compact fluorescent
lamps gained popularity as an energy-efficient replacement
for incandescent bulbs [8]. These lamps utilized a combina-
tion of gas and phosphors to produce light, offering significant
energy savings. Additionally, halogen bulbs were introduced,
providing improved efficiency and longer lifespans compared
to traditional incandescent bulbs. These developments marked
a transition towards more sustainable lighting options, laying
the groundwork for further advancements in lighting techno-
logy and the eventual rise of even more efficient alternatives.

The true breakthrough came with the advent of LED
technology [14]. LED lighting offers exceptional energy effi-
ciency, long lifespan, and versatile design possibilities. Rapid
advancements in LED technology have resulted in increased
brightness, improved color accuracy, and reduced costs, mak-
ing it the preferred choice for residential, commercial, and out-
door lighting applications today. LED lighting has revolution-
ized the lighting industry, leading in many cases to adapted
measurement and characterization methods as compared with
those of traditional incandescent lighting.

2.1. Spectral characteristics

LED light sources offer unique spectral characteristics that
distinguish them from other lighting technologies. One key
aspect is their ability to emit incoherent light in a narrow

range of wavelengths, resulting in a more specific color out-
put. With fluorescent materials, LEDs can be engineered to
emit light across the whole visible spectrum. Moreover, LED
light sources have exceptional color consistency and accuracy,
providing a high color rendering index (see appendix for fur-
ther details) and enabling accurate representation of objects’
true colors [15]. The spectral control makes LED light sources
ideal for various applications, including lighting design, pho-
tography, and horticulture.

In all these applications it is important to quantify the use-
ful amount of light obtained from the LED light sources.
Photometers measure light weighted by the V(λ) function cor-
responding to the sensitivity of human eye (see appendix for
further details). Photometer responsivities have been tradition-
ally calibrated by observing their signal from a known light
source whose spectrum resembles CIE Standard Illuminant A
[16], a Planckian radiator at the temperature of 2856.5 K. This
method works well with measurements of incandescent light-
ing, but for LED lighting the spectral mismatch and related
uncertainties increase, because the spectral shape of white
LEDs is different from Illuminant A.

The photometer calibration for LED lighting applications
would improve, if the known light source used for calibra-
tion would have a spectrum resembling the usual spectra in
LED lighting applications, instead of a spectrum resembling
Illuminant A. For this purpose, the spectra of a large num-
ber of LED products have been studied and used to calculate
representative spectral power distributions (SPDs) for LED
sources of different correlated color temperature categories
[10]. It was found that in general, when compared with
Standard Illuminant A, all potential LED calibration spec-
tra reduced spectral mismatch errors when measuring LED
products. The white phosphor-converted LED spectrum with
correlated color temperature of about 4100 K was found to
be most suitable to complement Illuminant A in luminous
responsivity calibrations of photometers. It was used as the
basis of spectrum L41 (figure 1), defined as the CIE refer-
ence spectrum for photometer calibration [9]. It is noteworthy
that a light source resembling L41 works well as a calibra-
tion source also with photometers intended for use in daylight
applications.
Practical LED light sources [18–20], with spectral irradi-

ance resembling the L41 spectrum, have been developed. Even
if their spectra would somewhat deviate from the reference
spectrum L41, they would reduce the spectral mismatch error
in photometer calibration relative to calibrations using incan-
descent lamps. The LED light sources [18–20] have also other
promising features, such as robustness and stability, which
make them attractive as complementary standard lamps, work-
ing standards, and comparison artefacts. Their performance
will be tested in a forthcoming international comparisonmeas-
urement with global coverage of participants.

The SPD of a light source determines the emissive tristim-
ulus values, such as X, Y, Z and color coordinates defined as
ratios of tristimulus values (see appendix for further details).
Spectroradiometers are commonly employed devices that
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Figure 1. Illuminant A and L41 reference spectrum (Reproduced from [17]. © The Author(s). Published by IOP Publishing Ltd.
CC BY 4.0).

analyze the SPD of light emitted by LEDs. To measure color
accurately, calibration is crucial [21–26]. Calibration ensures
that themeasurement results correspond to true spectral shapes
across different LED light sources. In addition to spectral
analysis, colorimeters are another commonly used tool for
color measurement with LEDs. These devices assess color
by comparing light intensity across different color filters.
Colorimeters offer ease of use and are suitable for various
applications such as display calibration and ambient lighting
control.

Calibration of spectroradiometers is nowadays based on
known incandescent light sources whose spectral irradiance is
traceable to black body radiator following Planck radiation law
[27–30]. The incandescent working standard lamps are very
convenient to transfer the primary calibration from a Planckian
radiator to spectroradiometer user. The challenge here is that
the use of incandescent lamps for lighting reduces, implying
that the availability of incandescent working standard lamps
may also reduce. LED light sources designed as new type
of working standard are a promising candidate for spectrora-
diometer calibration in the visible wavelength range, meeting
the demands of color measurements. However, research in this
area is still at early stages [31, 32] and it is not yet clear that
the uncertainties and convenience of use of the earlier incan-
descent standard lamps are achieved.

Color coordinates are quantities defined in terms of ratios
of spectral integrals. They are further used as a basis for
calculating other important color quantities. Reliable uncer-
tainty estimation is difficult for ratios of spectral integrals
because uncertainty components which are the same at all
wavelengths, like aperture area, cancel out and the contri-
bution of noise-like components approaches zero when the
number of wavelengths used in the measurement increases.
This problem of colour coordinate uncertainty evaluation has
been addressed by analyzing partial correlations at neighbor-
ing wavelengths through a basis function method [33]. The
need for further work in estimating uncertainties of spectral
integrals has been recognized [34–36], which is anticipated
to yield more reliable uncertainties in colorimetry with LED
lighting [37, 38].

2.2. Geometrical characteristics

LED light sources offer directional lighting, with the abil-
ity to emit light in specific directions without the need for
additional reflectors or diffusers. This directional nature
reduces wasted light and enables focused illumination, mak-
ing LEDs highly efficient for task lighting and spotlighting
applications. Furthermore, the small size of LEDs allows for
easy integration into different lighting fixtures and applica-
tions. LEDs can be designed to emit light in specific direc-
tions, resulting in efficient light distribution and reduced light
pollution.

The lighting designer needs information on the angular
distribution of light intensity, but such information is also
essential for measurement purposes. Figure 2 shows examples
of angular distributions of LED light sources. Such data
are needed when the absolute integrating-sphere method is
used for luminous flux measurements of LED lamps [39–42].
Integrating spheres are also widely used in industry where
their calibration is traceable to transfer standard lamps or
more advanced artifacts [43]. In goniometric setups for lumin-
ous flux measurements, the detector or spectroradiometer is
moved at known angles relative to the light source [44, 45].
This motion is necessarily slow and such measurements of
angular distributions take a long time. An alternative, fast
way of obtaining the angular intensity distribution is that the
light source illuminates a Lambertian reflecting screen at a
large distance and the screen is imaged by a camera [46–48].
Knowing the geometric relation between the system compon-
ents, it is possible to calculate the intensity distribution within
the angular range of the screen or construct the full intensity
distribution by rotating a light source with wide angular pat-
tern. The extreme case of this method is to use a 2π camera
(fisheye) on the wall aperture of an integrating sphere [49].

The fisheye method was originally developed for spatial
non-uniformity corrections in luminous flux measurements
with integrating spheres, but it can be also used for fast meas-
urement of light source angular distributions [42, 49]. The
method needs to be calibrated for the angular responsivity of
the sphere with a light source of known angular distribution,

3
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Figure 2. Angular distributions of LED emission intensity [42]. Reproduced from [42]. © The Author(s). Published by IOP Publishing Ltd.
CC BY 4.0.

determined by the goniometric measurement (see figure 3).
However, it may be possible to make the fisheye method inde-
pendent of the goniometric measurements by using a narrow-
beam light source in the middle of the sphere [39, 50] and
raster-scanning the sphere responsivity in all directions, in
a similar way as has been done in accurate optical aperture
area measurements [51]. Furthermore, if a 2π hyperspectral
camera is used in the sphere wall aperture, combined angu-
lar and spectral information may be obtained with the fisheye
method.

2.3. Temporal characteristics

The lifetime of LED lamps is very long as compared with
alternative technologies, making a significant contribution to
sustainability, in addition to energy efficiency. Natural aging
monitoring on a time scale of many years is challenging and
may lead to intolerable delay in obtaining the results. However,
ageing of LED light sources can be accelerated by increasing
the junction temperature of the LEDs [52–56]. In extending
the LED lamp lifetime, care should be taken to ensure that the
driver electronics is not the limiting factor. It has also been
found that LEDs operating at higher junction temperatures are
more often damaged [57].

LED lights have instant on/off capabilities, providing
immediate illumination without any warm-up time. This fea-
ture is particularly beneficial in applications where instant
lighting is required, such as security lighting or emergency
situations. LEDs also excel in dimming capabilities, offering
smooth and flicker-free dimming across a wide range of light
levels. The LED lamps are quite resistant to frequent switch-
ing, ensuring consistent performance and reliability over time.
In fact, the first definite observation of reduced lifetime due

to switching was observed only recently in natural ageing
conditions [58].

Significant energy and cost savings can be obtained with
LED lighting when light is used only when needed in build-
ings, pedestrian areas, and streets [59–61]. Figure 4 shows
a comparison of streetlamp ageing results, when one lamp
group has natural ageing while another cycled group of lamps
has been switched between 20% and 100% power with 30 s
interval [58]. Although after 10 000 h of ageing the cycled
group shows a few percent lower luminous flux, the switching
frequency is about ten times the average switching frequency
which would occur in real traffic conditions with smart light-
ing. Thus, the effect of smart control in energy savings exceeds
the increase of maintenance costs due to the decreased lifetime
of switched streetlamps [58].

Certain LED lighting installations may exhibit visually
harmful temporal effects [62]. In some cases, LEDs operating
with poor driver circuitry can cause perceptible flicker, leading
to eye strain, headaches, and discomfort. Rapid on/off switch-
ing or irregular pulse-width modulation can result in notice-
able strobing, which can be distracting and disrupt visual per-
ception. Addressing these issues through proper design, high-
quality components, and adequate measurements is crucial to
minimize visually harmful temporal effects and ensure a com-
fortable and visually pleasing lighting experience.

Figure 5 shows examples of light waveforms with differ-
ent types of LED driver electronics. The new EU Ecodesign
regulation set requirements for lighting equipment on the
European market starting September 2021. This regulation
defined restrictions for two temporal light artefact (TLA) met-
rics, short-term flicker severity index (Pst

LM) and stroboscopic
visibility measure (MVS): Pst

LM < 1 and MVS < 0.4, to limit
TLA effects. For both metrics, the value 1 means that an

4
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Figure 3. (a) Photograph captured by the fisheye camera inside an integrating sphere with spotlight LED source. (b) Processed photograph
for determining the angular intensity distribution of the LED light source. For image processing, a reference photograph is needed where the
sphere is illuminated by a light source with an angular intensity distribution as uniform as possible. The seam between the sphere halves, the
lamp holder socket at the bottom, and the baffle in the center are visible in (a), but removed in the processed image (b) [49]. (a) and (b)
Reproduced from [49]. © The Author(s). Published by IOP Publishing Ltd. CC BY 4.0.

average observer has 50% chance to perceive these TLAs.
When these values are less than one, they are not visible on
the average. Measurement methods for the above parameters
with LED lighting have been improved recently [63–66].

By comparing the TLA results obtained from the older
(before 2017) and newer (after 2021) LED lamps, it can be
concluded that the luminaire manufacturers have taken the
EU Ecodesign regulation into account. This has been done by
favoring better LED driver types, which in general results in
lower Pst

LM and MVS values [67].

3. Underpinning optical measurement standards

Energy efficiency of LED light sources is one of their key
advantages. Quantitative determination of this characteristics
in units of lm W−1 requires measurement of the produced

luminous flux and electrical input power of the LED lamp.
Although measurement of electrical power sounds simple, the
variable AC power line impedancemay be a considerable chal-
lenge in the case of practical LED lighting [68, 69]. However,
here we focus on the luminous flux measurements which are
closely related to improvements in the definition of the SI base
unit candela.

3.1. Definition of the candela

The definition of the candela, the SI unit for luminous
intensity, has undergone significant changes over the years.
Historically, the candela was defined as the luminous intens-
ity of a specific type of candle flame. In 1930s, develop-
ments started in order to define the candela in terms of black-
body radiation at a specific temperature. This line of develop-
ment resulted in 1967 in the final form of the ‘source-based’

5
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Figure 4. Effect of 30 s cycling between 20% and 100% power on LED streetlamp ageing [58]. Reproduced from [58]. CC BY 4.0.

Figure 5. Normalized light waveforms of four LED lamps, each with different driver type A, B, C or D [63]. Reproduced from [63].
CC BY 4.0.

candela where the candela was the luminous intensity, in the
perpendicular direction, of a surface of 1 / 600 000 m2 of a
black body at the temperature of freezing platinum under a
pressure of 101 325 N m−2 [11]. But the difficulties still con-
tinued in carrying out easy measurements with this kind of
material artifact.

Meanwhile, improved absolute detectors were under
development [70, 71] which suggested another approach
in the definition of the candela. In 1979, the candela was
defined as the luminous intensity in a given direction of a
source that emits monochromatic radiation with a frequency
of 540 THz and has a radiant intensity of 1/683 watt per
steradian [12]. This definition removed the dependence on spe-
cific light sources and allowed underpinning optical power
measurements for the realization of the definition of the
candela [72–74]. The frequency of 540 THz corresponds to
a wavelength of 555 nm of optical radiation, which is at the
peak of the photopic luminous efficiency function V(λ). With

light sources containing wavelengths other than 555 nm, the
luminous intensity is obtained by weighting with the V(λ)
function.

In 2019, the SI system underwent a redefinition that fur-
ther refined the definition of the candela. It is now defined
in terms of a fixed numerical value of the luminous efficacy
of monochromatic radiation of frequency 540 THz, which is
683 lm W−1, exactly [13]. These changes in the definition of
the candela reflect the progress in metrology and the quest for
more precise and universal standards in the field of light meas-
urement. Accurate measurement of optical power or detector
spectral responsivity continues to be the starting point of trace-
ability for measurement of luminous intensity and luminous
flux. The mise-en-pratique for the definition of the candela
[13] specifies two detector-based methods as primary stand-
ards of optical power: cryogenically cooled electrical substi-
tution radiometer [72–74] and predictable quantum efficient
detector (PQED) [75, 76].

6
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Figure 6. Block diagram of the first cryogenic radiometer for laser power measurement from 1985 [72]. Reproduced from [72]. © IOP
Publishing Ltd. All rights reserved.

3.2. Measurement of optical power

The electrical substitution radiometer (ESR) in a cryostat has
become the most important optical power standard in metro-
logy laboratories [77], often used with monochromatic laser
radiation. The radiation absorber is positioned within the cold
cavity of the cryostat at a temperature slightly above the boil-
ing point of helium (figure 6). The cold cavity is alternately
heated by electrical wiring and incoming radiation providing
traceability of optical power to measured heating current and
voltage. Cooling below 10 K significantly enhances the heat
diffusivity of copper, allowing large-size absorption cavity
and effectively reducing the non-equivalency between optical
and electrical heating [72]. Furthermore, superconducting cur-
rent leads to the heating wires of the cavity reduce parasitic
heating [73]. The ESRs operated at cryogenic temperatures
[72–74] thus have significant advantages as compared with
room-temperature ESRs [70]. The former devices, capable of
measuring absolute optical powerwith a relative uncertainty of
0.01% or below, are commonly referred to as absolute cryo-
genic radiometers (ACRs).

An alternative to ACRs is provided by absolute detectors
based on induced-junction silicon photodiodes [78–82], where
each incoming photon is converted to an exactly one electron-
hole pair. The measured photocurrent accurately quantifies the
incoming optical power, provided that the vacuum wavelength
of the laser radiation is known and the effects of reflectance,
absorption, charge-carrier recombination losses and quantum
yield can be eliminated or estimated with a relative uncertainty
of 0.01% or below. In the PQED [75, 76, 83], all these condi-
tions can be met at the visible wavelength range and relative
measurement uncertainties at least as low as with ACRs can
be achieved.

Reflectance losses can be reduced with the wedge trap
structure of the PQED photodiodes as shown in figure 7 [84].
Furthermore, the correction due to the remaining reflection
out of the PQED is easy to measure or calculate within a rel-
ative uncertainty of 0.001% in responsivity when the thick-
nesses and refractive indices of the SiO2 coating layers are
known [85]. The absorption of SiO2 at visible wavelengths has
been estimated to be negligible [81]. Recently, a method for
very accurate determination of the correction due to charge-
carrier recombination losses was introduced [86]. The method
is based on measurement and analysis of the photocurrent as a
function of reverse bias voltage of the PQEDphotodiodes [87].
Fitting of a 3D simulation model of charge-carrier recombina-
tion losses to the photocurrent-voltage data allows to determ-
ine the critical parameters of bulk and surface recombination
losses. The developed fittingmethodmakes the PQED an inde-
pendent primary standard of spectral responsivity at the relat-
ive uncertainty level of 0.003%. Finally, models have also been
developed to account for the effects of quantum yield at short
visible wavelengths with sufficient accuracy for the needs of
photometry [88, 89].

The PQED photodiodes with SiO2 coating were origin-
ally manufactured from low-doping p type silicon [75]. It is
also possible to make PQED photodiodes from low-doped
n type silicon, but then Al2O3 has been used as the coat-
ing material to produce the induced junction [90, 91]. The
charge-carrier recombination losses of n type photodiodes
appear to be somewhat larger than those of p type photo-
diodes. A new invention of nitride coating on top of a thin
SiO2 layer has been developed for p type PQED photodiodes
[92]. The performance of the nitride coated photodiodes
is at least as good as that of the original p type PQED
photodiodes [75]. This is an important achievement because

7
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Figure 7. PQED phoatodiodes assembled into a light trap configuration [75]. Reproduced from [75]. © IOP Publishing Ltd All. rights
reserved.

it demonstrates that PQED photodiodes with very good char-
acteristics can be produced by professional photodiode man-
ufacturers and thus PQED photodiodes can be made widely
available.

Operation of a PQED at room temperature is as easy
as operation of Hamamatsu-photodiode-based trap detectors,
widely employed as spectral responsivity working standards
in photometry. Gas flow through the detector aperture is used
to protect the PQED photodiodes from dust in ordinary labor-
atory room and such protection should actually be used with
all accurately calibrated detectors. In irradiance mode meas-
urements, where incident light enters close to the aperture
edge, synthetic dry air should be used as flowing gas to avoid
formation of a gas lens in front of the aperture [93]. Besides
simplicity of use and maintenance, another significant advant-
age of PQED photodiodes is their stable spectral responsiv-
ity over long time periods. Comparison between PQEDs and
ACRs did not reveal any change of spectral responsivity within
approximately 10 years, including measurements at short vis-
ible wavelengths [94].

For direct realization of photometric units, the PQED offers
an interesting possibility of determining luminous intensity or
illuminance of a white LED light source without the V(λ) filter
[95], which is often the most problematic component in ordin-
ary photometers. For a LED lamp resembling L41 [9], the
main uncertainty component would then come from the rel-
ative spectrum of the lamp influencing the spectral mismatch
correction factor, where the relative spectral responsivity of
the PQED would be known within a relative uncertainty of
0.01% or better. Such a PQED photometer without a phys-
ical filter would allow all types of photometric weighting to be
taken into account numerically, for example scotopic, mesopic
[96–98] or any new photometric weighting function based on
cone fundamentals [99].

4. Conclusions and outlook

Photometry continues to be an important field of research.
LED lighting offers significant energy-saving possibilities

compared to traditional lighting technologies. LEDs con-
sume much less electricity to produce the same level of
brightness as incandescent bulbs or fluorescent lamps. This
translates to substantial energy savings, reducing electricity
bills and environmental impact. Furthermore, LEDs have
long lifespans, lasting significantly longer than conventional
bulbs. Additionally, LED lighting can be easily integrated
with smart lighting controls, allowing for customized schedul-
ing, occupancy sensing, and dimming, maximizing energy
efficiency by adapting to specific needs and usage patterns.
All these developments of LED lighting should be sup-
ported by appropriate measurement methods of photometry,
described above for the different characteristics of LED light
sources.

The changes in the definition of the photometric base
unit-the candela-reflect the developments in photometry and
metrology demonstrating the importance of the underpin-
ning optical power measurements. During the past decades it
was experienced that parallel development of lighting tech-
nology and photometry is a continuous source of interesting
research topics and it is expected to be so for the foreseeable
future.
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Color rendering index

Color rendering index (CRI) serves as a metric to assess a
light source’s capacity to depict the true colors of objects when
compared to a source which is spectrally identical to daylight.
Light sources with a high CRI are desirable in color-critical
applications. Numerically, a CRI value can reach a max-
imum of 100, aligning with a source whose spectrum closely
resembles that of a black body, like incandescent lamps. In
contrast, low-pressure sodium lighting yields a negative CRI,
while fluorescent lights typically range from approximately 50
for basic types to about 98 for the best multi-phosphor types.
Common white-color LEDs often have a CRI of 80 or higher,
while some LEDs can achieve a CRI of up to 98.

Photopic luminous efficiency function V(λ)

Photopic luminous efficiency function V(λ) represents the
average spectral sensitivity of human visual system in brightly
lit conditions. Derived from subjective assessments of which
among a pair of variously colored lights appears brighter, it
serves to illustrate the relative responsiveness to light of dif-
fering wavelengths. It is not an absolute reference to any indi-
vidual. The values of V(λ) function are tabulated by CIE and
the function attains a maximum value of 1 at the wavelength
of 555 nm and smoothly decreases to zero when decreasing
(increasing) the wavelength to 360 nm (830 nm).

Tristimulus values X, Y, Z and color coordinates x, y

Much of quantitative colorimetry is based on tristimulus val-
ues X, Y, Z and color coordinates x = X/ (X + Y + Z) and
y = Y/ (X + Y + Z). Emissive tristimulus values are spectral
integrals, such as

X=

ˆ
Le (λ) x̄(λ) dλ,

and corresponding equations for Y and Z. In the above
equation, Le(λ) is the spectral radiance and x̄(λ) as well as
related ȳ(λ) and z̄(λ) are defined CIE standard observers [6].
Function ȳ(λ) is the same as V(λ). Reflective tristimulus val-
ues are defined with the aid of sample reflectance and normal-
ization by SPD of the illuminant.
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