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Abstract: Vibration signals carry important information about the health state of a ball bearing and
have proven their efficiency in training machine learning models for fault diagnosis. However, the
sampling rate and frequency resolution of these acquired signals play a key role in the detection
analysis. Industrial organizations often seek cost-effective and qualitative measurements, while
reducing sensor resolution to optimize their resource allocation. This paper compares the performance
of supervised learning classifiers for the fault detection of bearing faults in induction machines using
vibration signals sampled at various frequencies. Three classes of algorithms are tested: linear models,
tree-based models, and neural networks. These algorithms are trained and evaluated on vibration
data collected experimentally and then downsampled to various intermediate levels of sampling,
from 48 kHz to 1 kHz, using a fractional downsampling method. The study highlights the trade-off
between fault detection accuracy and sampling frequency. It shows that, depending on the machine
learning algorithm used, better training accuracies are not systematically achieved when training
with vibration signals sampled at a relatively high frequency.

Keywords: condition monitoring; ball bearing; sampling frequency; supervised machine learning;
vibrations

1. Introduction

Ball bearings are key components in rotatory machinery. They are widely used for
their supportive role for rotating machine parts and transfer loads from one component to
another. They allow lowering the frictional resistance between the machine components,
leading to a globally higher mechanical efficiency [1]. As a consequence, ball bearings
are subject to high preloading and stress during their lifetime [1,2]. This can lead to their
failure and, hence, severe consequences for the machinery [1]. For electrical motors, it is es-
timated that between 40% [3] and 50% [4] of fault conditions are caused by bearing defects,
depending on the application. For induction machines (IMs), bearing faults constitute a
major issue [2,5], e.g., related to the lubrication of a bearing or fatigue in its mechanics [3].
In particular, for industry and companies, detecting a fault in a key component during con-
tinuous industrial operations and preventing it at an early stage are crucial steps to ensure
the smooth functioning of industrial processes [6]. Nonetheless, bearing fault detection in
an operating machine is challenging, particularly in the quest for cost efficiency. Therefore,
condition monitoring (CM) has become essential to optimally detect and diagnose fault con-
ditions in machinery such as IMs. By definition, CM relies on measurements and machinery
parameters to make a diagnosis or prognosis about the health state of the machine [7].
More particularly, data-driven CM has become noteworthy for predicting failures before
they occur, thanks to the development of artificial intelligence (AI) and classical statistical
models [8,9]. Indeed, as explained by M. A. Khan et al. [9], traditional fault-detection
methods like rule-based systems [10] and time-frequency analysis techniques [11] can face
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bottlenecks when dealing with larger or noisier datasets that require large computational
efforts to process. In this sense, Zhang et al. [12] emphasized the great potential of AI for
detangling complex patterns in diverse measurements, such as for vibration measurements.

The approach behind data-driven CM is illustrated in Figure 1 [8]. In the pre-
operational phase, the purpose is to configure a machine learning (ML) algorithm able to
identify patterns within the data about the health state of the machinery and recognize
them in the operational phase. The algorithm thus relies on data to effectively learn how to
diagnose and prognosticate a fault in practice [7]. These data which are related to the health
state of the machinery are collected experimentally from a test-bench, e.g., as in [12,13],
and/or via physical/mathematical simulations, e.g., as in [14,15]. As such, a dataset is
formed with these data which then are preprocessed before being fed into a learning algo-
rithm. During the preprocessing stage, the data are analyzed and organized to enhance their
quality and make them suitable for effective ML model training. As such, an optimized
learning process can start, where the ML model is trained on a share of the dataset, and then
performances are evaluated on the rest of the dataset. The learning process is dynamic, as
the algorithm’s training is continuously evaluated in tandem with the model’s performance
during the evaluation phase. Once high evaluation performances are achieved, the model
is used to handle operational tasks, where the ML algorithm analyzes and processes field
operation data for CM purposes.

Figure 1. Data-driven condition monitoring flowchart.

Recently, in data-driven CM using ML, many works have been developed for fault
diagnosis and prognosis of ball bearings. Saberi et al. [16], Pandya et al. [17], and Rojas
and Nandi [18] demonstrated the effectiveness of certain fault diagnosis schemes in the
field of supervised ML, leveraging vibration signals for diagnostic purposes. Similarly,
Qian et al. [19] and Kahr et al. [20] developed ML classifiers for bearing fault detection,
using simulated vibration data to train these classifiers. More particularly, in ML, deep
learning (DL) has also shown great potential for prognostics and health management in
interpreting complex signals, such as vibrations [13,21]. In this sense, Kankar et al. [22]
proved the effectiveness of using vibration signals to train an artificial neural network
(ANN). Patil et al. [23] even assessed the quality of the wear of different ball bearing
materials through ANN. Hotait et al. [24] proposed an ANN that aims at obtaining the
degradation condition of rolling bearings for predictive maintenance. Brusa et al. [25]
applied transfer learning to fined-tune pretrained models on audio-signals with vibration
data relative to bearing faults, to detect faulty conditions. Considering all this, the approach
of data-driven CM in the realm of AI is proven to allow for broader applications, thanks to
the effectiveness of ML/DL algorithms in learning patterns and detecting anomalies in data
over time. In industry, ML is increasingly perceived as a comprehensive solution for CM,
reducing the need for manual feature extraction [21]; and as discussed by Park et al. [26],
numerous modernized industrial operations aim to collect qualitative data related to
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training these AI algorithms. However, the cost of these measurements is related to their
quality and their acquisition [27].

In the context of ball bearing fault diagnosis, vibrations are the most common signals
used to train ML algorithms to detect ball bearing faults in IMs [9,28]. Experimentally,
these vibrations are collected at a certain sampling frequency (SF) using accelerometers,
often placed on the housing of the ball bearing in the IM [29]. A higher SF allows for
finer precision in acquiring vibration data, but the price of these sensors also increases
along with the SF [27]. As explained by Hadi et al. [6], the growing complexity of the data,
e.g., implied by a higher SF while acquiring vibration data, makes the preprocessing of these
data challenging (Figure 1). In addition, as highlighted by Rezaeianjouybari and Shang [13],
the quality of a model is intricately tied to the quality of the training data. Therefore, as the
SF of an accelerometer is a key parameter to the accuracy at which vibrations are measured,
a trade-off should be aimed at between the computational efforts needed to process the
data and the quality of the data.

In the literature, public datasets related to ball bearing vibrations under different
health states have been acquired at SFs varying from 12 kHz to 64 kHz [12,30–32]. More
precisely, the Case Western Reserve University (CWRU) bearing dataset [33] is widely used
for detecting and diagnosing bearing faults in IMs. In this dataset, vibrations were collected
using accelerometers attached to the housing of ball bearings at SFs of 12 kHz and 48 kHz
in steady-state operations. This is acknowledged as a standard reference for validating
models [12,14,34]. In practice, its usage also allows studying the diagnosis of a wide
range of applications, e.g., as shown by Liu et al. [35], who introduced a fault diagnosis
method for wind turbine fan bearings using the CWRU dataset. Many reviews examining
AI-related techniques for fault diagnosis employing this dataset have been conducted,
e.g., in [34,36,37], and have proven its efficiency in the fields of ML and DL [12,13,38–41].

While numerous studies have showcased successful fault detection techniques employ-
ing ML on the CWRU dataset, only a few papers have addressed the issue of the dataset’s
quality in contrast with the performance of ML algorithms. Most papers concentrated on
the quality of the fault diagnosis scheme itself, as exemplified in [42] for the time-frequency
ridge approach or in [11] for improving a time-frequency methodology, rather than on
the quality of the data themselves. On this latter topic, in the literature, AlShalalfeh and
Shalalfeh [43] studied the diagnosis of bearing faults under data quality issues for the
CWRU datasets and showed that lower SF measurements hinder good diagnosis of bearing
faults through AI. Nevertheless, no extensive study has addressed the topic of the SFs at
which the vibration data are acquired and their impact on the performances of AI-related
fault diagnosis schemes for data-driven CM. This topic deserves more attention when one
thinks of the computational and economical costs involved in the processing and storing of
large and precise data [6,13]. Therefore, instead of focusing on the fault diagnosis scheme
itself, the present research work proposes to understand if acquiring vibrations at lower
SFs can be efficient enough to train robust ML algorithms for fault detection.

In this paper, several AI algorithms for fault classification were trained and evaluated
on vibration signals sampled at different rates to detect bearing faults using the CWRU
dataset. The performance of these algorithms was evaluated with respect to the signal
sampling rates (SRs), i.e., their SFs. This way of proceeding relates to the quality require-
ment relative to the data one should aim at in order to build a robust AI classifier for fault
diagnosis. As such, this paper starts by presenting a multi-rate sampling methodology,
which aims to acquire signals at various SRs, utilizing an experimental signal collected at a
high SF from the CWRU bearing dataset. Then, AI-based methodologies employed for the
classification of these signals are introduced mathematically. The following sections present
an analysis of the classifier training and evaluation performance for each SR according to
three paradigms. To conclude, a discussion of the findings is presented.
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2. Multi-Rate Sampling Methodology

This section introduces the multi-rate sampling methodology applied to the vibration
data, which inherently consists of time series. It starts by explaining the concept of fractional
resampling and then elaborates on how resampling a signal influences a ML algorithm.
The multi-rate sampling method presented here is primarily based on the work of de Jesus
Romero-Troncoso [44].

2.1. Fractional Resampling

Fractional resampling is a method used to adapt the SR of digital signals to a desired
target SR [44]. In this paper, fractional resampling was performed to process digital signals
collected from accelerometers placed on an IM initially acquired at a specific source SR
and subsequently resampled using non-integer scaling factors. Fractional resampling was
performed according to [44], as follows:

• STEP 1—Upsampling through Interpolation: The first step in fractional resampling
consists in interpolating the signal. An interpolation of rate q consists in a multi-rate
signal process, which generates interpolated samples between two original signals [44].
Therefore, due to the interpolation of q times, the SF fs becomes a resampled SF fr,
according to

fr = q fs (1)

This step is important in fractional sampling, because it effectively increases the source
SR, without acquiring additional physical samples. In other words, by generating
interpolated samples between the existing ones, one can obtain a higher temporal
resolution of the signal, which is particularly valuable when dealing with signals that
change rapidly over time, similarly to vibrations. As a result of (1), as the SF increases,
the data sequence is similarly increased by a factor q of the interpolation rate.

• STEP 2—Low-Pass Filter (LPF): By interpolating a signal, spectral distortion can be
introduced due to the underlying mathematical principles and limitations of the
interpolation process, e.g., due to signal aliasing or simply the time variation in the
signal. This distortion can result in the introduction of quantization noise into the
interpolated signal [44]. As a consequence, introducing a LPF is important to deal
with such interpolation effects and reduce spectral distortion. The LPF has a cut off
frequency, fcuto f f , respecting

fcuto f f =
SF
2

(2)

• STEP 3—Downsampling by Decimation: Decimating a digital signal consists of the
opposite of interpolating it. Through the decimation process, the number of samples
in the original signal is reduced by a factor p, and the SF fs is modified due to the
decimation [44], as follows:

fr =
fs

p
. (3)

By definition, the decimation step acts as a LPF because it reduces the number of sam-
ples and deletes the high-frequency bands of the original signal. However, similarly
to the length modification of the signal after interpolation, the length of the original
sequence after decimation is decreased by a factor p.

Interpolation and decimating procedures can be combined into a multi-rate fractional
resampling technique, which is obtained as the result of these three steps (Figure 2). At the
end of the procedure, the resulting SR is fr expressed as [44]:

fr = fs
q
p

. (4)



Machines 2024, 12, 17 5 of 24

In addition to this, the frequency resolution becomes

∆ fr =
fs

N
q
p

. (5)

where N is the length of the digital signals.

Upsampling by
Interpolationx(n) LPF

x'(r) Downsapling by
Decimation x(s)

x'(n)

fr = fs x q fr = fs/p

x(n) = digital signal acquired at sampling
frequency fs
x'(n) = interpolated signal 
x'(r) = interpolated signal after LPF
x(s) = decimated sequence of x'(r) and,
fractional resampled sequence of x(n)

Figure 2. Fractional resampling steps of a digital signal x(n); x′(r) is the interpolated sequence after
the application of a LPF; x′(s) is the decimated sequence of x(r) [44].

2.2. Multi-Fractional Resampling in Machine Learning

ML classifiers require a large amount of qualitative data points in order to be well
trained and perform during on-site applications [12,13]. Vibration signals are long time-
series of data whose length N is determined by their SR as follows:

N = SR × Ttot (6)

where Ttot is the signal duration [s]. Therefore, when decimating a signal, as its SR is
reduced according to (3) and needs to adhere to the Nyquist theorem to avoid aliasing,
the number of samples in the decimated signal is effectively reduced. More precisely,
high-frequency components are cut after fractional resampling if the new SR is lower than
the initial SR [44]. This reduces the signal length and the number of samples available to
train the ML algorithms. However, higher frequency components are often associated with
noise and removing them might be beneficial to the training of the ML algorithm. Therefore,
while canceling these noisy high frequency components, ML algorithms might suffer from
a lack of data to properly learn the intrinsic patterns in a dataset [13] and a trade-off should
be sought between noise cancellation and the number of samples available.

Additionally, the type of ML classifier used is a crucial choice for any dataset, and con-
sequently, a balance must be maintained between resampling and algorithm performance.
Therefore, in research work like the present one, where vibration data are resampled, it is
important to provide a comprehensive examination of a wide range of ML algorithms and
how they may suffer or benefit from data resampling.

3. Machine Learning Classifiers

In this section, three different classes of ML classifier are introduced along with their
mathematical formulations: linear classifiers, tree-based methods, and neural networks.
For each of the techniques presented, it is also explained how these classifiers apply to
vibration signals.

3.1. Linear Classifier

A linear classifier is a type of supervised ML algorithm that divides a dataset into mul-
tiple classes by finding a linear decision boundary between them. This decision boundary
is represented as a hyperplane in the feature space, which separates data points belonging
to the different classes. Linear maps in the context of ML linear classifiers are essentially
the weight vectors and bias terms used to make predictions based on input features. In the
case of linear classifiers, the hyperplane is defined by the following linear map [45]:

hw : Rn → R, x 7→ wTx. (7)
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The function hw linearly maps the n-dimensional feature vector x ∈ Rn×1 through the
weight vector w ∈ Rn×1 to the predicted label [45]. In this, n corresponds to the number
of features in the input vector x. More generally, in the hypothesis space H(n) ∈ Rn, each
particular linear hypothesis hw belongs to this space through

H(n) := {hw : Rn → R, hw(x) := wTx}. (8)

H(n) is the set of all possible linear maps from R to Rn. Each linear hypothesis represents a
specific machine learning linear classification method. For a binary problem, the classifica-
tion is performed on either side of the linear predictor map hw for a certain parameter vector
w. For multi-class classification, hyperplanes are added and therefore create subsections in
the classification. In the present study, two linear methods were chosen: support vector
machines (SVM) and multinominal logistic regression (MNLR). They have proven their
good performance in the diagnosis of bearing faults [16–18,46].

3.1.1. SVM

SVM is a linear classifier that draws a hyperplane in an n-dimensional feature space
so that the margin between the classification groups is maximized. By definition, the op-
timal hyperplane between classes is the one that maximizes the distance between the
adjacent points of these classes [16]. For each observation i, the boundary line is defined as
follows [16]:

yi(w · xi + b) ≥ 1, for i ∈ 1 : k (9)

↔ yi

(
n

∑
j=1

wj · xi,j + b

)
≥ 1, for i ∈ 1 : k (10)

with xi ∈ Rn×1 being the feature vector of the i-th sample whose element xi,j ∈ R represents
the j-th feature of the i-th sample, w ∈ Rn×1 the weight vector that defines the orientation
of the hyperplane whose element wj ∈ R represents the weight of the j-th feature, b the bias
term ∈ R which shifts the hyperplane, yi ∈ R the class labels of the samples the boundary
as the SVM classifier, and k the number of samples. In order to define the optimal boundary,
the distance between the xi and the boundary needs to be calculated. This is expressed
as [16]:

r =
yi(w · xi + b)

|w| (11)

Using the condition in (9), the hyperplane is determined through optimizing (11) and, thus,
solving the following:

minimize
w,b

1
2
|w|2. (12)

When the dataset is not linear and noisy, e.g., as for vibrations, relaxed constraints might be
added to the optimization (12), to allow the classification to adjust to this non-linearity [16].
These relaxed constraints are brought by introducing slack variables ξi as

minimize
w,b

1
2
|w|2 + C

N

∑
i=1

ξi. (13)

ξi ∈ R≥0 measures the classification error for each point i; C ∈ R+ is the slack penalty,
which aims at maximizing the margin and minimizing the training error. These new
constraints are subject to a new boundary lines equation, defined as

yi(w · xi + b) ≥ 1 − ξi. (14)

These equations are solved with Lagrangian multipliers and dual decomposition [16]. As far
as vibration signals are concerned, the SVM using (14) is more suitable for a classification
based on vibration signals due to their significant temporal variability.
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3.1.2. MNLR

MNLR is a linear classifier that extends the concept of logistic regression for multi-class
classification problems. By definition, logistic regression is a binary classification method
for feature vectors x ∈ Rn×1, which have a binary labeling. They are linear models in
the sense that the relationship between the i-th component xi of feature vector x, and the
logarithmic probability of an event occurring is modeled as linear [45]:

log
(

P(y = 1)
1 − P(y = 1)

)
= β0 + β1x1 + β2x2 + . . . + βkxk, for i ∈ 1 : k (15)

where βk ∈ R are the coefficients of the model, y ∈ R is the corresponding label, and
P(.) ∈ R is the probability of an event occurring. After the prediction of the label of each
feature vector x, a loss function is computed to quantify the error between the predicted
value and the actual label. As far as logistic regressions are concerned, the cross-entropy
loss has to be minimized to minimize the discrepancy between the predicted probabilities
and the actual binary outcomes:

Cross-Entropy Loss = −(y log(p) + (1 − y) log(1 − p)) (16)

where p ∈ R is the predicted probability that the feature vectors belong to class 1.
Based on this, MNLR enlarges the concept of logistic regression to multiple class

classification by reusing the concept of cross-entropy loss but changing the predicted prob-
ability distribution. The workflow of the MNLR is constituted by three layers, including a
linear model, but also by introducing a softmax layer for the multidimensionality of the
data labels, before calculating the cross-entropy [46]. The softmax function transforms
a vector of k real numbers into a probability distribution over k possible outcomes and,
by consequence, introduces multi-dimensionality. This makes the method suitable for the
classification of non-linear datasets, such as for vibration data. The softmax equation is

so f tmax(x)i =
exi

∑k
j=1 exj

, for i ∈ 1 : k. (17)

The softmax function takes an input vector x ∈ Rk where xi represents the i-th element of x,
exponentiates each element xi, and divides it by the sum of the exponentiated values of
all elements in the input vector. The predicted label ŷ ∈ R of the feature vector x is thus
obtained as follows:

ŷ = so f tmax(x · w) + b (18)

3.2. Tree-Based Methods

A tree-based ML method for classification is a type of algorithm similar to a hierar-
chical structure composed of nodes and branches, where each node represents a decision
based on a feature, and each leaf node represents a class label of these features. More
practically, a decision tree is a step-by-step multi-classification, which computes the func-
tion h : X −→ Y and maps the features x ∈ X to their predicted labels h(x) ∈ Y [45].
The objective function for a decision tree with maximum depth k is given by

Objective(T) =
N

∑
i=1

L(yi, ŷi) + α · f (k). (19)

In this equation, Objective(T) is the objective function to be minimized for a certain decision
tree model T, N is the number of training samples, L(yi, ŷi) is the loss function for the ith
sample, α ∈ R is a regularization parameter, f (k) ∈ R is a function of the tree complexity
based on the maximum depth, yi ∈ R is the true label for the ith sample, and ŷi ∈ R is the
predicted label for the ith sample. The goal is to find a decision tree that minimizes this
objective function, balancing the fit to the data with the complexity of the tree.
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As far as the classification of vibration signals is concerned, tree methods are interesting
for supervised ML because the number of health states is predetermined by the data labels,
which refer to the tree depth straightforwardly. However, vibrations acquired at a low SF
can have a limited amount of data points after post-processing, in addition to a non-linear
and noisy nature. In these cases, gradient-tree-boosting methods are used as they enhance
the capabilities of tree models, making them particularly useful when dealing with limited
data points obtained from vibrations acquired at a low SF [28,47]. In the context of boosted
trees, the objective function aims to build a model of sequential decision trees. Each new
tree is fitted to the negative gradient of the loss function with respect to the current model’s
predictions. This process minimizes the following objective function:

Objective(F) =
N

∑
i=1

L(yi, F(xi)) +
M

∑
m=1

Ω(Tm). (20)

Objective(F) is the objective function of the predictive function F to be minimized, N is the
number of training samples, L(yi, F(xi)) is the loss function for the ith sample with respect
to the current model’s predictions, M is the number of trees in the ensemble, Tm and Ω(Tm)
are respectively the mth decision tree in the ensemble and its regularization term. This
regularization term controls the complexity of the individual trees, to prevent overfitting.
Common gradient boosting algorithms used for fault diagnosis of ball bearings based on
vibration signals include XGBoost [48] and LightGBM [49], each with their own variations
on the objective function and optimization techniques.

In particular, XGBoost, which stands for extreme gradient boosting, is an enhanced
tree-based ML method that extends traditional gradient boosting techniques. It sequentially
builds decision trees and minimizes a combined objective function that balances model
accuracy and complexity. The hierarchical structure of the traditional decision trees in a
gradient boosting approach is mathematically expressed through the minimization of an
objective function, as seen in (19), where the objective is to find a series of decision trees
that collectively minimize the combined loss, to improve predictive accuracy. As such,
XGBoost can process complex and non-linear signals such as vibration signals, and it has
widely proven its efficiency in data-driven CM using the CWRU dataset, e.g., in [48,50].
Therefore, in the present paper, XGBoost was chosen as the illustrative tree-boosting ML
method to be compared with the other ML algorithms studied in this research work.

3.3. Neural Networks

Neural networks consist of interconnected artificial neurons that mimic the structure
of the human brain, allowing them to process vast amounts of data and perform complex
tasks efficiently [45]. For vibration signals, ANNs are able to discern patterns within each
time series, even in the presence of significant noise in the measurements, as they learn the
inherent patterns of the data. ANNs are composed of several layers of neurons, and the
operation of a neuron is mathematically the following:

• Weighted Sum: Each input xj ∈ R is assigned a weight wi,j ∈ R. Hence, the i-th neuron
computes zi ∈ R as the addition of a weighted sum and a bias term bi ∈ R, as

zi = ∑
j

wi,jxj + bi. (21)

• Activation Function: After computing zi ∈ R, the neuron applies an activation function
σ(zi) that introduces non-linearity into the neuron’s response according to

σ(zi) = σ

(
∑

j
wi,jxj + bi

)
(22)
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The choice of the activation function is particularly important in the context of a study
about vibrations, because it introduces non-linearities and enables the effective capture
of dynamic and time-varying behaviors.

A condensed notation to express the operation of an entire layer of m neurons is
the following:

σ(z) = σ
(

WTx + b
)

(23)

where W ∈ Rn×m is the weight matrix, x is the n-dimensional feature vector, b is the
m-dimensional bias vector.

In the present work, two types of ANN are used, i.e., a multilayer perceptron (MLP)
and recurrent neural networks (RNNs). They are used as they provide a lot of flexibility and
have proven their efficiency within the framework of bearing fault detection, as in [51,52].
The main difference between the two is that an MLP is a feedforward ANN, while an
RNN incorporates recurrent connections that enable information to persist over time steps.
As such, the effect of the network architecture on the model’s ability to capture temporal
dependencies and sequential patterns in the data was studied, along with the quality of the
vibration signals.

3.3.1. MLP

An MLP is an ANN whose architecture has multiple hidden layers of feedforward
neurons, which are the intermediary layers between the input and output of the MLP.
The idea is similar to a simple linear classifier improved using activation functions and
with several layers interconnected. In the context of multi-class classification, given a
dataset with N samples and K classes, the MLP predicts an output p ∈ RK×1 from an input
vector x ∈ Rn×1 as follows: first, it applies (23) in every layer of its architecture, and then
uses a softmax operation, as in (17), on the output of its last layer. In this case, the output
p = [p1, . . . , pK] is a vector whose entries pj (j ∈ 1 : K) are the estimated probability of the
corresponding classes.

The objective function for a MLP in multi-class classification is the categorical cross-
entropy loss computed as

Categorical Cross-Entropy Loss = − 1
N

N

∑
i=1

K

∑
k=1

[yi,k · log(pi,k)]. (24)

yi,k ∈ R is equal to one if the true class label for sample i is k, or zero otherwise. pi,k ∈ R is
the predicted probability of sample i belonging to class k according to the MLP’s output.
The goal during training is to minimize this loss by adjusting the weights and biases of
the MLP using optimization algorithms. In the context of vibrations, the MLP classifies
different time series based on the input features to a specific vibration pattern according to
the MLP’s output, by minimizing the loss in (24).

While MLPs capture complex patterns in static data, they often face difficulties when
dealing with time-dependent data, such as vibration. In an MLP, each input x is processed
independently without any consideration of its temporal relationship with other inputs.
Importantly, there is no mechanism for the MLP to consider the history of previous inputs
when computing the current output y, as indicated by (23). This lack of memory is a
fundamental limitation as it prevents considering the time-dependency of each datapoint in
a time series, where understanding the temporal context is crucial. By introducing recurrent
connections into their architecture, RNNs address this issue.

3.3.2. RNN

An RNN is an ANN which allows neurons to maintain memory and consider past
inputs by introducing feedback loops between the neurons. It makes them more suitable
for sequential time-dependent data, while tackling the limitations of the feedforward
architecture typified by MLP. The equations for an RNN can be expressed as follows:
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1. Hidden State Update: For a layer with m neurons, taking an input xt ∈ Rn×1 at time t,
the hidden state update is defined as

ht = σ(Whhht−1 + Wxhxt + bh). (25)

ht ∈ Rm×1 represents the hidden state at time t, σ is the activation function, Whh
∈ Rm×m and Wxh ∈ Rm×n are weight matrices for recurrent and input connections,
and bh ∈ Rm×1 is the bias vector;

2. Output Computation: At every time t, for a K-class classification task, the output yt ∈
RK×1 is computed from the hidden state as follows:

yt = σ(Whyht + by). (26)

In this equation, Why ∈ RK×m is the weight matrix connecting the hidden state to the
output, and by ∈ RK×1 is the output bias. Compared to (23), the output is now a function
of the weight matrices for the input and output connections, as shown in (25);

3. Categorical Cross-Entropy Loss to Minimize for Classification: Similarly to the MLP,
the cross-entropy loss as defined in (24) is an objective function which is then mini-
mized during training.

These steps show how an RNN processes sequential data with feedback between
neurons, allowing it to model temporal dependencies. In the present paper, a specific
type of RNN is considered, long short-term memory network (LSTM). A LSTM network
provides a mechanism for maintaining short-term memory in the RNN by optimizing the
retention of important context and dependencies over a substantial number of timesteps. It
has demonstrated its efficacy in classifying vibration data for bearing fault diagnosis [52].
LSTM thus provides an interesting foundation to study the impact of data quality on an
ANN, considering its performance with respect to MLP, i.e., an analysis of architectures of
ANNs with and without recurrent connections.

4. Methodology

In this section, the implementation of the methodology used to configure the previ-
ously presented ML classifiers with signals sampled at different SF is presented, as well as
the extraction and pre-processing of these same data.

4.1. Numerical Experimentation Flowchart

The methodology used to study the effect of the SF of vibration signals on the perfor-
mance of ML algorithms is described in Figure 3. It is organized in five steps.

I. Data Acquisition: Experimental data about vibration signals related to ball bear-
ing faults in an IM acquired at a SF of 48 kHz were obtained from an the CWRU
dataset [33] detailed in Section 4.2;

II. Multirate Fractional Resampling: Each vibration signal for each bearing state (faulty
ball, faulty inner ring (IR), faulty outer ring (OR), healthy bearing) was resampled
using a step of 6 kHz from the initial SR, i.e., 48 kHz. Therefore, vibration signals for
each of the time-series were downsampled to 1 kHz, 6 kHz, 12 kHz, 18 kHz, 24 kHz,
30 kHz, 36 kHz, and 42 kHz. The design choice of resampling the signals by a step of
6 kHz was driven by the fact that, in the literature, most datasets of bearing vibration
acquired their signals at a SF which was multiple of 6 or relatively close to it, e.g., 12,
20, or 48 kHz [12,33]. It was thus concluded that 6 was a good metric to cover a large
number of SRs, while remaining close to actual figures.
Afterward, the downsampled signals were studied separately in the following steps;

III. Data Pre-processing: The downsampled signals for each respective SR were then
preprocessed and time-domain features were calculated as a preparation for the
training and evaluation of the ML algorithms;
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IV. Supervised ML classifiers: Supervised ML classifiers were trained and tested based on
data from the different time-series previously generated. These classifiers learned
and accurately recognized patterns within the features extracted from the vibration
signals. Three scenarios were studied:

1. The objective was to train the ML classifiers to detect various bearing faults
for each SR and to test the performance of the classifiers at the respective SR.
By doing so, the ML algorithm’s ability to classify at low(er) SR was studied,
i.e., under varying data acquisition conditions;

2. This step was similar to the first one but tested the performance of the classifiers
on the initial data sampled at 48 kHz. By doing so, the robustness of the ML
classifiers was evaluated, as they were tested on finer data;

3. Vice-versa, this step trained the ML classifiers on the initial data sampled
at 48 kHz and evaluated the algorithms on vibration signals sampled at a
lower SF.

V. Post-Processing: The accuracy of each ML algorithm was evaluated for both training
and testing according to the metric previously described in Section 3. Afterwards,
the length of the downsampled signals, i.e., the number of data-points after feature
extraction, was calculated for each SF and evaluated, to observe the correlation with
the performance of the algorithms.

Healthy Bearing 

Faulty Ball 1

Faulty Ball 2

Faulty Ball 3

Faulty IR 1

Faulty IR 2

Faulty IR 3

Faulty OR 1

Faulty OR 2

Faulty OR 3

I. Data Acquisition 
Vibration dataset of drive-end ball
bearing (SR: 48kHz)

Upsampling Downsampling

II. Multirate Fractional Resampling
Down-sampling in steps of 6kHz
from SR of 48kHz to SR of 1kHz

III. Data Pre- Processing
Feature Extraction  

IV. Supervised ML Classifiers 
Training and testing of each ML
algorithm SVM MNLR MLP LSTM

Accuracies and Confusion Matrices

XGboost

V. Post-Processing
Study of the performance of each ML algorithm

LPF

1. Training and
testing on lower SR

2. Training on lower SR
and testing at 48kHz

Time-Domain Features 

3. Training at 48kHz
 and testing on lower SR  

Figure 3. Flowchart of the approach developed in this paper to evaluate fault detection classifiers
with vibration datasets acquired at different SRs.

As far as the software used for the implementation of the method is concerned,
the points I., II. and III. in Figure 3 were implemented on Matlab R2023b. For points IV.
and V. in Figure 3, the ML classifiers were trained and evaluated on Python. This choice
was made as the respective software have libraries and pre-installed functions relative
to the data resampling and ML, i.e., sci-kit learn (sklearn), SciPy, keras, tensorflow for
Python, and specifically the resample() function on Matlab, which proved its efficiency in
resampling vibrations, as explained in Section 5.1.

As the methodology developed in this work has been introduced, the CWRU test-
bench used to collect the experimental measurements and the data acquisition process are
now presented.

4.2. Experimental Set-Up and Data Acquisition

The dataset used consisted in several time-series of vibration signals obtained from
a test-bench of the CWRU [33]. The set up consisted of an electric motor, a dynanometer,
a torque transducer with encoder, and an electric motor where two bearings were placed to
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support the motor shaft, i.e., an SKF 6205-2RS JEM ball bearing at the motor drive end and
an SKF 6203-2RS JEM at the motor fan end.

Both bearings were tested with localized faults, i.e., artificial faults caused through
electrical discharge machining. More specifically, the faulty balls (rolling element), IR faults,
and OR faults were used under working conditions from 0 W, 745.7 W, 1491.4 W, and
2237.1 W (corresponding to 0 to 3 HP in [33]) motor powers with shaft speeds of 181.1,
183.4, 185.7, and 187.8 rad/s (corresponding to 1730, 1750, 1772, and 1797 rpm in [33]).
Vibrations were measured in normal and faulty conditions thanks to vibration sensors,
i.e., accelerometers, placed on the motor housing (see Figure 4). Each measurement lasted
10 s and was acquired at SRs of 12 kHz and 48 kHz. The vibrations were collected using
a 16-channel DAT recorder, which were then processed into Matlab files (.mat) provided
in [33].

Electric Motor Dynamometer

Fan End
Bearing 

Drive End
Bearing 

Torque Transducer
& Encoder

Vibration
Sensors 

Figure 4. CWRU Test bench scheme (more information and pictures related to the experimental
test-bench are available in [33], in “Apparatus & Procedures”).

In the present work, the dataset was constructed with ten different bearing conditions,
as shown in Table 1. In total, the dataset included ten health states of the bearing, from nor-
mal (healthy) bearing conditions to the different faulty cases implemented at a loading level
of 735.5 W, i.e., 1 HP in [33], and at a speed of 187.5 rad/s, i.e., 1772 RPM in [33]. To ensure
signal synchronization, the vibration signals of the ten health states were adjusted to the
minimum size signal, corresponding to 381,888 samples per signal. The signals were also
normalized to a similar scale, to avoid later bias in the ML algorithms and enhance the
convergence of the latter.

Table 1. Description of experimental conditions.

Faulty Component Fault Diameter [mm] Label

None (Healthy) - 1
Ball 0.178 2
Ball 0.356 3
Ball 0.533 4
IR 0.178 5
IR 0.356 6
IR 0.533 7
OR 0.178 8
OR 0.356 9
OR 0.533 10

4.3. Dataset Pre-Processing

In ML, feature extraction is an important step before training any algorithm, to be able
to extract essential information from complex datasets. It allows the identification of key
patterns, like anomalies or outliers, within the signals. Thanks to this process, the dataset is
simplified, making it more suitable for classification tasks. Extracting features in the data
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aims at forming a dataset of pertinent features, while optimizing the size of the dataset
but also enhances the efficiency of the classification procedure. In this research, twenty
time-domain features were selected according to [16] (see Table 2). It is to be noted that
frequency-domain features were discarded for the present study, as time-domain features
showed high performing results in the ML classification, using the experimental dataset
provided. In addition to this, choosing not to use frequency-domain features prevented
the use of extensively working in the frequency domain while performing downsampling,
because downsampling techniques can introduce spectral deformation and leakages in
the Fourier transformation [44]. Therefore, the present study was limited to time-domain
features to effectively study the effects of different sampling rates on the ML classifiers.

Table 2. Time-domain features for vibration signals of bearing faults.

Time-Domain Features

Tmax = max(xi) Tave = 1
N ∑N

i=1∥xi∥

Trms =
√

∑N
i=1(xi)2 Tp f = Tmax

Tm

Tkurt = 1
1−N ∑N

i=1

(
xi−µ

σ

)4
Ts f = Trms

Tave

Tskew = ∑N
i=1(xi−µ)3

N·σ3 Tc f = Trms
Tave

Tmin = min(xi)
Tpeak
Trms

Tvar = 1
1−N ∑N

i=1(xi − Tmin)
2 Tsra = 1

N ∑N
i=1(

√
xi)

2

Tp−p = Tvar − Tmin Tmf = Tmax
Tsra

Tmad = 1
N ∑N

i=1|xi − x̄| Tsra = 1
N ∑N

i=1 x2
i

Tpeak2rms = ∥x∥∞√
1
N ∑N

i=1|xi |
Trss =

√
∑N

i=1 |x|2

Tpeak = max(∥x∥) Tclf = Tpeak
Tsra

Legend: xi is the time-domain signal data point; N is the total number of data points.

For every vibration signal, the twenty time-domain features were computed individu-
ally. This calculation was performed in sequential batches, where each batch was subjected
to the computation of the corresponding twenty time-domain features through a specified
procedure. Balancing computational efficiency, memory conservation, and adaptability to
different signal characteristics, the length of each batch was determined as a fraction of
the overall signal size using a deliberately chosen factor of 234, including a 50% overlap
between consecutive batches. This deliberate choice was carefully studied and was chosen
to ensure continuity and coherence during this research study. Afterward, for every signal,
the number of batches was calculated by rounding the division of the signal length by
the batch-size obtained to the nearest integer. As such, each resampled vibration signal
was systematically divided into manageable batches, while taking into account the desired
degree of overlap.

5. Results

In this section, the results of the downsampling of the vibration signals are explained,
as well as the results of the effects of the downsampling on the ML algorithms previously in-
troduced.

5.1. Evaluation and Verification of the Downsampling Method

The fractional resampling was performed using the integrated function of Matlab
resample(x,p,q,n) which resamples the input time-series x, as the ratio p

q of the original SR of
x, through decimation and interpolation (see Figure 2), using Chebyshev anti-aliasing LPF
of order 2 × n × max(p,q). For each fractional resampling, the integration and decimating
parameters p and q were chosen such that the radio p

q was an irreducible fraction.
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In [33], the CWRU datasets contain vibration signals measured at two sampling rates:
12 kHz and 48 kHz. In the present work, the vibration signals acquired at a SR of 48 kHz
were downsampled to 12 kHz and compared to the experimental measurements acquired
at 12 kHz. This way of proceeding allowed verifying the approach of downsampling and its
accuracy. This analysis was conducted for all faulty conditions, expect the healthy bearing
conditions, as the CWRU dataset does not provide measurements under a healthy bearing
condition at a SR of 12 kHz. In this section, the analysis of the downsampling method is
shown for the vibration signal of a bearing having a 0.178 mm ball fault. This experimental
comparison provides a consistent verification for other types of vibration signals, i.e., other
IR, OR, and ball fault severities.

In order to quantify the difference between the experimental and downsampled signals
of 12 kHz SR, it is worthwhile to study statistical features, as done in [53]:

Kurtosis =
1
N

N

∑
i=1

(
xi − x̄

σ

)4
. (27)

Variance =
1
N

N

∑
i=1

(xi − x̄)2. (28)

Skewness =
1
N

N

∑
i=1

(
xi − x̄

σ

)3
. (29)

Energy =
N

∑
i=1

(xi)
2. (30)

x̄ is the mean of the signal x, σx is its standard deviation, x̄ is the mean of the experimental
signal, and N is the number of datapoints. These quantities were chosen to evaluate the
quality of the downsampled signals, as they are statistical features relaying on the quality
of the probability distribution of the signals. For each of the signals, the kurtosis, variance,
skewness, and energy are displayed in Table 3.

Table 3. Signal Features—SR of 12 kHz.

12 kHz Down-Sampled 12 kHz Experimental

Kurtosis 3.01 2.96
Variance 0.02 0.02
Skewness 0.01 0.01
Energy 2363.50 2348.02

For each signal feature, a comparative interpretation is given.

• Kurtosis: The kurtosis of a signal measures the sharpness of the peaks in a probability
distribution; i.e., how often outliers stand in the signal. In the present case, the kurtosis
values for both scenarios were close, with a difference of 0.05, which means that the
tails of the two scenarios were fairly similar, yet slightly more pronounced in the
downsampled signal;

• Variance: The variance of a signal measures the spread of data points in a signal
with respect to the mean value of this same signal. Here, the two cases share similar
variance values, meaning that the dispersion of the data was consistent between the
downsampled and experimental signals;

• Skewness: The skewness measures the asymmetry of a probability distribution. In
the two scenarios studied here, the skewness was very low, suggesting that the
distributions were rather symmetrical, with a tendency towards positive skewness;

• Energy: The energy is a measure of the total signal power. Here, the downsampled
signal had a higher overall power compared to the experimental signal, but the values
in the two cases only had a difference of 0.66%.
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In addition to the signal features, histograms of the two signals have been plotted
in Figure 5. Histograms are visual representations of the distribution of data values
within a signal [54] and they allow the assessment of the signal’s central tendency, spread,
and shape. In addition to that, histograms provide insight into the presence of outliers
or unusual data points. In this case, the two analyzed vibration signals displayed nearly
identical histogram distributions, with a slight x-axis shift, reflecting minor differences
in data point distribution across vibration amplitudes and synchronization. However,
the number of samples remained consistently similar in both signals, highlighting their
strong correspondence in underlying data patterns.

Figure 5. Histograms of the vibration signals for a ball fault of 0.178 mm at a SF of 12 kHz: in blue,
the downsampled signal is presented, and in orange the signal acquired experimentally.

Therefore, based on the signal features and the histograms analysis, it can be concluded
that the downsampling procedure of vibration signals was experimentally verified for
12 kHz and could be generalized to other levels of resampling with the same method.
As such, the study of the effect of the SF on the ML algorithms could be pursued.

5.2. ML Classifiers Performance

In this section, the training and testing performance of the ML classifiers on the multi-
rate vibration signals is detailed for the three scenarios described in the methodology,
Section 4.1.

5.2.1. Training and Evaluation at Respective SRs

Before delving into the results, it is crucial to elucidate the rationale behind the
selection of the hyperparameters used for tuning the five ML algorithms. These hyper-
parameters were primarily chosen based on established practices found in the literature,
such as [55,56]. However, they were also assessed through a firsthand experience of the
authors with fault diagnosis schemes using AI, particularly with the scikit-learn library in
Python. Consequently, SVM used the radial basis function, i.e., rbf, as kernel; the MNLR
made use of ‘lbfgs’ solver, with a maximum iteration limit of 1000 chosen arbitrarily as
trade-off between the computational efficiency and convergence of the algorithm. XGBoost
was configured with parameters tailored for multi-class classification, i.e., “multi:softmax”
objective function related to the softmax transformation and the log-likelihood loss [47].
Using Keras and Tensorflow, the MLP and LSTM architectures had two hidden layers,
excluding input and output layers, which respectively comprised 128 and 64 layers each
employing the rectified linear unit, i.e., ReLU, activation function [56]. Both employed an
ADAM optimizer for optimization with cross-entropy loss. The batch size was set at 32
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and the number of epochs at 50 epochs for MLP and LSTM algorithms. It is to be noted
that a study about the influence of the epochs on the training and validation accuracies of
the two ANN was also conducted. Throughout the three experiments, the data were scaled
and the hyperparameters remained unchanged in the three scenarios. The accuracy metric
was consistently used for the model evaluation.

Moreover, prior to presenting the results, it is also essential to describe the dataset used
and how the training and evaluation datasets were formed. As a result of the preprocessing
of the data described in Section 4.3, the dataset with vibrations sampled at 48 kHz contained
4678 samples, from which 80% were used for training and 20% for evaluation. As a conse-
quence, for the same share of the data between training and evaluation, after pre-processing
the data for the feature extractions, the signals sampled at 1 kHz contained much less data
for training than the higher SR signals (Figure 6). One can easily perceive this in (6).

Figure 6. Number of samples for each dataset resampled from 48 kHz to 1 kHz.

The training and evaluation accuracies for each signal for their respective SR are
shown in Figure 7. In this case, the ML algorithms trained with signals sampled at a
certain SF were also evaluated for the classification task of vibration signals sampled at the
respective SFs.

Figure 7. Training and evaluation accuracy of ML classifiers for vibration signals sampled from 1 kHz
to 48 kHz by step of 6 kHz.

Based on the results, an improvement in the accuracies was globally observed for
signals sampled at higher frequencies, particularly for signals whose SR equaled or was
higher than 12 kHz. However, training performances after this SF did not improve. Instead,
there was rather a small drop in the training performances for higher SFs or, at most,
a stagnant behavior. This observation shows that algorithms trained on vibrations acquired
at a higher SF do not systematically imply better training, even if a higher SF allows for finer
measurements. Particularly, a higher SF might involve the acquisition of more complex
and noisier signals, which challenge the ML-algorithms in their performances. Each of the
ML algorithms exhibited distinct characteristics in its behavior:
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• SVM and MNLR: The linear classifiers were able to classify bearing faults but showed
a lower performance for signals sampled at 1 and 6 kHz. This means that for these
SRs, these algorithms did not learn from the training dataset in order to define the
decision boundaries between the classes;

• XGBoost: XGBoost, as a tree based model, is the ML algorithm which was the least
sensitive to the downsampling of the vibration data. Indeed, the training accuracy
remained at its maximum value, despite the change in SR. It was able to learn well
from lower sampled datasets, while maintaining a high performance. Based on theory
(Section 3.2), the training procedure in XGBoost is inherently robust to variations in
dataset size and distribution. It uses an ensemble of decision trees with features like
gradient boosting and regularization, which allows it to adapt effectively to different
data representations, ensuring a stable performance, even with a reduced sample
density. During the evaluation, the highest performance of XGBoost was achieved at
24 kHz. This did not seem to imply anything or result from any specific feature of
the dataset at this SF, especially as the evaluation performance remained in the same
range as the other performances obtained, i.e., above 90% accuracy;

• MLP and LSTM: As neural networks, MLP and LSTM are by definition more sensitive
to the amount of samples [12,13]. The low SR lost fine-grained information about the
health conditions of the bearing, which made it harder for these neural networks to
learn patterns and achieve high performances. However, due to its architecture, LSTM
can capture longer-term dependencies in sequential data and this provides some
advantages in scenarios with limited data. Therefore, at a SR of 6 kHz, LSTM was
already catching up with performance of the other ML algorithms and even surpassed
the linear models. As far as the MLP is concerned, it seemed to globally lag behind
compared to the other ML algorithms, no matter the SR. At a lower SR, MLP suffered
from lack of qualitative information to learn correctly, but at high-frequency, MLP
might not have been able to generalize higher dimensional spaces as well.

It is to be noted that the ML algorithm performances became roughly equivalent for
data whose SR was above 18 kHz. Excepting the extreme stability of XGBoost, the training
accuracy of the other ML algorithms seemed to slightly decrease above this value. This
might have been due to the fact that a higher SR allows capturing more noise in the dataset
and more peculiar phenomena, which might have complicated the pattern identification
within the dataset.

As a trial to improve the performances of the neural networks for signals sampled
at 1 kHz, the number of epochs during training was increased, while analyzing their
respective performances. By definition, the number of epochs refers to the number of times
the entire training dataset is passed forward and backward through an ANN during the
training process [57]. Therefore, increasing the number of epochs in MLP and LSTM can
potentially improve accuracy, particularly when the dataset is limited, as this enhances the
training length. The results are shown in Figure 8.

Figure 8. Training and evaluation accuracy of the MLP and LSTM classifiers for vibration signals
sampled at 1 kHz as a function of the number of epochs of these ANNs.
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As the number of epochs increased, the performance of the models globally increased.
The models found more opportunities to learn, perceive the variations in the dataset,
and adjust their weights accordingly, thus improving their performances during training
and evaluation, while reducing their underfitting in the case of a lack of qualitative data.
However, the number of epochs studied was high and the performances increased unstably,
which might indicate overfitting, in addition to the fact that the evaluation accuracy was
higher than the training accuracy above 350 epochs. Indeed, the models became too specific
to the training set, and for a small dataset such as the one of 1 kHz, it was harder to strike a
fair share of training and evaluation data, as there were fewer datapoints for the model to
learn from and evaluate (see Figure 6).

5.2.2. Training at Lower SRs and Evaluation at 48 kHz

As a second part of the study, training was performed as for the previous section
but now the evaluation was carried out on a dataset of signals acquired at a SR of 48 kHz.
This way of proceeding assessed the robustness of the models trained at lower sampling
rates and their ability to generalize to higher-frequency data. The results are gathered in
Figure 9.

Figure 9. Evaluation accuracy of classifiers trained on vibration signals sampled from 1 to 48 kHz for
classification of signals with SR of 48 kHz.

As shown, the ML models trained on signals with an SR equal or higher than 12 kHz
performed well but MLP lagged behind, with an accuracy of 70% at this SR. However,
from 30 kHz, it was able to catch up with the performances of the other ML algorithms,
with an evaluation accuracy above 80%. This means that, in general, the ML models trained
on signals sampled with an SR equal or higher than 12 kHz identified the patterns of
the healthy and faulty conditions of the ball bearing well enough that they could classify
complex and noisy signals sampled at 48 kHz case. Reducing the SF of a signal inevitably
diminishes its resolution according to (5). Consequently, when ML algorithms are trained on
signals sampled at lower SF, where finer details are less distinguishable, they may struggle
to accurately recognize nuances and intricacies introduced by the higher SF. Conversely,
as explained in Section 5.2.1, when these same algorithms are trained on a highly sampled
signal, they might lack information from the evaluation set sampled at a lower frequency to
recognize the very-detailed explanations they have been trained on. This interplay between
the SF and the training set’s resolution highlights the importance of carefully considering
signal characteristics in the development and evaluation of ML algorithms.

Additionally, as for the previous study, one can see that XGBoost remains the leading
ML algorithm for such an application. Therefore, a confusion matrices for each test was
plot in Figures 10–13, to demonstrate that the improvement in the classification for the
dataset with vibrations sampled at 48 kHz gradually increased along with the SR of the
vibrations of the training sets. Based on these figures, it does not seem that there was any
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specific tendency for some faults to be classified better at a lower sampling rate. Therefore,
only a generic increase in the classification improvement was concluded.

Figure 10. CM—Training SR 1 kHz and Test SR
48 kHz.

Figure 11. CM—Training SR 6 kHz and Test SR
48 kHz.

Figure 12. CM—Training SR 12 kHz and Test SR
48 kHz.

Figure 13. CM—Training SR 48 kHz and Test SR
48 kHz.

While the confusion matrices demonstrated a generic enhancement in classification, it
is crucial to acknowledge that this improvement lacks empirical validation. Specifically,
upon comparing Figures 11 and 12, certain samples from signals recorded at 48 kHz
exhibited superior classification when XGBoost was trained with vibrations sampled at
6 kHz, as opposed to being trained at 12 kHz. For instance, this was the case for labels 7
and 10. For this latter label, this might have come from an overfitting in the classification
on label 10, as shown in Figure 10, where all labels collapsed on label 10. This might
have resulted from the nature of XGBoost. Indeed, XGboost constructs an ensemble of
decision trees, which relies on sequentially optimizing the model by correcting errors
from the previous trees. This sequential nature makes XGBoost more prone to overfitting
if no regularization parameter is applied [28]. Hence, although more samples were well-
classified and the global evaluation accuracy increased, as shown in Figure 9, specific
attention to each of the labels indicates that classification based on the depth of a faulty
state of bearings is inherently difficult, even with an enhanced tree boosting method such as
XGBoost. To overcome such an issue in the future and improve the fault diagnosis scheme,
regularization parameters might be useful to control the complexity of this tree model, as
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discussed in Section 3.2 with the parameter α in (19). Additionally, studies like [47,58] can
also help to understand XGBoost as a classifier and its limitations.

It is also noteworthy to discuss the challenges involved in practice when classifying vi-
bration signals sampled at high SF. In Figure 13, at a SF of 48 kHz, the classifier consistently
and accurately identified the healthy state (label 1), minimizing false positives. However,
as the SF was reduced to 12 kHz, the inevitable trade-off between resolution and compu-
tational efficiency became evident. This reduction introduced some false positives and
false negatives, as information loss occurred through the downsampling. Given the mixed
nature of failure modes in bearings, the classifier might struggle to discern the fault severity
or misinterpret the type of fault. Even with a higher SF, classification failures persisted,
due to the inherent challenges posed by vibrations and bearing conditions. In practical
terms, maintenance operators will invariably receive alarms signaling potential bearing
failures. As such, one can see that achieving perfect classification with real signals is an
almost impossible goal, especially when dealing with vibrations, which are inherently
noisy signals that introduce complexities in extracting fault patterns.

5.2.3. Training at 48 kHz and Evaluation at Lower SR

As a third part of the study, the ML classifiers were trained on the experimental signals
sampled at 48 kHz and evaluated on signals downsampled to lower SR levels. In order to
do so, the total amount of samples of the downsampled datasets was used to evaluate the
ML algorithms trained with the dataset sampled at 48 kHz. While doing so, the models
were trained with more accurate data and a larger amount of data, while being tested on
poorer quality ones. The results for the evaluation accuracy of the five ML algorithms are
shown in Figure 14.

Figure 14. Evaluation accuracy of classifiers trained on vibration signals sampled at 48 kHz for
classification of signals sampled from 1 to 48 kHz.

Based on the results, a few comments can be made:

• SVM and MNLR: The two linear classifiers showed different trends before classification
of signals with a SR below 18 kHz and a similar behavior above. Particularly, the SVM
algorithm lagged behind in classifying the signals sampled at 12 kHz, while being
trained with data sampled at 48 kHz. This might have been due to the fact that
the SVM relied on maximizing the margin between different classes, which can be
challenging when working with a low number of features;

• XGBOOST: XGBoost was the best algorithm after 12 kHz. Before the SR of 12 kHz,
the XGBoost performance decreased drastically. XGBoost has an enhanced training
mechanism that excels at capturing intricate patterns and complex relationships within
high-dimensional datasets. When trained with complex data and evaluated with
signals sampled at or above 12 kHz, the feature space became more informative,
allowing XGBoost to leverage its boosting learning techniques effectively;
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• MLP and LSTM: The two neural networks showed the same trends across all the SRs,
with MLP slightly lagging behind for higher SRs, as was the case earlier.

6. Discussion

In this work, several aspects of signal quality were examined across various SRs, to
identify ball bearing faults in IMs using supervised ML. The research was driven by the
idea of optimizing the computational and economical costs related to the storage and
acquisition of qualitative data acquired to perform AI-driven CM related to ball bearing
failures in IMs. By training and comparing five ML algorithms with multi-rate vibration
signals, this study made various findings.

First, XGBoost emerged as the most robust and adaptable ML algorithm for detecting
bearing faults across different SRs, even when low sampled signals were used for training.
Its ability to handle variations in SR makes it a promising choice for real-world applications,
where the data quality and SR may vary. Second, the linear classifiers, such as SVM and
MNLR, demonstrated the optimal performance when trained and evaluated on data sam-
pled at a minimum of 12 kHz. These classifiers also exhibited robustness when evaluated
on data sampled at 48 kHz, using the same training data. This suggests their suitability
for scenarios where consistent performance across different SRs is required. Third, the
ANN models such as LSTM and MLP appeared to be more sensitive to variations in the
quality and quantity of the dataset. Their performance may degrade when confronted with
higher SR data for which they were not explicitly trained. As a conclusion about these
findings, it can be concluded that the relationship between algorithm accuracy and SR is
not always proportional, especially after a SR of 12 kHz, and it depends particularly on the
combination of SR and ML algorithm chosen for fault diagnosis.

Numerous future research initiatives could be developed based on the groundwork
laid out in this study. First, it may be beneficial to explore strategies for enhancing the
robustness of ANN models, e.g., through other DL methods such as transfer learning or
more extensive data augmentation techniques when the SR of the acquisition software does
not align with the ML algorithm available. Second, it is worth noting that the present study
focused on time-domain features to train AI algorithms, deliberately avoiding the com-
plexities related to frequency-domain analysis, such as spectral leakage issues. However,
in many AI applications for data-driven CM, frequency-domain features are also employed
to train AI algorithms for fault detection purposes. Consequently, as part of a future work,
it would be worth studying the quality of these features similarly to in the present work
and understanding their impact on the performance of these AI-algorithms. Similarly,
the quality of the time-domain representation depends on various factors, which could
also be explored along with the performance of ML algorithms developed for bearing fault
detection. Third, and lastly, this study focused on a stationary state analysis for bearing
fault detection in IMs, as this applies to various real-life applications, like electric trains
or heating, ventilation, and air conditioning systems. However, many other applications
operate under varying conditions, introducing complexities that may not be fully captured
in a stationary state analysis. For instance, in a pumping system, the machine may un-
dergo several transient states, and in the case of electric vehicles, the motor may operate at
variable speeds. Therefore, a study about the quality of data relative to a non-stationary
analysis approach would be worthwhile, as these time-varying conditions cause transient
noise in the signal envelope, which means that the algorithm for fault detection has to be
adjusted accordingly. All these topics would allow a better understanding of what the
required data quality to progress with the exponential development of AI for CM.
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