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Efficient Approximate Online Convolutional
Dictionary Learning

Farshad G. Veshki , Member, IEEE, and Sergiy A. Vorobyov , Fellow, IEEE

Abstract—Most existing convolutional dictionary learning
(CDL) algorithms are based on batch learning, where the dic-
tionary filters and the convolutional sparse representations are
optimized in an alternating manner using a training dataset. When
large training datasets are used, batch CDL algorithms become
prohibitively memory-intensive. An online-learning technique is
used to reduce the memory requirements of CDL by optimizing the
dictionary incrementally after finding the sparse representations
of each training sample. Nevertheless, learning large dictionaries
using the existing online CDL (OCDL) algorithms remains highly
computationally expensive. In this paper, we present a novel ap-
proximate OCDL method that incorporates sparse decomposition
of the training samples. The resulting optimization problems are
addressed using the alternating direction method of multipliers.
Extensive experimental evaluations using several image datasets
and based on an image fusion task show that the proposed method
substantially reduces computational costs while preserving the
effectiveness of the state-of-the-art OCDL algorithms.

Index Terms—Convolutional sparse coding, online convolutional
dictionary learning.

I. INTRODUCTION

S PARSE representations have achieved significant success
and widespread adoption as models for solving inverse

problems in signal processing, image processing, and compu-
tational imaging [1], [2], [3], [4], [5], [6]. The sparse represen-
tation model approximates a signal using a product of a matrix
called a dictionary and a vector that only has a few non-zero
entries (sparse representation). There are numerous applications
where the use of the sparse representation model coupled with a
learned dictionary results in remarkably improved performance.
A learned dictionary aims to produce sparser representations and
more accurate approximations of its domain signals [7], [8], [9].
Dictionary learning has been utilized in diverse computational
imaging tasks such as image reconstruction [10], [11], image
super-resolution [5], and image fusion [12].
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Typically, dictionary learning and sparse approximation are
used to extract local patterns and features from high-dimensional
signals (such as images). Therefore, a prior decomposition of the
original signals into vectorized overlapping blocks is usually
required (e.g., patch extraction in image processing). However,
relations between neighboring blocks are ignored, which results
in multi-valued sparse representations and dictionaries com-
posed of similar (shifted) atoms.

Convolutional sparse coding (CSC) provides a single-valued
and shift-invariant model for describing high-dimensional sig-
nals [13], [14], [15], [16]. The CSC model has also recently
seen numerous applications in deep learning models employed
for various image processing tasks [17], [18], [19].

The CSC model replaces the matrix-vector product used in
the standard sparse approximation by a sum of convolutions of
dictionary filters {dk ∈ Rm}Kk=1 and convolutional sparse rep-
resentations (CSRs) {xk ∈ RP }Kk=1 (also called sparse feature
maps). The convolutional sparse approximation problem can be
formulated as follows

minimize
{xk}Kk=1

1

2

∥∥∥∥∥
K∑

k=1

dk ∗ xk − s

∥∥∥∥∥
2

2

+ λ

K∑
k=1

‖xk‖1, (1)

where s ∈ RP is the signal, λ > 0 is the regularization parame-
ter that controls the sparsity of the representations, ∗ denotes the
convolution operator (here, with “same” padding), and ‖ · ‖1
and ‖ · ‖2 represent the �1-norm and the Euclidean norm of a
vector, respectively.

The convolutional dictionary learning (CDL) problem is typ-
ically addressed using a batch approach in which the sparse rep-
resentations and the dictionary filters are optimized alternately
(batch CDL) [16], [20], [21], [22], [23], [24], [25]. The following
is the formulation of the dictionary optimization problem over
a batch of N training signals {sn ∈ RP }Nn=1,

minimize
{dk}Kk=1

1

2N

N∑
n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k − sn

∥∥∥∥∥
2

2

+

K∑
k=1

Ω (dk) , (2)

where Ω(·) represents the indicator function of the constraint
set for the dictionary filters, that is,

Ω (d) =

{
0, if ‖d‖2 ≤ 1
∞, otherwise.

The existing batch CDL methods require access to all training
signals and their CSRs at once. As a result, a memory of the order
of NPK is required [26], which can be extremely expensive
when using large training datasets, i.e., when N � K. It is
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reminded thatK is the number of dictionary filters,N is the num-
ber of training signals (the batch size), and P is the dimension
of the training signals, for example, the number of pixels in an
image (usuallyP � K andP � N ). The memory requirement
of CDL can be reduced using an online-learning approach, where
the dictionary is optimized incrementally after observing each
training signal and finding its sparse representations [9]. The
online CDL (OCDL) methods are also useful when the training
signals are not available all at once, but they are observed
gradually over time, such as in streaming data settings. The state-
of-the-art OCDL methods have achieved memory requirements
of the order of K2P [27], [28], which is independent of the
number of training signals. Nevertheless, when learning large
dictionaries or using high-dimensional signals, these methods
can still incur excessive computational costs.

This paper presents a novel approximate OCDL method that
significantly improves the computational efficiency of the state-
of-the-art algorithms while providing competitive performance
compared to the existing methods.1 As a result, we propose a
method that requires a memory of the order of KP only. More
specifically, our method approximates the OCDL problem by
minimizing an upper bound of the objective function, where the
dictionary optimization problem is decentralized with respect to
the convolutional filters. We then solve the resulting optimiza-
tion problem using the alternating direction method of multi-
pliers (ADMM). MATLAB implementations of the proposed
algorithms are available at https:// github.com/ FarshadGVeshki/
Approximate-Online-Convolutional-Dictionary-Learning.

The rest of the paper is organized as follows. Section II
briefly reviews CDL in the Fourier domain. The proposed CDL
method and derivation of the algorithms are presented in detail
in Section III. Thorough experimental evaluation results in terms
of convergence properties and reconstruction accuracy using
multiple image datasets of varying sizes and in the context of a
multimodal image fusion task are presented in Section IV. The
conclusions are provided in Section V.

II. OCDL IN THE FOURIER DOMAIN

Most efficient CDL methods are based on the Fourier trans-
form [16], [25], [27], [28]. In the frequency (Fourier) domain,
problem (2) is equivalent to

minimize
{dk}Kk=1

1

2NP

N∑
n=1

∥∥∥∥∥
K∑

k=1

d̂k � x̂n
k − ŝn

∥∥∥∥∥
2

2

+

K∑
k=1

Ω (dk) ,

(3)
where (̂·) and � denote the discrete Fourier transform (DFT)
and the elementwise multiplication operator, respectively. The
filters {dk}Kk=1 are zero-padded prior to DFT, so that {d̂k}Kk=1

are of the same size as the CSRs.

1The preliminary findings and results of the proposed method have been re-
ported in [29]. This paper provides a comprehensive presentation, encompassing
in-depth derivations, additional algorithmic developments, and a more extensive
array of experimental results including the application demonstrating the utility
of OCDL in image fusion.

Defining δp � [d̂1(p), . . . , d̂K(p)]T and χn
p �

[x̂n
1 (p), . . . , x̂

n
K(p)]T , problem (3) can be rewritten as

minimize
{dk}Kk=1

1

2NP

P∑
p=1

N∑
n=1

∥∥(χn
p )

T δp − ŝn(p)
∥∥2
2
+

K∑
k=1

Ω (dk) ,

(4)
where (·)T is the transpose operator. The most efficient solutions
to problem (4) (the batch CDL problem) have been proposed
based on ADMM, and the fast iterative shrinkage-thresholding
algorithm (FISTA) [25], [26]. The complexities of these algo-
rithms are of O(KNP ) and they require memory of the order of
KNP . As a result, when the training dataset is large, batch CDL
becomes excessively computationally demanding in practice.

OCDL alleviates the problem of large required memory by
storing sufficient statistics of the training signals and their
CSRs in compact history arrays. An online reformulation of
problem (4) can be written as

minimize
{dk}Kk=1

1

2

P∑
p=1

δHp AN
p δp −

P∑
p=1

δTp b
N
p +

K∑
k=1

Ω (dk) , (5)

where (·)H is the Hermitian transpose operator, and the history
arrays AN

p ∈ RK×K and bNp ∈ RK , p = 1, . . . , P , are defined
as

AN
p � 1

NP

N∑
n=1

(χn
p )

∗(χn
p )

T , bNp � 1

NP

N∑
n=1

ŝn(p)∗χn
p ,

(6)
with (·)∗ standing for the element-wise complex conjugate of an
array vector. After observing each training signal and finding
its sparse representations, the history arrays are recalculated
incrementally using the following formulas

AN
p =

1

NP
(χN

p )∗(χN
p )T +

N − 1

N
AN−1

p , p = 1, . . . , P,

bNp =
1

NP
ŝN (p)∗χN

p +
N − 1

N
bN−1
p , p = 1, . . . , P. (7)

The history arrays are initialized using zero arrays. In OCDL,
the dictionary is optimized by solving problem (5) only after
the updated history arrays are available. As a result, a mem-
ory requirement of K2P and a complexity of O(K2NP ) are
achieved [27], [28].

III. THE PROPOSED METHOD

In the proposed method, the training signals are approximated
in a distributed manner using N distinct dictionaries {cnk ∈
Rm}Kk=1. A fusion of the separately optimized dictionaries
based on the respective CSRs is used to calculate the dictionary
{dk}Kk=1. Specifically, the quadratic term in CDL problem (2)
is approximated using the following upper-bound estimate

N∑
n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k − sn

∥∥∥∥∥
2

2

=

N∑
n=1

∥∥∥∥∥
K∑

k=1

dk ∗ xn
k −

K∑
k=1

cnk ∗ xn
k +

K∑
k=1

cnk ∗ xn
k − sn

∥∥∥∥∥
2

2
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≤
N∑

n=1

K∑
k=1

‖dk ∗ xn
k − cnk ∗ xn

k‖22

+

N∑
n=1

∥∥∥∥∥
K∑

k=1

cnk ∗ xn
k − sn

∥∥∥∥∥
2

2

, (8)

where the inequality is due to the triangle inequality. Accord-
ingly, the proposed approximate CDL problem is formulated as

minimize
{dk}Kk=1,

{{cn
k }Kk=1}Nn=1

1

2N

N∑
n=1

K∑
k=1

‖dk ∗ xn
k − cnk ∗ xn

k‖22 +
K∑

k=1

Ω (dk)

+
1

2N

N∑
n=1

∥∥∥∥∥
K∑

k=1

cnk ∗ xn
k − sn

∥∥∥∥∥
2

2

+

N∑
n=1

K∑
k=1

Ω (cnk ) . (9)

In the following, two ADMM-based online methods for ad-
dressing (9) are presented. The first algorithm uses a standard
approach for optimization of {dk}Kk=1 and {cNk }Kk=1, while the
second algorithm incorporates pragmatic modifications to the
first algorithm to improve the effectiveness of the proposed
approximation method and lower computational costs.

A. Algorithm 1

Optimization problem (9) is jointly convex with respect to
{dk}Kk=1 and {{cnk}Kk=1}Nn=1. Thus, using the OCDL frame-
work, problem (9) can be addressed for the joint optimization
variables {cNk ,dk}Kk=1 after observing the N th training signal
sN and obtaining its CSRs {xN

k }Kk=1. Compact history arrays
are used to store sufficient statistics of {{cnk}Kk=1}N−1

n=1 and
{{xn

k}Kk=1}N−1
n=1 .

The following ADMM formulation is used to solve (9) for
{cNk ,dk}Kk=1

minimize
{cN

k ,dk}Kk=1,

{fN
k ,gk}Kk=1

1

2N

N∑
n=1

K∑
k=1

‖gk ∗ xn
k − fn

k ∗ xn
k‖22 +

K∑
k=1

Ω (dk)

+
1

2N

N∑
n=1

∥∥∥∥∥
K∑

k=1

fn
k ∗ xn

k − sn

∥∥∥∥∥
2

2

+

N∑
n=1

K∑
k=1

Ω (cnk )

s.t. gk = dk, fN
k = cNk , k = 1, . . . ,K,

(10)

where {fN
k , gk}Kk=1 are the (joint) ADMM auxiliary variables.

The ADMM iterations consist of the following three steps.
The {f , g}-update step: In this step the auxiliary variables

{fN
k , gk}Kk=1 are updated as

({fN
k }Kk=1

)t+1
= argmin

{fN
k }Kk=1

1

2N

K∑
k=1

∥∥fN
k ∗ xN

k − zN
k

∥∥2
2

+
1

2N

∥∥∥∥∥
K∑

k=1

fN
k ∗ xN

k − sN

∥∥∥∥∥
2

2

+
ρ

2

K∑
k=1

∥∥fN
k − (cNk )t + (uk)

t
∥∥2
2
, (11)

({gk}Kk=1

)t+1
= argmin

{gk}Kk=1

1

2N

N∑
n=1

K∑
k=1

‖gk ∗ xn
k − tnk‖22

+
ρ

2

K∑
k=1

∥∥gk − (dk)
t + (vk)

t
∥∥2
2
, (12)

where {uk,vk}Kk=1 are the scaled Lagrangian variables, ρ > 0
is the ADMM penalty parameter, zN

k � (gk)
t ∗ xN

k and tnk �
(fn

k )
t+1 ∗ xn

k .
The {c,d}-update step In this step {cNk ,dk}Kk=1 is updated

as

({cNk }Kk=1

)t+1
= argmin

{cN
k }Kk=1

K∑
k=1

Ω
(
cNk
)

+
ρ

2

K∑
k=1

∥∥(fN
k )t+1 − cNk + (uk)

t
∥∥2
2
, (13)

({dk}Kk=1

)t+1
= argmin

{dk}Kk=1

K∑
k=1

Ω (dk)

+
ρ

2

K∑
k=1

∥∥(gk)
t+1 − dk + (vk)

t
∥∥2
2
. (14)

Updating the scaled Lagrangian parameters: Finally, the
scaled Lagrangian variables are updates as

(uk)
t+1 = (fN

k )t+1 − (cNk )t+1 + (uk)
t, k = 1, . . . ,K,

(vk)
t+1 = (gk)

t+1 − (dk)
t+1 + (vk)

t, k = 1, . . . ,K.
(15)

The {c,d}-update step involves projecting (fN
k )t+1 + (uk)

t

(in (13)) and (gk)
t+1 + (vk)

t (in (14)) onto the constraint set.
First, the entries outside the support (Rm) are mapped to zero
(recall that the filters are zero-padded), followed by projection
onto the unit �2-norm ball.

In the {f , g}-update step, solving problem (11) is equivalent
to solving the following optimization problem

minimize
{fN

k }Kk=1

1

2N

K∑
k=1

∥∥∥f̂N

k � x̂N
k − ẑN

k

∥∥∥2
2

+
1

2N

∥∥∥∥∥
K∑

k=1

f̂
N

k � x̂N
k − ŝN

∥∥∥∥∥
2

2

+
ρ

2

K∑
k=1

∥∥∥f̂N

k − q̂k

∥∥∥2
2
, (16)

where qk � (cNk )t − (uk)
t. By equating the derivative of the

objective in (16) to zero and using the Sherman-Morrison (SM)
formula, the solution to the f -update step is found as

(
f̂
N

k (p)
)t+1

=

(
akp +

(akp)
2|x̂N

k (p)|2
1 +

∑K
k=1 a

k
p|x̂N

k (p)|2

)

×
(
(x̂N

k (p))∗
(
ẑN
k (p) + ŝN (p)

)
+Nρq̂k(p)

)
,

(17)
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Algorithm 1: OCDL Method Proposed in Section III-A.

Input: Training signals {sn ∈ RP }Nn=1, initial dictionary
{d0

k ∈ Rm}Kk=1, sparsity regularization parameter λ;
Initialisation : History arrays α0

k ∈ RP and β0
k ∈ RP ,

k = 1, . . . ,K as zero arrays, {dk}Kk=1 = {d0
k}Kk=1;

1: for n = 1 to N do
2: Find {xn

k}Kk=1 for sn using {dk}Kk=1 and λ by solving
(1);

3: Calculate {αn
k}Kk=1 using (21);

4: Optimize {cnk ,dk}Kk=1 using the ADMM-based
method in Section III-A (recalculate {βn

k}Kk=1

using (22) in every iteration);
5: end for
6: return Learned convolutional dictionary {dk}Kk=1.

where akp � (|x̂N
k (p)|2 +Nρ)−1. Using precalculated values of∑K

k=1 a
k
p|x̂N

k (p)|2, the f -update step can be carried out with the
complexity of O(KP ) using (17).

Problem (12) can be addressed via solving the following
optimization problem

minimize
{gk}Kk=1

1

2N

N∑
n=1

K∑
k=1

∥∥∥ĝk � x̂n
k−t̂

n

k

∥∥∥2
2
+
ρ

2

K∑
k=1

‖ĝk − ŵk‖22 ,
(18)

where wk � (dk)
t − (vk)

t.
The solution to (18) can be found as

(ĝk(p))
t+1 =

βN
k (p) + ŵk(p)

αN
k + ρ

, p = 1, . . . , P, k = 1, . . . ,K,

(19)
where history arrays αN

k ∈ RP and βN
k ∈ RP , k = 1, . . . ,K,

are defined as

αN
k � 1

N

N∑
n=1

(x̂n
k )

∗ � x̂n
k , β

N
k � 1

N

N∑
n=1

(x̂n
k )

∗ � t̂
n

k . (20)

The history arrays are incrementally updated using

αN
k =

N − 1

N
αN−1

k +
1

N
(x̂N

k )∗ � x̂N
k , (21)

βN
k =

N − 1

N
βN−1
k +

1

N
(x̂N

k )∗ � t̂
N

k . (22)

Algorithm 1 summarizes the main steps of the proposed
approximate OCDL algorithm detailed in this section. Unit-
norm Gaussian distributed random arrays can be used as initial
dictionary {d0

k}Kk=1. At the first iteration, dictionary {dk}Kk=1

can be used to initialize {cnk}Kk=1 and {gk}Kk=1. Note that, before
each iteration of the ADMM algorithm, {βn

k}Kk=1 needs to be
recalculated using (22) based on the latest values of {fn

k}Kk=1.

B. Algorithm 2

To improve the performance of the proposed OCDL algo-
rithm, dictionary optimization can be performed exactly for the
latest observed signal sN , while the proposed approximation
method is used for {sn}N−1

n=1 . Thus, the modified approximate

CDL problem is now formulated as

minimize
{dk}Kk=1,

{{cn
k }Kk=1}Nn=1

1

2N

∥∥∥∥∥
K∑

k=1

dk ∗ xN
k − sN

∥∥∥∥∥
2

2

+
1

2N

N−1∑
n=1

K∑
k=1

‖dk ∗ xn
k − cnk ∗ xn

k‖22 +
K∑

k=1

Ω (dk)

+
1

2N

N−1∑
n=1

∥∥∥∥∥
K∑

k=1

cnk ∗ xn
k − sn

∥∥∥∥∥
2

2

+
N∑

n=1

K∑
k=1

Ω (cnk ) .

(23)

The alternating procedure for addressing (23) consists of the
following steps.

1) Optimization of {dk}Kk=1: Solving (23) with respect to
{dk}Kk=1 can be addressed using the following ADMM formu-
lation

minimize
{dk}Kk=1,{gk}Kk=1

1

2N

∥∥∥∥∥
K∑

k=1

gk ∗ xN
k − sN

∥∥∥∥∥
2

2

+
1

2N

N−1∑
n=1

K∑
k=1

‖gk ∗ xn
k − rnk‖22 +

K∑
k=1

Ω (dk)

s.t. gk = dk, k = 1, . . . ,K (24)

where rnk � cnk ∗ xn
k .

The ADMM iterations consist of the following steps:
1) the g-update step: a convolutional least-squares fitting

problem;
2) the d-update step: projection on the constraint set (similar

to (14));
3) updating the Lagrangian multipliers (similar to (15)).
The g-update step requires solving the optimization problem

in the form of

minimize
{gk}Kk=1

1

2N

∥∥∥∥∥
K∑

k=1

ĝk � x̂N
k − ŝN

∥∥∥∥∥
2

2

+
1

2N

N−1∑
n=1

K∑
k=1

‖ĝk � x̂n
k − r̂nk‖22 +

ρ

2

K∑
k=1

‖ĝk − êk‖22 .

(25)

Equating the derivative to zero and using the SM formula,
optimization problem (25) can be solved as

(ĝk(p))
t+1 =

(
bkp +

(bkp)
2|x̂N

k (p)|2
N +

∑K
k=1 b

k
p|x̂N

k (p)|2

)

×
(

1

N
(x̂N

k (p))∗ŝN (p) + β̃
N−1

k (p) + ρêk(p)

)
,

(26)
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Algorithm 2: OCDL Method Proposed in Section III-B.

Input: Training signals {sn ∈ RP }Nn=1, initial dictionary
{d0

k ∈ Rm}Kk=1, sparsity regularization parameter λ;

Initialisation : History arrays α̃0
k ∈ RP and β̃

0

k ∈ RP ,
k = 1, . . . ,K as zero arrays, {dk}Kk=1 = {d0

k}Kk=1;
1: for n = 1 to N do
2: Find {xn

k}Kk=1 for sn and {dk}Kk=1 by solving (1);
3: Optimize {dk}Kk=1 as in Section III-B1;
4: Optimize {cnk}Kk=1 as in Section III-B2;
5: Calculate {α̃n

k}Kk=1 and {β̃n

k}Kk=1 using (28), (29);
6: end for
7: return learned convolutional dictionary {dk}Kk=1.

with bkp � (α̃N−1
k (p) + ρ)−1, where history arrays α̃N

k ∈ RP

and β̃
N

k ∈ RP , k = 1, . . . ,K, are defined as

α̃N
k � 1

N + 1

N∑
n=1

(x̂n
k )

∗ � x̂n
k , β̃

N

k � 1

N + 1

N∑
n=1

(x̂n
k )

∗ � r̂nk .

(27)

The incremental update rules for α̃N
k and β̃

N

k can be found as

α̃N
k =

N

N + 1
α̃N−1

k +
1

N + 1
(x̂N

k )∗ � x̂N
k , (28)

β̃
N

k =
N

N + 1
β̃
N−1

k +
1

N + 1
(x̂N

k )∗ � r̂Nk . (29)

The g-update (26) can be performed with the complexity
of O(KP ) using precalculated values of

∑K
k=1 b

k
p|x̂N

k (p)|2.
2) Optimization of {cNk }Kk=1: In the modified algorithm, dic-

tionary {cNk }Kk=1 is optimized only to provide a more accurate
approximation of sN (in comparison with the approximation
provided using {dk}Kk=1). It means that the second quadratic
term in (23) is ignored in the step of {cNk }Kk=1 optimization.
Here we rely on the fact that CSRs {xN

k }Kk=1 are direct products
of {dk}Kk=1. As a result, considering that the approximation is
based on {xN

k }Kk=1, the resulting {cNk }Kk=1 cannot unfavorably
deviate from {dk}Kk=1. Problem (23), which needs to be solved
now for {cNk }Kk=1 only, is then reduced to the following opti-
mization problem

minimize
{cN

k }Kk=1

1

2N

∥∥∥∥∥
K∑

k=1

cNk ∗ xN
k − sN

∥∥∥∥∥
2

2

+

K∑
k=1

Ω
(
cNk
)
, (30)

which is a CDL problem involving a single training signal, and
can be addressed using the existing CDL methods (e.g., [25]).

The main steps of the presented approximate OCDL algorithm
are summarized in Algorithm 2. Optimization of dictionaries
{dk}Kk=1 and {cnk}Kk=1 (lines 3 and 4) can be initialized using
the existing {dk}Kk=1.

C. Memory Requirements and Computational Complexity

The largest arrays used in the proposed algorithms are of size
KP . The most computationally expensive steps of performing
updates (17) and (26) both have a complexity of O(KP ), which
is slightly dominated by the complexity of DFT that is of

O(KP log(P )) when performed using Fast Fourier Transform.
Thus, the computational complexity of the proposed algorithm
is of the order of KP sequentially performed N times (once for
each signal in the training dataset).

IV. EXPERIMENTAL RESULTS

A. Compared Methods

The performance of the proposed algorithms is benchmarked
against the following state-of-the-art OCDL methods:

OCSC The ADMM-based OCDL method of [27], which uses
the iterative Sherman-Morrison formula for updating the history
arrays;

FISTA The FISTA-based OCDL method of [28] that uses
gradient calculated in the Fourier domain.

In addition, we compare the OCDL methods to the following
batch-CDL algorithm,

ADMM-cns The batch-CDL method of [25] that is based on
consensus-ADMM.

Algorithms 1 and 2 are referred to as “Proposed-1” and
“Proposed-2”, respectively.

B. Datasets

The experiments are conducted using the following 6 image
datasets:

Fruit and City Two small datasets, each composed of 10
images of size 100× 100. These datasets are typically used as
benchmarks for CSC and CDL [20], [21], [27];

SIPI A dataset composed of 20 training images and 5 test
images collected from the UCS-SIPI image database (http:
// sipi.usc.edu/ database/ ). The original images are resized to
dimensions of 256× 256 pixels.

Flicker A dataset composed of 40 training images and
5 test images collected from the MIRFLICKR-1 M im-
age dataset (https:// press.liacs.nl/ mirflickr/ mirdownload.html).
The original images are cropped and resized to dimensions of
256× 256 pixels.

Flicker-large A dataset composed of 1000 training images
and 50 test images collected from the MIRFLICKR-1 M image
dataset. The original images are cropped and resized to dimen-
sions of 256× 256 pixels.

RGB-NIR A dataset composed of 10 pairs of multimodal
visible-light (VL) and near-infrared (NIR) images size
382× 586 taken from the EPFL RGB-NIR scene dataset
(https:// www.epfl.ch/ labs/ ivrl/ research/ downloads/ rgb-nir-
scene-dataset/ ). The RGB-NIR dataset is used for the VL-NIR
imaging experiment presented in Section IV-I.

The initial images are transformed into greyscale and the 8-bit
pixel values are normalized to a range of 0-1 by dividing by
255. As the CSC model is not capable of effectively handling
low-frequency signals, it is a common practice to use high-pass
filtered images for CDL [16], [26], [28]. In the experiments,
the low-frequency components of all images are eliminated
using the lowpass function of the SPORCO toolbox [30] with a
regularization parameter of 5.

http://sipi.usc.edu/database/
http://sipi.usc.edu/database/
https://press.liacs.nl/mirflickr/mirdownload.html
https://www.epfl.ch/labs/ivrl/research/downloads/rgb-nir-scene-dataset/
https://www.epfl.ch/labs/ivrl/research/downloads/rgb-nir-scene-dataset/
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Fig. 1. Datsets Fruit (first row) and City (second row).

TABLE I
λmax VALUES USED FOR DIFFERENT DATASETS

Fig. 2. Comparison of training objective values and training times obtained
using all methods compared for datasets Fruit (top) and City (bottom).

C. Implementation Details

The proposed algorithms employ the unconstrained convolu-
tional sparse approximation method of [25]. We use publicly
available online implementations of the compared methods,
as provided by their respective authors. In all ADMM-based
algorithms (both sparse approximation and dictionary learning)
the maximum number of iterations2 is set to 300, and stopping
criteria discussed in [31, Subsection 3.3] with absolute and
relative tolerance values of 10−4 are used. We use dictionary
filters of size 8× 8 in all experiments.

All ADMM-based algorithms except OCSC use ADMM
extensions over-relaxation [31, Subsection 3.4.3] and varying
penalty parameter [31, Subsection 3.4.1] with initial penalty
parameter ρ = 10 (the same parameters are used in all methods).

2A single ADMM iteration corresponds to the execution of the three ADMM
steps.

Fig. 3. Comparison of the average number of (ADMM and FISTA) iterations
of the OCDL algorithms compared for datasets Fruit (left) and City (right).

The OCSC method incorporates the ADMM penalty parameter
ρ in the history arrays. Thus, this method cannot use varying
penalty parameter extension. For methods OCSC and FISTA,
we use the default parameters set by the authors of the paper
(the stopping criteria of the OCSC method are modified to be
uniform with other ADMM-based algorithms compared).

In all experiments, we use λ = 0.1λmax, where λmax is the
smallest value that results in all-zero sparse representations and
can be obtained using �∞-norm of the gradient of the objective of
convolutional sparse approximation problem (1) at {xk}Kk=1 =
0. Here, the value of λmax is calculated only once using the first
image in the training datasets. Table I reports the values of λmax

calculated for different training datasets used in the experiments.
All algorithms are implemented using MATLAB. All exper-

iments are performed using a PC equipped with an Intel(R)
Core(TM) i5-8365 U 1.60 GHz CPU and 16 GB memory.

D. Comparison Criteria

The effectiveness of the CDL algorithms is typically eval-
uated based on the objective values of the convolutional
sparse approximation problem (1) averaged over the entire test
datasets [27], [28], [32]. A lower objective value indicates a
better performance. For the small datasets Fruit and City, since
there is no test data, the average training objective values are
reported to compare the effectiveness of the optimization al-
gorithms [20]. Using visualized dictionary filters, the OCDL
algorithms are evaluated for their ability to extract (learn) visual
features. The efficiency of the algorithms is measured using the
training times.

E. Small Datasets Fruit and City

Fig. 1 shows the images in the small datasets Fruit and City.
Tables II and III report the average training objective values and
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Fig. 4. Ten randomly selected images from datasets SIPI (top) and Flickr (bottom).

TABLE II
AVERAGE TRAINING OBJECTIVE VALUES AND TRAINING TIMES OBTAINED

USING THE METHODS COMPARED FOR DATASET FRUIT

TABLE III
AVERAGE TRAINING OBJECTIVE VALUES AND TRAINING TIMES OBTAINED

USING THE METHODS COMPARED FOR DATASET CITY

the training times obtained using the methods tested for these
two datasets. To facilitate comparison, the results are presented
as bar plots in Fig. 2. The experiments based on datasets Fruit
and City are performed using dictionary size K = 64.

As can be observed, the ADMM-cns batch CDL algo-
rithm yields the lowest objective function values. However,
this method is not suitable for large datasets as mentioned
earlier. The proposed methods produce objective values that
are comparable to other OCDL algorithms tested. In particular,
Algorithm 2 (Proposed-2) results in the smallest objective for the
Fruit dataset among all OCDL algorithms. For the City dataset,
the OCSC method has the lowest objective compared to other
OCDL methods (slightly better than that of Proposed-2), but
shows a longer training time. As shown in Tables II and III,
the proposed algorithms result in substantially shorter training
times, especially Algorithm 2, which is noticeably faster than
Algorithm 1.

Fig. 3 presents a comparison of the average number of
(ADMM and FISTA) iterations utilized for performing dic-
tionary learning on datasets Fruit and City using the OCDL
methods compared. Specifically, for Proposed-2 method, we
provide the cumulative count of ADMM iterations used for op-
timizing the dictionaries {dk}Kk=1 and {cnk}Kk=1 (lines 3 and 4 in
Algorithm 2). As previously explained in Section IV-C, in the
OCSC method, the ADMM penalty parameter ρ is incorporated
into the history arrays. Consequently, this method is unable

Fig. 5. Comparison of test objective values and training times obtained using
all methods compared for datasets SIPI (top) and Flickr (bottom).

to take advantage of the varying penalty parameter extension
of ADMM, which may account for its comparatively slower
convergence when compared to the other OCDL methods. The
average number of iterations used by the proposed methods and
the FISTA method falls within a similar range. However, since
the proposed methods are significantly computationally more
efficient, they result in substantially shorter training times.

F. Datasets SIPI and Flickr

Fig. 4 depicts 10 images randomly selected from the SIPI and
Flickr datasets. The experiments for SIPI dataset are carried out
using a dictionary size ofK = 80. A dictionary size ofK = 100
is used for the experiments based on Flickr dataset. The average
test objective values and the training times obtained using all
methods tested for these two datasets are reported in Tables IV
and V, and displayed in bar charts in Fig. 5.

As can be seen in Tables IV and V, the ADMM-cns method
achieves the lowest test objective values. However, its advantage
over the OCDL methods is not as noticeable as in the case
of experiments on small datasets Fruit and City. Specifically,



1172 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 9, 2023

Fig. 6. Images from datasets SIPI (top) and Flickr (bottom) and their reconstructions obtained using different CDL methods.

TABLE IV
AVERAGE TEST OBJECTIVE VALUES AND TRAINING TIMES OBTAINED USING

THE METHODS COMPARED FOR DATASET SIPI

TABLE V
AVERAGE TEST OBJECTIVE VALUES AND TRAINING TIMES OBTAINED USING

THE METHODS COMPARED FOR DATASET FLICKR

in the experiments on the larger dataset Flickr, ADMM-cns
performs only slightly better than FISTA and Proposed-2, while
requiring the longest training time. Among the OCDL methods,
FISTA results in the smallest test objective in the experiments on
Flickr, although it takes the longest training time. The proposed
methods result in comparable test objective values to other
OCDL methods while substantially shortening the training time.
In particular, Algorithm 2 has the smallest objective among all
OCDL algorithms for the SIPI dataset.

In Fig. 6, we visually compare images reconstructed using dif-
ferent methods. As can be observed, the proposed approximate
methods yield results of comparable accuracy to those obtained
using the state-of-the-art algorithms.

G. Learning Large Dictionaries

In this experiment, we use the proposed algorithms to learn
large dictionaries of sizes K = 200, K = 300, and K = 400
based on the Flickr dataset. Learning such large dictionaries
over the images of the size of those in Flickr is not practically
feasible using the OCDL methods, OCSC and FISTA. Indeed,

TABLE VI
TRAINING TIMES (SECONDS) USED BY THE PROPOSED METHODS FOR DATASET

FLICKR

in single precision, for K = 200, only the larger history array
of these methods, that is of size K2P , would require more than
10 Gigabytes memory, and thus, would require a specialized
computer, which is not desirable. The learned large dictionaries
are visualized in Fig. 7. It can be seen that all dictionaries learned
are mostly composed of visually valid features. The obtained
training times are reported in Table VI and Fig. 8. As can be
seen, the longest training times obtained using the proposed
methods are still significantly shorter than those resulting from
using other methods tested for learning smaller dictionaries (see
Table V, for example).

H. CDL Over a Large Dataset

In this section, we demonstrate the scalability of the proposed
algorithms using the Flickr-large dataset (with 1000 training
images). Dictionaries composed of K = 100 filters are used in
this experiment. Fig. 9 shows the average test objective values
obtained using the learned dictionaries after processing 1, 10,
100, and 1000 images. The results show that both proposed
algorithms are applicable to large training datasets. However,
Algorithm 2 leads to considerably lower objective values.

I. VL-NIR Imaging

This section assesses the efficacy of the OCDL algorithms
through an image processing task involving the fusion of VL-
NIR images. NIR images are known for their high contrast
resolutions, particularly when capturing vegetation scenes or
imaging in low-visibility atmospheric conditions like fog or
haze. Therefore, they are used to enhance outdoor VL images
based on these properties.

In recent work, we proposed a VL-NIR fusion method based
on OCDL [33]. This method captures correlated features in
NIR and VL images as pairs of convolutional filters in two
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Fig. 7. Large dictionaries learned using the proposed algorithms (top: Proposed-1, bottom: Proposed-2) for dataset Flickr with K = 200 (left), K = 300
(middle), and K = 400 (right).

Fig. 8. Comparison of training times obtained using the proposed algorithms
and dataset Flickr for learning dictionaries of different sizes.

Fig. 9. Results for CDL on Flickr-large dataset using the proposed algorithms:
average test objective values over the number of processed training images (left)
and training time (right).

dictionaries, which are learned in a coupled manner via CSRs
with identical supports, also known as simultaneous CSC.

In this experiment, we utilize the proposed OCDL method
and the FISTA method to perform convolutional coupled feature
learning (CCFL) using the method of [33] and compare the
performances.

Fig. 10. Coupled learned VL-NIR dictionaries.

Specifically, to perform simultaneous CSC in the method
of [33], the �1-norm and �1,2-norm regularization parameters
are set as 0.001 and 0.005, respectively. The parameter setting
of the proposed OCDL method and the FISTA method are as
described in Section IV-C.

Our results demonstrate a significant improvement in terms
of training time, as CCFL over the RGB-NIR dataset using
the proposed method (Algorithm 2) took only 640 seconds
compared to 2547 seconds for the FISTA method.

The learned coupled VL-NIR dictionaries are presented in
Fig. 10, where correlations between the corresponding filters
(coupled VL-NIR features) are clearly visible. An example of
VL-NIR image fusion using the proposed OCDL algorithm
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Fig. 11. VL-NIR image fusion results.

is depicted in Fig. 11, revealing a noticeable improvement in
contrast resolution and visibility range.

V. CONCLUSION AND DISCUSSION

An efficient approximate method for CDL has been presented.
The proposed method is based on a novel formulation of the CDL
problem that incorporates approximate sparse decomposition of
training data samples. We have developed two computationally
efficient OCDL algorithms based on ADMM to address the
proposed approximate CDL problem. The proposed OCDL al-
gorithms substantially reduce the required memory and improve
the computational complexities of the state-of-the-art CDL al-
gorithms. Extensive experimental evaluations using multiple
image datasets for OCDL-based VL-NIR image fusion task
have demonstrated the effectiveness of the proposed OCDL
algorithms.

It is worth mentioning that one advantageous feature of using
ADMM (as it is in the proposed computationally efficient OCDL
algorithms) is its ability to leverage distributed optimization. As
an illustrative scenario, within the proposed Algorithm 2, the
convolutional sparse approximation step (line 2 in Algorithm 2)
can be executed in parallel for multiple input data samples.
Subsequently, the d-update step (line 3 in Algorithm 2) can
be efficiently carried out using consensus ADMM, which is
a distributed implementation of ADMM. This approach can
optimize the dictionary based on input from multiple sources.

With respect to strategies for reducing a possible perfor-
mance gap between the exact (but computationally and memory
hungry) OCDL and the proposed efficient approximate OCDL
methods, one approach is to repeat the inner steps of the proposed
Algorithms (lines 2-4 of Algorithm 1, for example) for a certain
number of iterations. In our extensive simulations, we however
did not observe a noticeable performance gap between the exact
and approximate OCDL methods.
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