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Water quality analysis using mmWave radars
Dariush Salami, Anni Juvakoski, Riku Vahala, Michael Beigl, and Stephan Sigg
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Fig. 1: An IWR1443 radar installed on a wristband.

Abstract—Water quality and drinkability assessment are of
high importance for various applications from monitoring water
utilities to emergency water source evaluation. Traditionally,
water quality assessment is done in laboratories with spacious
and expensive equipment. We propose a wearable, mmWave
Frequency-Modulated Continuous Wave (FMCW) radar based
system to assess water quality. Given its small form-factor, low
price, and its robustness to lighting and weather conditions, this
family of radars can be integrated into wearable devices such
as smart-watches, smart glasses, smart rings, etc. Equipped with
mmWave radar sensors, such wearables enable seamless monitor-
ing of water quality in hands free settings. The proposed system
is able to directly process the In-phase and Quadrature (IQ)
data generated by the radar to detect varying levels of different
contaminants in four different kinds of water. Specifically, it
can identify different concentrations of salt with 100% accuracy,
namely nitrate and chloride, as well as detecting different types
of waters including Reverse Osmosis (RO), tap, river, and well
water with 99.1% accuracy.

Index Terms—mmWave radar, AI, ML, water quality analysis

I. INTRODUCTION

Water is a basic requirement for life. Although indiscernible
for the naked eye, waters may be polluted with e.g. disease-
causing microbes, toxic metals or salt. Probing whether wa-
ter is suitable for drinking or some other purpose involves
laboratory tests, which in turn require special equipment,
trained staff, time and materials. In many applications though,
analysis of water quality needs to be done relatively fast.
Particularly, when the water is in a remote area, it might be
infeasible to transport samples for testing. While microbial
contamination of water can be mitigated with simple methods
such as boiling or filtering, chemical pollution is more difficult

D. Salami, and S. Sigg are with communications and networking department
and A. Juvakoski, and R. Vahala are with Built Environment department, Aalto
University. E-mails: {first name}.{last name}@aalto.fi

D. Salami is also with Nokia Bell Labs, Espoo, Finland.
dariush.salami@nokia-bell-labs.com

M. Beigl is with the Institute of Telematics, Karlsruhe Institute of Tech-
nology (KIT). E-mail : michael@teco.edu

to remove [1]. Therefore, there is an evident need for fast,
easy-to-use, and inexpensive testing of chemical constituents
in water. Unfortunately, existing water analysis technologies
suffer from many problems like only being able to measure a
limited number of parameters, large form-factor, and lack of
wireless systems [2].

Vast improvements to wearable water quality probing could
be brought about by the analysis of reflected electromagnetic
radiation in the mmWave spectrum [3]. mmWave radars have
been successfully applied to many fields from gesture recogni-
tion [4], [5] to localization [6] and glucose level detection [7].
mmWave radars (e.g. IWR1443) feature a small form-factor
given their high frequency and are cost efficient. Hence, they
are suitable for the integration into wearable devices like
smart-watches, smart glasses, smart rings, etc as shown in
Fig 1. We propose wearable water quality assessment that
is able to overcome the mentioned challenges. We introduce
a radar, small enough to be installed in a smart-watch and
demonstrate how the radar’s contact-less functioning is not
hampered by the complexity of water samples. The device is
capable of detecting varying levels of different contaminants
even in complex water samples, which contain a wide range of
other substances. Specifically, it can assess levels of multiple
substances at once. We also suggest future applications for this
technology. Our main contributions are:

• A novel In-phase and Quadrature (IQ) signal processing
pipeline to detect different concentrations of contami-
nants in different kinds of water samples using mmWave
Frequency-Modulated Continuous Wave (FMCW) radars

• An openly available dataset, code 1, and trained models
for verification and follow-up research purposes.

II. RELATED WORK

In recent years, radars have been used to assess water
quality. Common application cases are remote water quality
sensing with devices installed on satellites or airplanes [8].
Further, in-situ radars are installed in liquid tanks or pipes
by companies such as Staal instruments and Uponor 2. In a
nutshell, substances and particles in the water cause charac-
teristic refraction in the reflected electromagnetic components.
A profile of the water composition can subsequently be estab-
lished with machine learning [9]. These radars, however, are
not portable. A good review of contemporary advancements
in portable sensing and bio-sensing used in water quality
assessment was recently done [2]. The authors found that
these assays are mostly unable to accurately assess complex

1https://version.aalto.fi/gitlab/salamid1/water-quality-with-mmwave-radar
2https://bit.ly/3OwI2Dn



(natural) samples. Most of the on-the-go assays are only able
to detect a limited number of pollutants, whilst real samples
can contain a myriad of diverse compounds. Also, the benefits
of portability are often diminished by the lack of a wireless
data systems in many assays, although some can be installed
on smartphones [2]. Portable solutions usually involve carrying
a range of reagents and bulky, yet delicate equipment. They
also require training before they may be used reliably.

III. MMWAVE FMCW RADAR PRINCIPLES

FMCW mmWave radars can sense subtle movements due
to their high frequency. This leads to a small form-factor.
So, this family of radars is becoming increasingly popular.
An FMCW radar transmits a sinusoidal signal with increasing
frequency sweeping across the whole bandwidth through time
(a chirp) shown in Fig. 1. A radar frame consists of number of
chirps. The parameters of the chirp (e.g. slope, chirp duration,
bandwidth), determine the performance of the system (e.g.
maximum range, range resolution).

A mixer in the processing pipeline of the radar generates an
Intermediate Frequency (IF) by subtracting the reflected and
transmitted signals. For each reflection, one IF signal is thus
generated, which has a constant frequency that is proportional
to the round-trip time of the signal component (i.e. the distance
to the reflection). Range, velocity, and angle to the target
are determined by processing the IF signal. The maximum
measurable range is [10]:

Rangemax =
BIF × c

2× S
(1)

where BIF , c, and S are the maximum IF bandwidth, the
speed of light, and the slope of the transmitted chirp, re-
spectively. In this work, an IWR1443 radar is used with a
maximum BIF of 15MHz. Moreover, the maximum Analog
to Digital Conversion (ADC) sampling frequency influences
BIF . For complex sampling mode BIF =

0.9×ADCsampling

2 .
To estimate water quality, we choose a short Rangemax to
focus on the sample, suppressing surroundings.

Range resolution is defined as the smallest distance between
two separately detectable objects. Based on Eq.2, range reso-
lution only depends on the sweep bandwidth of the chirp [10].

Rangeresolution =
c

2×B
(2)

Here, B is the sweep bandwidth of the FMCW chirp. For
the IWR1443 radar, the maximum bandwidth is 4GHz. This
results in a range resolution of approximately 4cm.

We maximize the the chirp duration to have the maximum
ADC samples per chirp. Hence, in our setting, the config-
uration of the radar is as follows: 77GHz start frequency,
3.52MHz/µs chirp slope, 3Msps ADC sampling rate, 2
chirps per frame (with duration 1139µs), 100ms frame period-
icity, and 2000 frames per recording resulting in 1 sec. total
recording per measurement. While this configuration would
result in 3374 samples per chirp, the number of samples is
constrained by the memory of the radar, so that the actual
number of samples is less.

The nature of the reflecting substance (in our case, the
water), affects the the received power Pr of the radar:

Pr =
PtGtGrσλ

2

(4π)3R4
, (3)

where Pt, Gt, Gr, σ, λ, and R are transmit power, transmit an-
tenna gain, receive antenna gain, Radar Cross-Section (RCS),
wave-length, and distance from target, respectively. RCS is a
measure of how detectable a target is for the radar. It depends
on the material, the absolute size, the relative size with respect
to the wave-length, the incident and the reflected angles, as
well as the polarization of the transmitted and the received
signal. Consequently, the material of the target, which is in
our case the content of the water, will affect Pr. This will
result in different reflection patterns or IQ signal of IF.

IV. MEASUREMENT METHOD

The radar generates IQ data representing the IF signal.
The raw data that is captured using a DCA1000 capture
card. In particular, the captured data constitutes a 4D ten-
sor of the shape frames × chirps × ADC samples ×
receive antennas. We process the data directly on the IQ
samples. This mitigates the need for pre-processing (e.g.
frequency conversion). In addition, we show in Section V that
direct IQ sample process is most efficient since it learns better
features and achieves higher accuracy.

Since the IQ data has complex entries, the input ten-
sor should be processed using neural networks that support
complex weights and activation functions [11]. We utilize a
complex-valued 2D-Convolutional Neural Network (CNN) to
process the 3D tensors and assume that data from different
antennas are independent. Consequently, the input tensor has
a shape of window length×chirps×ADC samples where
window length is a hyperparameter that determines the num-
ber of radar frames that should be used to estimate the output
of the network. The architecture of the model is shown in
Fig. 2. To perform the convolution operation on the complex
input, a complex filter matrix W = A + iB with trainable
real vectors of A and B is convolved by the complex input
vector of h = x+ iy. Here, x and y are real vectors since the
complex signal is represented using real-valued entities. This
results in the following convolution operation:

W ∗ h = (A ∗ x−B ∗ y) + i(B ∗ x+A ∗ y) (4)
In Eq. 4, to be able to back-propagate gradients to update
the weights, the activation and the cost function should be
differentiable with respect to the real and imaginary parts
of each complex parameter. As shown in Fig. 2, we use an
activation function called cart relu in the first three layers
of the network. This function applies Rectified Linear Unit
(ReLU) to both real and imaginary part of the matrix:

ReLU(g) =

{
g if g > 0

0 otherwise
(5)

Cart ReLU(z) = ReLU(R(z)) + iReLU(I(z)) (6)
where R(.) and I(.) are the real and imaginary parts of
the input complex number, respectively. In the CMaxPoolND



layer, the only difference between the real and complex-valued
parts is the absolute value of the complex input to calculate the
element-wise maximum. Finally, the abs activation function
computes the absolute value of the complex input and returns
it. We further propose a second model based on 3D-Complex
CNN which accepts a 4D tensor of shape window length×
chirps×ADC samples× receive antenna. In contrast to
the first model, here we assume that the receive antennas are
not independent. Hence, we keep them as the last dimension of
the input to be processed by a 3D-complex CNN. Equations 4
and 6 still hold for this case. In both models, a SoftMax
activation function concludes the layers of complex CNN, max
pooling, and dense layers to calculate the class probabilities.

V. EVALUATION

We evaluate the system on two settings. First, we identify
Reverse Osmosis (RO) water with different levels of con-
tamination including table salt and nitrate. Furthermore, we
classify water samples from different sources. We analyze the
capabilities of the radar to detect varying concentrations of
contaminants (arsenate, fluoride, nitrate and table salt) in four
different sample types of RO, tap, well and river water.

A. Experiment Setup

The experiment was designed as if the sensor was integrated
into a Smartwatch-like device (see Fig.1): The radar sensor
was placed in a similar way as it would have been the case
when using a smartwatch, i.e. as if the forearm with the sensor
were held over the glass of water. For development purpose,
we used an IWR1433 BOOST and a DCA1000 interface board
connected to a PC for our experiments (see Fig.3.d).

Different sample concentrations were prepared by adding
corresponding masses of table salt (NaCl), potassium nitrate
(KNO3, a typical water pollution in farming areas), sodium
arsenate (Na3AsO4, a seldom natural poison in water) and
sodium fluoride (NaF, an inorganic compound that needed for
humans, often used in fluoridation but can be dangerous in
heavy doses) to either RO, tap, well or river water. Identical
glass beakers were used as sample vessels during measure-
ment. The volume of each sample was 50 ml and the radar
was fixed at a distance of 7cm from the surface of samples
(Fig. 3.d). For each sample, we record 2000 radar frames in 4
trials of 500 frames. The collected data was divided into train
(70%), validation (10%), and test 20% sets. An early stopping
mechanism with patience of 50 epochs prevents overfitting.

B. Water Contamination Detection

First, we perform salinity level detection. We define seven
classes of water for salinity detection: RO water with 0, 10, 20,
30, 40, 50, and 60gr/liter of salt. First, we analyze the IF sig-
nal for three samples of 0, 30, and 60gr/liter in the frequency
domain. To visualize the reflection pattern for different salinity
levels, the frequencies with Fast Fourier Transform (FFT)
magnitude below 10 percent of the magnitude of the dominant
FFT component are empirically filtered out. Then, peaks are
identified using the Constant False Alarm Rate (CFAR) [12]

TABLE I: Characteristics of water sources. Turbidity and
electrical conductivity are shown in Nephelometric Turbidity
Unit (NTU) and Millisiemens per Meter (mS/m) units.

feature/water RO tap river well
pH 5.4 7.9 7.5 6.9
Turbidity 0.08 0.2 6 0.9
EC 0.23 16.1 21.2 18.7

TABLE II: The result for salinity level detection of RO water
and the water type detection for five different models. The best
Acc., Area Under ROC Curve (AUC), and Average Precision
(AP) per row are denoted in bold typeface.

Salinity Level Water Type

Model Acc. AUC AP Acc. AUC AP

SVM 69.2 93.4 69.8 55.4 89.1 50.3
PCA-SVM 64.9 92.1 65.3 50.1 87.3 48.1
FFT-MLP 83.5 98.2 83.7 80.8 97.1 79.3

2D-C-CNN 100 100 100 95.1 99.9 94.8
3D-C-CNN 100 100 100 99.1 100 99.5

algorithm. As shown in Fig. 3, samples from the same salinity
level share similar patterns suggesting that the radar can pick
up the difference between waters with different levels of salt.

We compared our approach to three other FFT-based models
to classify water samples with different levels of salt in
Table II. Both proposed models outperform other approaches
with an accuracy of 100%. We conclude that end-to-end
processing of the IQ signals is more effective than using the
signal in the FFT domain.

In the second part of the experiment we trained four
binary classifiers on four types of water to identify lower
concentrations of table salt, potassium nitrate, sodium arsenate,
and sodium fluoride. Since the safety level for arsenate and
fluoride is quite low (0.01 and 1.5mg/liter, respectively), the
system could not identify them even the concentration that
was 50 times higher than the safety level. For table salt and
nitrate, the system was able to achieve an accuracy of 100%
for a minimum concentration of 500ml/liter.

C. Water Type Detection

In this section, we analyze the ability of the models in
identifying water from different sources (RO, tap, river, and
well water). The characteristics of these waters are shown
in Table I. Both proposed methods identify different water
sources efficiently with an accuracy of up to 99.1% (TableII).
Hence, they are practical for the detection of drinkable water.

VI. CONCLUSION

Here we demonstrate an approach for wearable water
quality estimation utilizing miniature mmWave radar devices.
Without additional equipment, the radar is capable of detecting
even low concentrations of substances like nitrate and salt
(NaCl). The system is able to identify contaminant levels
above 500 ml/l as well as the source (type) of water. This
portable radar, which can be integrated within a smart watch,
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Fig. 2: Proposed model for classifying the samples directly by processing IQ signals
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Fig. 3: Peaks in range-FFT after applying CFAR algorithm for
random samples of: (a) RO water without salt, (b) RO water
with 30 gr/liter of salt (roughly the same salinity as sea water),
(c) RO water with 60 gr/liter of salt (d) experimental setup

could have a myriad of applications in various kinds of water
and liquid quality testing. An application for the proposed
system is liquid quality estimation, i.e. whether it adheres
to a trained target profile. This is a necessary daily task in
industries dealing with liquids ranging from drink to gasoline
production. Tons of resources could be saved if resource-heavy
liquid testing could be done in a fraction of time.

Prospectively, the radar may pick up on dangerous con-
centrations of harmful chemicals to benefit on-the-spot water
quality testing. As the detection limit of the radar in 500mg/l
of a contaminant (at least for nitrate and table salt), it might
not be a feasible tool for e.g. detecting if arsenic or fluoride
levels are slightly elevated in drinking water. This is because
the safety limits of such substances are extremely low [13],
[14], [1]. However, the radar is able to detect slightly more
prominent changes in water or liquid profiles. Therefore the
radar could be trained to aid hikers in assessing whether

water from a stream is drinkable, i.e. if it has a non-complex
chemical structure with low concentrations of substances. The
radar could also be used for finding sources of pollution in
water bodies. Overall, the radar can be used when there is a
need to quickly determine whether the quality of a liquid is
significantly different compared to a base-line.

In the experiments we used an evaluation board of the radar,
as a next step we plan to use the stand-alone radar shown in
Fig. 1 and integrate it into a smart-watch. Moreover, we plan
to perform more experiments with other types of pollutants.
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