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New Robust Sparse Convolutional Coding Inversion
Algorithm for Ground Penetrating Radar Images

Matthieu Gallet, Ammar Mian, Guillaume Ginolhac, Senior Member, IEEE, Esa Ollila, Senior Member, IEEE,
Nickolas Stelzenmuller

Abstract—In this paper, we propose two algorithms to enhance
the interpretability of the hyperbola in B-scans obtained with
a Ground Penetrating Radar (GPR). These hyperbolas are the
responses of buried objects or cavities. To correctly detect and
classify them, a denoising is typically necessary for GPR images
as the signal-to-noise ratio is low, and the various interfaces
naturally present in the earth have a strong response. Both
algorithms are based on a sparse convolutional coding model
plus a low rank component. It is solved through an Alternating
Direction Method of Multipliers (ADMM) framework. In order
to take into account the presence of outliers and the artifacts
caused by the acquisition, the second algorithm is based on the
Huber norm instead of the classic L2-norm. These algorithms
are tested on a real dataset labeled by geophysicists. The results
show the denoising efficiency of this approach, and in particular
the robustness of the second algorithm.

Index Terms—Ground Penetrating Radar, Sparse Inversion,
Convolutive Model, Robust methods

I. INTRODUCTION

Ground Penetrating Radar (GPR) consists in transmitting an
electromagnetic wave in the ground [1]–[3]. This wave can be
reflected by buried objects or cavities to be then received by
the radar. The linear displacement of the radar antenna during
a measurement allows the system to create a 2D image which
is called a radargram or B-scan. Since the radar is moving and
several acquisitions are made, the response of an object has a
form of hyperbola. Material interfaces, such as air-earth, rock-
soil, among other naturally occurring layers in the earth also
reflect the radar signal. These refelections are visibile in the
B-scan, often appearing as quasi-horizontal lines. An example
of B-scan with one main object, the response of the ground
and the response of a layer is shown in Figure 1.

A typical objective in the analysis of a GPR image is to
classify the underground objects. The main information about
the object is contained in the shape of the hyperbola. For
this task, several classification methods [4]–[11] have been
proposed that are based on supervised approaches like deep
neural networks. These methods require a relatively large
amount of labeled data to achieve an acceptable classification
accuracy. However, the accurate labeling of B-scans is often
difficult, even for trained users of GPR systems, due to the
low Signal-to-Noise Ratio (SNR) of the objects of interest.
Moreover, the responses of the various interfaces naturally
present complicate the interpretation of the shape of the
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hyperbola. The improvement of the quality of these images
would allow a more accurate interpretation and classification
of objects found in GPR images.

One strategy to improve image quality involves increasing
signal diversity in order to better distinguish the contribution
of the various sources. For example, a stepped frequency GPR
is used in [12] which improves the SNR and increases the
effective depth of the measurement. Higher SNR has also been
reported from measurements using novel GPR systems such as
those using polarization diversity (like in Polarimetric SAR)
or a Multiple Input Multiple Ouput radar [13]. The later option
greatly increases the resolution of the B-scans. Unfortunately
these novel systems are often impractical given cost, weight,
and size constraints. For example, drone-based measurements
are increasingly common, and impose strict size and weight
constraints on GPR systems. To improve the quality of the
images, it is then necessary to resort to signal or image
processing techniques. For example, Kalman filters are often
used signal processing technique for detection/localization
of buried landmines as in [14]. An improvement of this
method using a particle filter is proposed in [15]. A landmine
detection method based on hidden Markov model has been
proposed in [16]. A main problem in B-scan images is the
responses of the ground and the layers which are removed
by a correlation-based approach in [17] or a PCA-based
approach [18]. Statistical approaches have been also proposed
in the literature. A seminal work [19] developed an energy
detector. A more elaborated detector based on a GLRT is
given in [20]. This method takes into account the correlation
of the noise but it works column by column and assumes that
the noise is Gaussian. A detector working on the full image
and considering non-Gaussian noise has been developed in
[21]. This method improves the object detection and allows to
remove clutter. These methods have been shown to be effective
in improving the SNR and detection performance, but they are
often targeted to a specific type of object, such as landmines
or pipes and do not allow a better classification since the
information regarding the properties of the hyperbolas is lost.

In order to develop approaches that are applicable to a
wide range of objects, we investigate inversion algorithms.
In the GPR domain, most inversion methods are based on
a precise physical model by computing for example the
Green’s function. These approaches consist then in applying
a full waveform inversion algorithm which is based on a
simple L2 norm and a Thikonov regularization [22]–[24]
or an interpolation [25]. Approaches based on compressive
sensing [26] have also been proposed. However, all of these
models require a complex computation of the direct model
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and do not take into account layer suppression. For the latter,
a spatial-averaging-based pre-processing step or PCA-based
approaches as in [18] are often used before inversion. Methods
using deep learning have also been developed in [27], [28]
[29]–[31] but these types of approaches require a learning
step which is non-robust to datasets of different modalities
(frequencies of the radar, elevation, ...). In order to use the
inversion approach but with a simple model for the dictionary,
the sparse coding representation is a well-suited model to
correct the shape of the hyperbola in B-scan images [32],
[33]. Indeed, the dictionary could be easily constructed from
a family of hyperbolas and even estimated from the data, as
in [34]. But as for the previous algorithms, these methods
do not take into account the responses of the ground and
the layers. A seminal work combining the suppression of the
clutter and the enhancement of the hyperbola was proposed in
[35]. The method is based on the Robust Principal Component
Analysis (R-PCA) initially proposed in [36] and extended to
the convolutional model in [37]. The proposed algorithm is
effective because it removes the contribution of the ground
and the layers while the hyperbola is enhanced, allowing
better interpretation of the B-scan image. But some drawbacks
remain such as the construction of the dictionary which does
not explicitly use the physics of the wave propagation. This
can lead to physically unrealistic hyperbola which can reduce
the performance of the final algorithm.

In this paper, we propose a realistic way to build our
dictionary with limited size while keeping a good represen-
tation of all possible hyperbolas. One drawback of algorithm
proposed in [35] is that it is not very robust to noise and
other artifacts caused by the acquisition of the data (such as
outliers, disalignment, ...). To take such effects into account,
we propose a new inversion approach based on the Huber
norm [38]. This new operator is well known to be more
robust than the classical norm in optimization algorithms with
regards to outliers and high noise levels. To the best of our
knowledge, this is first time that this operator is used in a
sparse convolutional coding estimation with the presence of a
low rank contribution. In this paper, we develop an Alternating
Direction Method of Multipliers (ADMM) framework to solve
the optimization problem using L2-norm and robust Huber
norm. Both algorithms are presented and differences in their
steps are underlined. In particular, we discuss the choice of the
different hyper-parameters of the algorithms as well as how to
improve its convergence.

Finally, both algorithms are tested using a dataset provided
by the Geolithe company. This dataset consists of several B-
scan images composed of different objects of interest. The
main advantage of this dataset is that it is labeled by geo-
physicists from the company, who provided the corresponding
mask images locating and labeling the different hyperbolas.
We use these data to demonstrate the effectiveness of the
robust approach in removing noise and acquisition artifacts
from the images.

We summarize the main contributions of the paper in the
following: i) we propose a realistic way to build our dictionary
with limited size while keeping a good representation of
all possible hyperbolas. This dictionary is based on physical

TABLE I: Notations and definitions used in the paper

General:
. R is the set of real numbers and C is the set of complex numbers
. lowercase (resp. uppercase) bold letter denote vectors (resp. matrices)
. (•)T (resp. (•)†) denotes the transpose (transpose conjugate) operator
. | • | is the absolute value (resp. modulus) for a real-valued (resp.

complex-valued) scalar
. ∥ • ∥2 is the L2-norm, ∥ • ∥1 is the L1-norm, ∥ • ∥∗ is the nuclear

norm and ∥ • ∥H is the Huber norm defined at (15)
. ∗ (resp. ⊛) is the convolution operator for functions (resp. matrices)
. ⊙ denotes the Hadamard product
. for a vector x of dimension d, diag(x) is an operator that returns a

diagonal matrix of size d× d.
. for a matrix X, vec(X) yields its vectorization while unvec(•) allows

to get back the matrix
. F(•) is the Fast Fourier Transform of a matrix. F−1(•) is the inverse

transform
. given a multivariate function f with scalar output, ∇xf denotes the

gradient of f with regards to the elements of vector x
. δ(x) is the Dirac function equal to 1 for x = 0 and equal to 0

everywhere else
. I is the identity matrix and 1d is the vector of dimension d with all

elements equal to 1.
Inversion model:

. Nt, Nx denote the number of samples in dimensions t and x. K is the
number of atoms in the inversion model

. Y, N, L, Hk , Ck , Sk and M are matrices of size Nt ×Nx

. the notation {•k} is used to simplify {•k}k=1,...,K

Physics:
. c is the speed of light, ϵr stands for relative permittivity, σ stands for

conductivity and ω is the RADAR frequency.
Optimization and ADMM framework:

. λ is a sparsity favoring hyperparameter

. L̃ and S̃k are the dual variables of L and Sk

. L is the augmented Lagrangian

. ρL and ρS are the augmented Lagrangian penalty parameters regarding
L and S

. •(i) is the value of a parameter at iteration i of the global ADMM
algorithm.

. for matrices Y, Hk , Ck , Sk , S̃ and L̃, we define y, hk , ck , sk , s̃k
and l̃ by applying the operation vec(F(•))

. Sγ(•) is the proximal soft thresholding operator (28)

. Tγ(•) is the proximal singular value thresholding operator (34)

. PHγ,δ(•) is the Huber proximal operator (25)

considerations and could be built for any dataset by using the
RADAR parameters and a linescape on the permittivity and
the radius of the object. ii) we develop a new robust inversion
algorithm by replacing the L2-norm of [35] by robust Huber
norm. The ADMM framework is used to solve the optimiza-
tion problem with new updates for the low-rank contribution
and the coefficient maps. Note that this approach is non -
supervised and do not need any training steps and labeled
data. iii) The proposed algorithms shows a real improvement
on a real dataset.

The article is structured as follows. Section II presents
the data model and the procedure for building the dictionary
dedicated to GPR images. In the Section III, the algorithm
inspired by [35] is given. The main contribution of the paper is
given in Section IV where the new optimization problem with
Huber norm and the corresponding algorithm are described.
Finally both algorithms are tested on a real dataset in the
section V. Table I summarizes the notations used in throughout
the paper.
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Fig. 1: Example of a B-scan y(x, t) with t the delay of the
wave and x the displacement of the radar.

II. DATA MODEL OF GPR

In this section we introduce a modeling of the measured
GPR data by splitting the backscattering of buried objects from
clutter and noise components. From this model, we obtain
a formulation involving a sparse convolutional coding of
probable targets backscattering. Finally, a physical modeling is
proposed to construct a dictionary of possible target responses
that will be subsequently used in section III.

A. Data model

A B-Scan radargram can be decomposed as follows:

y(x, t) = s(x, t) + cl(x, t) + n(x, t) (1)

where:
• n(x, t) is a noise component relative to the acquisition
• s(x, t) is the backscattering of the different targets. Given

the acquisition paradigm of GPR, a single target signal
is hyperbola-shaped. In the presence of multiple targets,
we have a sum of different hyperbolas [35]:

s(x, t) =

K∑
k=1

ck(x, t) ∗ hk(x, t) (2)

where hk(x, t) is the image of a centered hyperbola and
ck(x, t) the corresponding coefficient map.

• cl(x, t) is a clutter component representing all the ele-
ments which cannot be represented by eq.(2) such as the
response of the different layers in the ground.

Since the signal y(x, t) is sampled in both dimensions, we
obtain a matrix which can be written in the form:

Y =

K∑
k=1

Ck ⊛Hk + L+N, (3)

where the dimensions of the matrices are equal to those of the
B-scan image, i.e. Nx ×Nt and ⊛ is the matrix convolution
product. The matrix L contains the responses of the clutter
such as horizontal layers or acquisition artifacts. This matrix is
assumed to be low-rank since those clutter signals are similar
between themselves. The matrix N is mainly composed of the

contributions of the different noises. Each Hk represents the
hyperbola signal of each individual target in the scene and Ck

is its corresponding mapping. In this scenario, Ck is expected
to be very sparse, i.e., it has a few values where each target
is located.

When the targets are not precisely known, this model allows
to consider a large dictionary of possible target signatures
{Hk}k=1,...,K for which even fewer associated mappings
{Ck}k=1,...,K are non-zeros. We propose hereafter to con-
struct such a dictionary of target signatures based upon a
physical modeling of the interaction between a buried object
and the emitted electromagnetic wave.

B. Construction of the dictionary {Hk}k=1,...,K

In [35], the dictionary is not completely related to the phys-
ical behavior of the buried objects, which leads to a dictionary
with outlier elements. Figure 2 displays two elements of the
dictionary developed in [35]. We notice that the element shown
in the left image is a hyperbola with a physically-plausible
shape, but the element on the right panel has an unrealistic
shape that will never be present in real GPR images. To
overcome this issue, we propose a new way to build our
dictionary based on the physics of the GPR signal.

Fig. 2: Two elements of the dictionary developed in [35]: the
left one has a correct shape whereas the right one is an outlier.

First, we recall the expression of the Ricker wavelet which
is the transmitted signal by the GPR [39], [40]:

r(t|ωmax) = (1− ω2
maxt

2

2
) exp(−ω2

maxt
2

4
), (4)

where ωmax is the maximal pulsation (in rad · s−1) of the
RADAR. By using the Ricker formulation (4), we are now able
to construct the atom of our dictionary by using the following
expression:

h(x, t) = A(x, t) · (r(t) ∗ δdirac(t− g(x))), (5)

where A(x, t) is an attenuation value which ensures the finite
dimension of the hyperbola and g(x) is the hyperbola defined
by:

g(x|x0, t0, a, p) = a
√
p2 + (x− x0)2 + t0 − pa (6)

where (x0, t0) is the top of the hyperbola. It is useful to
connect (x, t) to the true dimensions of a GPR image and
we propose the following interpretation:

• the number of pixels along the x axis and the distance
covered by the radar in meters,

• the number of pixels along the t axis and the propagation
time (one way) of the electromagnetic wave.
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Thus the dimensions x and t become physical (respectively
meter and second). We denote the sampling intervals in both
dimensions (∆x,∆t). The choice of x0 and t0 can be made
to maximize the size of the hyperbola in the matrix, and we
choose x0 = max(x)/2, t0 = max(t)/4. A precise position
does not matter since the convolution product allows us to
correctly place the hyperbola in the final image. An example
of Ricker wavelet and the corresponding attenuation matrix
A(x, t) are shown in Fig. 3.
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Fig. 3: Main elements of the dictionary construction: Ricker
wavelet (left) r(t|fmax) with fmax = 350MHz (blue) and
fmax = 150MHz (orange) and attenuation matrix right A(x, t)
(right).

To obtain all the atoms of the dictionary, we have to
compute several hyperbola g(x) of (6) by choosing different
values of p and a. These parameters are linked to the physical
properties of the materials crossed by the transmitted signal
of the GPR and could be written as follows:

p = t0
v
2 +R

a = 2
v

, (7)

where:
• R is the radius of the target illuminated by the RADAR,
• v is the wave speed and is expressed w.r.t to physical

parameters of the traversed material:

v =
c(

µrϵr
2

[√
1 + ( crω )2 + 1

])1/2 , (8)

with c being the speed light, ω the RADAR pulsation, µr

the relative permeability of the material, ϵr the relative
permittivity of the material and cr the conductivity of the
material.

Since the materials are mostly non-magnetic and non-
conductive, µr and cr will be the same for all experiments
(µr = 1 and cr = 0)1 which leads to a simplification of (8):

v = c/
√
ϵr (9)

Therefore, we are going to choose different relative permit-
tivity ϵr besides R to build our dictionary. We propose two
choices to find an interval of relative permittivity: either to
have several relative permittivity ϵr depending of the scene
illuminated by the RADAR or to compute an effective per-
mittivity ϵ that takes into account a possible target of relative

1Because of the small conductivity to the target materials such as wood,
silica and plastic

permittivity ϵi embedded in a material of relative permittivity
ϵm. This latter is obtained by the Maxwell-Garnett model:

ϵ = ϵm
2δi(ϵi − ϵm) + ϵi + 2ϵm
2ϵm + ϵi − δi(ϵi − ϵm)

(10)

where δi is the fraction of the inclusion of the target in the
material.

To conclude, we resume the way to easily build a dictionary.
First, we simply take some parameters of the RADAR like
fmax, ∆x and ∆t. Finally, by varying ϵ (or simply ϵr),
and R, we obtain a collection of hyperbolas giving us the
dictionary {Hk}1,K . The interval of ϵ and R can be large but
it is important to avoid having a dictionary that is too large,
especially for computational complexity and memory issues.
An example of four atoms are shown in Fig. (4). We notice
that the convolution of g(x) by the Ricker wavelet function
r(t) allows to obtain the triple polarity (-/+/-) which is a main
characteristic of GPR images as shown in Fig. 1.

A B

C D

Fig. 4: Main elements of the physical dictionary proposed in
the paper (ωmax = 2πfmax = 2π · 350MHz ∼ 2.2e9 rad.s−1,
∆x = 0.0101 m and ∆t = 0.105·10−9s). A: ϵr = 1, R = 0.2,
B: ϵr = 1, R = 2, C: ϵr = 100, R = 0.2 and D: ϵr = 100,
R = 2

III. CLASSICAL CONVOLUTIVE INVERSION

In Section II we proposed a model of the GPR signal
involving an useful signal, clutter elements and noise. The
useful signal is described using a sparse coding of possible
target signatures in dictionary related to physical parameters of
the scene. We consider the problem of estimating the mapping
{Ck}k=1,...,K and clutter matrix L allowing us to study the
composition of a GPR image in terms of buried targets and
layer composition.
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A. Posing the inversion problem

In order to invert the GPR model, the following optimization
problem function is proposed in [35]:

({Ck},L) = argmin
{Ck},L

∥Y −
K∑

k=1

Ck ⊛Hk − L∥22︸ ︷︷ ︸
data fidelity

+ λ

K∑
k=1

∥Ck∥1︸ ︷︷ ︸
sparsity promotion

+ κ∥L∥∗︸ ︷︷ ︸
rank minimization

,

(11)
where λ and κ are penalty parameters. This cost function is
designed to take into account three effects:

• data fidelity term measures the discrepancy of the model
to the measured image signal,

• a sparsity promoting term by using a L1-norm on each
coefficient map Ck,

• a rank minimization term by using a nuclear-norm on the
clutter matrix. While not strictly minimizing the rank, it
is known to promote low-rank solutions while retaining
convexity [41].

B. Solving using an ADMM formulation

In order to solve the sparse deconvolution problem (11)
with additional variables, several approaches can be leveraged
as discussed in [42]. The ADMM framework in particular is
reportedly the most efficient approach compared to others such
as FISTA [43, Sec. IV.B]. The idea behind the ADMM is
to split the optimization problem into sub-problems involving
only one unknown at a time [44], making it easier to handle
problems having as many unknowns as in GPR inversion
problem.

In order to apply this framework, we introduce auxiliary
variables {Sk}k=1,...,K

2. This permits the same formulation
in the augmented Lagrangian of (13). In this case we discard
κ since the interplay between λ and ρS parameters can be
used to favor rank-minimization: minimize ∥L∥∗ + λ

∑K
k=1 ∥Sk∥1

s.t Y =
∑K

k=1 Ck ⊛Hk + L
∀k, Sk = Ck

(12)

The augmented Lagrangian of this problem is as follows:

L
(
{Ck}, {Sk},L, {S̃k}, L̃

)
=

ρS
2
∥

K∑
k=1

Ck − Sk + S̃k∥22+

∥L∥∗ +
ρL
2
∥Y −

K∑
k=1

Ck ⊛Hk − L+ L̃∥22 + λ

K∑
k=1

∥Sk∥1

− ρS
2
∥

K∑
k=1

S̃k∥22 −
ρL
2
∥L̃∥22,

(13)

2Note that the term attached to the data has been replaced by the additional
constraint

where {S̃k}k=1,...,K and L̃ are the dual variables of
{Sk}k=1,...,K and L, and, ρS and ρL are Lagrangian penalty
parameters3.

The ADMM framework solves separably each optimiza-
tion problem for one variable (by assuming the remaining
constants) and iterates until convergence. It is applied here
by solving the augmented Lagrangian iteratively for variables
{Ck}, then {Sk} and L (by assuming the remaining ones
constants). At each iteration, we also update the dual variables
thanks to the residual of the equality constraints. The algorithm
to solve (13) has been proposed in [35]. A summary is given
in A with the notations used in this paper.

In next section we propose an improvement of this approach
by replacing the L2-norm by a robust norm to obtain better
performance of denoising.

IV. ROBUST CONVOLUTIVE INVERSION

In previous section, we have solved the optimization prob-
lem (11), where the attach to the data is performed by ex-
ploiting a L2-norm on the residual between the reconstructed
image and the original one. This approach is efficient in the
absence of outliers or when the original B-scan image is
subjected to low-level of noise. But when some outliers, such
as discontinuities in the radargram due to poor pre-processing,
are present or when the measurement is very noisy this method
performs poorly. Indeed, in those scenarios, the use of the
L2-norm will favor solutions that replicate those outliers and
noise components. For such cases, it is possible to mitigate
these effects by employing a robust cost function that finds
a compromise between outlier rejection and closeness to the
original problem. In this section, we propose to employ the
well-known Huber norm [38] used in linear regression tasks. In
particular, we consider the modified Huber function proposed
in [45] to handle the case of complex-valued data in the Fourier
domain when handling the sub-problem to find {Ck}:

Hδ(x) =

{
|x|2 , |x| ≤ δ

2δ|x| − δ2 , |x| > δ
, (14)

where δ is a parameter allowing to perform a compromise
between a cost close to the L2-norm (high value of δ) and
a cost reducing the effect of outliers (lower value of δ). In
practice, it can be estimated using the empirical distribution
of the image pixel values and selecting a quantile. Based on
this function, we define the Huber norm of a vector x ∈ Cp:

∥x∥2H =

p∑
i=1

Hδ(xi). (15)

The derivative function of (14) will also be needed and is equal
to:

Ψδ(x) =

{
x , |x| ≤ δ

δ sign(x) , |x| > δ
, (16)

where sign(x) is equal to 0 when x = 0 and equal to x/|x|
otherwise.

3See [44, chap. 3] for details on the algorithm and definition of the terms
used.
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Using Huber’s norm we have the following optimization
problem:

argmin
{Ck},L

∥Y −
K∑

k=1

Ck ⊛Hk − L∥2H + λ

K∑
k=1

∥Ck∥1 + κ∥L∥∗,

(17)
that we rewrite into the form given below in order to exploit
the ADMM framework:

minimize ∥Y −∑K
k=1 Ck ⊛Hk − L∥2H

+κ∥M∥∗ + λ
∑K

k ∥Sk∥1
subject to M = L

∀k, Sk = Ck

, (18)

where M is an auxiliary variable introduced to decouple the
minimization of the rank of the clutter from the minimization
of the Huber-norm. This implies that a new step for the
variable M needs to be introduced to the ADMM iterations.
The augmented Lagrangian of this new problem is as follows:

L
(
{Ck}, {Sk},L,M, {S̃k}, L̃

)
= κ∥M∥∗ + λ

K∑
k=1

∥Sk∥1

+ ∥Y −
K∑

k=1

Ck ⊛Hk − L∥2H +
ρS
2
∥

K∑
k=1

Ck − Sk + S̃k∥22

− ρS
2
∥

K∑
k=1

S̃k∥22 +
ρL
2
∥M− L+ L̃∥22 −

ρL
2
∥L̃∥22.

(19)
We describe below the derivation of the updates for each

variable. Main contributions for this algorithm are in the
updates of {Ck} and L. A value of a variable at a given
iteration i is denoted •(i). A summary of the algorithm is
presented in Algorithm 1.

A. Update {Ck}
As this problem involves a heavy convolution, we can

transpose this problem to the frequency domain with a Fast
Fourier Transfrom (FFT) as in [43]. We vectorize the resulting
matrices. For matrices Y, Hk, Ck, Sk and S̃, of size Nt×Nx,
we define vectors y, hk, ck, sk and s̃k of size N = NtNx by
applying the operation vec(F(•)). Note that these vectors are
now complex-valued due to the FFT operation.

We also define the following variables zk = sk + s̃k and
x = y − l, and rewrite minimization of (19) w.r.t {Ck} into:

{ck}(i+1) = argmin
{ck}

∥
K∑

k=1

hk ⊙ ck − x∥2H

+
ρS
2
∥

K∑
k=1

ck − zk∥22,

where ⊙ is the Hadamard product and ∥ • ∥2 is the L2-
norm on complex vectors. Replacing the Hadamard product
with a matrix product by concatenating the K different vec-
tors to form the new KN vectors c = [cT1 , . . . , c

T
K ]T and

z = [zT1 , . . . , z
T
K ]T and defining a N ×KN matrix

H = [diag(h1), . . . ,diag(hK)],

Algorithm 1: Robust Inversion of GPR model with
ADMM
Data: Image Y ∈ RNt,Nx , dictionary

{Hk ∈ RNt,Nx}k=1,...,K

Parameters: Sparsity parameter λ, Low-rank
parameter κ, lagrangian penalties ρS, ρL,
stopping criterion ξ

Result: Coefficients maps {Ck ∈ RNt,Nx}k=1,...,K ,
clutter matrix L ∈ RNt,Nx

Initialize {C(0)
k }k=1,...,K , {S(0)

k }k=1,...,K , L(0), M(0),
{S̃(0)

k }k=1,...,K and L̃(0) with zeros
Precompute Fourier elements y, {hk} as in IV-A
i← 0
while η(i) > ξ as in (30) do

Compute c
(i)
k , s(i)k , s̃(i)k and l̃(i) as in IV-A

Update {C(i+1)
k } with (22), {S(i+1)

k } with (27),
M(i+1) with (29) and L(i+1) with (26)
∀k, S̃(i+1)

k = S̃
(i)
k + S

(i+1)
k −C

(i+1)
k

L̃(i+1) = L̃(i) +
∑K

k=1 C
(i+1)
k ⊛Hk + L(i+1) −Y

i← i+ 1

so that the optimization problem becomes:

c(i+1) = argmin
c
∥Hc− x∥2H +

ρS
2
∥c− z∥22, (20)

We have to compute the gradient of this equation w.r.t. c.
For the second term, we have the same result as in the
classical inversion (see [35] or A), but for the first term, the
derivative is given by H†Ψδ (Hc− x) where the function
Ψδ is applied element-wise. We introduce the new vector
rδ = [Ψδ (Hc− x)]. By using the structure of matrix H and
using linear algebra identities, the total gradient is given by:

∇cL = h† ⊙ (1K ⊗ rδ) + ρS(c− z), (21)

where h = [hT
1 , . . . ,h

T
K ]T. This equation does not admit

an analytical solution and we use a simple gradient descent
approach method to estimate c(i+1):

c
(i+1)
0 = c(i),

c
(i+1)
j+1 = c

(i+1)
j − ζc

j
∇

c
(i+1)
j
L,

(22)

where ζc is the initial step-size of the gradient. While a
stopping criterion can be used, experiments show that a
satisfactory solution can be obtained with a few iterations of
the gradient descent.

Finally, {C(i+1)
k } is obtained by splitting c into the

set of vectors {c(i+1)
k } and by applying the operation

F−1(unvec(•)).

B. Update L

In this case, the optimization problem becomes:

L(i+1) = argmin
L
∥Y−

K∑
k=1

Ck⊛Hk−L∥2H+
ρL
2
∥M−L+L̃∥22

(23)
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This problem is simplified by using the new variables A =∑K
k=1 Ck ⊛Hk −Y and V = M+ L̃:

L(i+1) = argmin
L
∥A+ L∥2H +

ρL
2
∥V − L∥22. (24)

For this optimization problem we can use the Huber prox-
imal [46] defined by:

PHγ,δ(x) =

{ x
γ+1 if |x| < δ(γ + 1)

x− δγ sign(x) otherwise
. (25)

Then using proximal identities [47] we have the update:

L(i+1) = −A+ PHρ−1
L ,δ(V +A), (26)

where the proximal is applied element-wise.

C. Updates {Sk} and M

In this case, we need to solve:

{Sk}(i+1) =argmin
{Sk}

λ
K∑

k=1

∥Sk∥1 +
ρS
2
∥

K∑
k=1

Sk −Ck + S̃k∥22.

This problem is well known and the solution is given by [44]:

S
(i+1)
k = Sλ/ρS

(Ck − S̃k) (27)

where Sλ/ρS
is the soft thresholding operator defined for a

real-valued vector u and scalar value γ by:

Sγ(u) = sign(u)⊙max(0, |u| − γ), (28)

where the sign and max operations are applied element-wise.
For M, the derivation is also very similar and leads to:

M(i+1) = Tκ/ρL
(L− L̃). (29)

D. Algorithm tuning

Convergence and stopping criterion: The optimization
problem is convex over all the variables and constraints and
the convergence is ensured by the ADMM framework. Nev-
ertheless, this convergence can be slow and can be improved
by employing an over-relaxation technique with a relaxation
term [44], [48] α > 1 in the update Ck.

To stop the algorithm, we use a distance between two
iterations of the ADMM over their reconstructed image thanks
to L and {Ck}1,K :

η(i+1) = ∥L(i+1)−L(i)+

K∑
k=1

C
(i+1)
k ⊛H

(i+1)
k −C(i)

k ⊛H
(i)
k ∥2.

(30)
Choice of ρS , ρL, κ, ζc and λ: The values of ρS and ρL are

obtained by design of experiments techniques (see section V).
These parameters can remain fixed throughout the iterations of
the algorithm. It also possible to update them at each iteration
by using the primal and dual residuals to improve convergence
rate as discussed in [37], [44]. The low rank parameter κ is
fixed to 1 because the associated Lagrangian ρL allows to
control the low rank character. The gradient step ζc is found
by a cross validation approach. Actually, all these parameters
are mainly chosen to ensure the convergence of the ADMM

and to do not need to be next changed even if the dataset is
different.

The more important parameter is obviously the sparsity
parameter λ as it controls the sparsity of the solution. It can
be chosen as a compromise between high-response hyperbolas
with associated low-noise and closeness to the original image.
In practice, a cross-validation approach on a well-known scene
can be used to determine it, or it can be adjusted with
regards to geology expertise. In section V, we propose a cross-
validation approach but we also show that the performance of
the proposed algorithm remains quasi constant over an interval
of λ.

Solution without L: If the layers responses are removed
by a pre-processing then one may omit the low-rank matrix L
from the model. In this case, we can discard the corresponding
update and the dual variable L̃ from the equations. Moreover
in the update of Ck in Section IV-A, we only have x = y.

Computational complexity of the algorithm: The updates
of the variables {Sk}, {S̃k} and L̃ are relatively light since
they are mainly based on thresholding methods and simple
matrix operations (Hadamard product, addition,...). The update
of {Ck} is based on the computation of the gradient (21)
which is based on a Hadamard product which is also light. This
step is a little bit more complex since it needs a certain number
of iterations. But this number can be chosen small (3 or 5 are
enough to ensure the convergence of the ADMM) which limits
the complexity cost of this step. The update of L in (26) is
also light since the proximal is just a thresholding applied
element-wise. Finally, the main complexity cost comes from
the update of M in (29) which needs a SVD of a matrix of the
size of the image. To have a better idea, we give an overview
of the computation time. For the computation time, we have
for 100 iterations with 3 iterations of gradient descent and a
image of (Nx, Ny) = (233, 128): 28.1s ± 1.39s. Compared
to 24.8s ± 1.35s of the classical inversion algorithm of [35],
the increase in computation time is reasonable. This study has
been done with a laptop equipped with an 8-core i5-1135G7
@ 2.40GHz processor and 16Gb of RAM.

Another issue to investigate is the RAM memory needed
for the updates. For this topic, the main issue comes from
the gradient computation in (21) since it involves the matrix
product with the matrix H which is the resultant of the
diagonalization of the atoms of the dictionary (i.e. for k atoms
of N ×N pixels this gives us a matrix of size (k×N2, N2)).
For example, if k = 40 and N = 128 in float32 it takes
almost 37.3Go for a (655360 × 16384) matrix. However as
only the values of the diagonals of the sub-blocks of the matrix
are non null, the matrix calculation H†H becomes simply
{hk}k=1,...,K ⊙ {hk}k=1,...,K and gives us a matrix of size
(k × N2). In a similar way, with k = 40 and N = 128 in
float32 it takes only 2.36Mo.

V. NUMERICAL EXPERIMENTS

In this section we first describe experiments done on B-
scans acquired in the field to showcase the benefits of the
proposed convolutive inversion, as well as the use of the Huber
norm. We also analyze the effect of hyperparameters tuning
on the inversion performance.
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Parameter IRADAR 00H IRADAR 032 IRADAR 005 IRADAR 832
Antenna frequency 350 MHz 200MHz 200MHz 350MHz
Elevation 0cm 50cm 0cm 150cm

Objects Wooden shelter, Concrete,
Guns, Metal fut, Void

Wooden shelter, Concrete,
Guns, Metal Fut, Void

Wooden shelter, Concrete,
Guns

Wooden shelter, Metallic mine,
Plastic mine

TABLE II: Details of the images used in the study

In the following, the classical algorithm developed in [35]
and presented in the section III will be referred to as L2-GPR.
Main details of the updates and the algorithm are given in
appendix A. The proposed algorithm described in the section
IV with Huber norm will be referred to as Hub-GPR. As a
comparison between different methods, we compute Receiver
Operator Curve (ROC) plots. In addition to the algorithms
proposed in this paper, we have tested a simple SVD (to
remove the spatially coherent noise) and a simple L2 recovery
(without the matrix L) combined with the SVD. Both methods
will be referred by SVD-GPR and L2-SVD-GPR.

The code is available online: https://github.com/
Matthieu-Gallet/GPR-robust-inversion. The implementation
of the algorithms was done under Python 3.6. We made use
of the packages pyDOE4 for the design of experiments in
Section V-B and GPRPy5 for preprocessing the GPR images.

A. Dataset description and Dictionary parameters

The full dataset provided by Geolithe is composed of
1000 radargrams of (Nx, Ny) = (4000, 800) pixels. These
radargrams were acquired from a prepared site, in which
various objects were buried at known locations and depths.
The objects vary in size ( 10 cm to 2 m) and material
(wood, plastic, metal). The test site includes two 46m x 7m
trenches, one composed of sand and the other of a mixture
of sand, gravel and earth, including stones up to 10cm in
diameter. GPR acquisitions were performed with two GSSI
hyperstacking antennas. In addition to the GPR acquisitions
performed by sliding the antennas along the ground( a typical
utilization, with the highest SNR), acquisitions were also
performed with the antennas held a fixed distances offset
from the surface, up to 150 cm, in order to simulate a
GPR acquisition by drone. The radargrams were annotated
by geophysicists at Geolithe by tracing the signature of the
object in the radargram. This pixel-wise annotation produces
a labeled mask, in which all image pixels all labeled by class
(e. g. object A, object B, no object, etc.) An example of
a radargram with an annotation mask is shown in Fig. 6a.
Although the extent of an object signature in the radargram
is somewhat subjective (e. g. the bottom boundaries of the
hyperboles signatures typically fade into the background noise
of the radargram), the known position, type, and depth of the
object allow us to use these annotations as a reliable ground
truth. Many other characteristics are given for each image
as illustrated in Table II. We build our dictionary using the
following parameters provided by the GSII RADAR:

• ωmax = 2πfmax where fmax is either 200 or 300 MHz
• ∆x = 0.0101 m and ∆t = 0.105·10−9s

4https://pythonhosted.org/pyDOE/
5https://github.com/NSGeophysics/GPRPy

We finally built a representative dictionary of K = 30
atoms by using for values of R ∈ {0.01, 0.1, 1} and ϵ ∈
{5, 6.46, 8.34, 10.77, 13.91, 17.97, 23.21, 29.97, 38.71, 50}.

B. Study of hyperparameters ρS and ρL

In order to check the effects of hyperparameters, we perform
an experimental cross-validation study. We first used the
inversion of the L2-GPR algorithm (the behavior is the same
for Hub-GPR algorithm). In particular, we want to check the
efficiency of the convolutional approach and the fit provided
by our dictionary and verify if the choice of ρS and ρL is
critical. We selected a representative radargram for this study.
The original radargram is shown in Fig. 6a, and the mask
image showing the true hyperbola is given in Fig. 6b. The
acquisition of this radargram was made with an elevation of
75cm. We propose to study the robustness of our approach
w.r.t. these hyperparameters (ρS, ρL). To do this, we use the
Latin hypercubes approach [49], which allows us to carry out
a design of experiment by judiciously sampling the parameter
space. We transformed the uniform distribution of the Latin
hypercubes samples to a log-uniform distribution in order
to cover the large scale of both ρS, ρL (between 1 to 105).
This approach allows minimizing the number of simulations
by reducing the interactions between the parameters. The
resulting image given in Fig. 5 allows us to conclude that to
avoid a large error, it is sufficient to choose a value of (ρS, ρL)
smaller than 103. To conclude, a narrow choice for (ρS, ρL)
is not needed to reach correct performance.

100 101 102 103 104 105

ρS

100

101

102

103

104

105

ρ
L

−1.6

−0.8

0.0

0.8

1.6

2.4

lo
g1

0(
er

ro
r)

Fig. 5: MSE w.r.t. the hyperparameters ρS and ρL. The dots
display the sampling points used.

C. Performance of Hub-GPR algorithm

In this section, we investigate the potential benefits of using
a Huber norm instead of the L2-norm in the optimization

https://github.com/Matthieu-Gallet/GPR-robust-inversion
https://github.com/Matthieu-Gallet/GPR-robust-inversion
https://pythonhosted.org/pyDOE/
https://github.com/NSGeophysics/GPRPy
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(b) masks of expertised hyperbola by geologists

Fig. 6: Original radargram IRADAR 00H (6a) with the hyperbolas obtained by true objects labeled by Geolithe (6b). The red
boxes show the locations of the labeled hyperbolas.

problem. In order to have a better conclusion, we also tests
different methods which are summarized in the following:

• Original image,
• SVD-GPR algorithm in which the first rank contribution

is removed,
• L2-SVD-GPR algorithm where the sparse recovery is

applied on the image preprocessed by the SVD (as before
the first rank mode is removed),

• L2-GPR algorithm of section III,
• Hub-GPR algorithm of section IV.
Figures 7a, 7b, 7c and 7d respectively show the original

radargram along with the results of the SVD-GPR, L2-SVD-
GPR, L2-GPR and Hub-GPR algorithms. The parameter val-
ues are ρS = 500 and ρL = 250. The threshold for the
Huber norm δ in (14) is set to 750. We choose the number
of iterations of the gradient descent in (22) equal to 5, and
with a step size ζc equal to 5 ·10−4. The number of iterations
of the ADMM is 100. The sparsity parameter λ could vary
between 0.2 and 0.8. The masks in red allow to clearly identify
the objects of interest. Compared to the original radargram
in 6a, the result of all algorithms allows better detection of
hyperbolas. The noise is also strongly reduced. This reduction
is more visible with the Hub-GPR algorithm. Moreover, it
seems that several hyperbolas are better detected in the image
obtained by the latter.

For a quantitative study, we calculate ROC plots (true
positive rate versus false positive rate parameterized by the
detection threshold)6 on the outputs of the considered methods.

6ROC are computed by using the scikit-learn method roc auc score with
the masks and the image obtained by the studied algorithm.

The energy is next computed on each pixel for all resulting
images before performing the detection step. For fairness, we
have tested several values for λ for the three last methods and
chosen the best.

The results for ROC plots are shown in Fig. 8. In all radar-
grams, we verify that the Hub-GPR algorithm gives the best
result. The method seems to work well whatever the elevation
(and thus the SNR) and the frequency of the RADAR. We
also notice that the Hub-GPR algorithm improves the detection
whatever the material of the object to be detected (wood,
metal, plastic, ...).

D. Robustness to the sparsity parameter
In this section, we propose to study the robustness of the

Hub-GPR algorithm to the choice of the sparsity parameter
λ. For each image IRADAR, we compute the ROC plots for
λ = 0.2, 0.4, 0.6, 0.8. The results are shown in Fig. 9. We first
notice that the results keep close for all values of λ. Actually,
the best value is around 0.4 and the performance decrease for
0.8.
E. Robustness to the dictionary

To do that, we made a simulation with different sizes of
dictionaries:

• small: 18 atoms
• medium: 36 atoms
• big: 65 atoms
We experiment on a crop7 of the same image of the

subsection V.C. The cropped image corresponds to the left
part of the image split in two.

7To save time and test many sparsity options.
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0.00 5.09 10.18 15.27 20.36 25.45 30.54 35.63 40.72

0.00

48.89

97.77

x (m)

t
(n

s)

25.45 30.54

0

24

49

x (m)

t
(n

s)

(b) Denoising with L2-SVD-GPR
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(c) Denoising with L2-GPR
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(d) Denoising with Hub-GPR

Fig. 7: Results of the inversion algorithms for the IRADAR 00H radargram. ρS = 500 and ρL = 250. The threshold for the
Huber norm δ is 750. The number of iterations of the gradient descent is 5, and with a step size ζc equal to 5 · 10−4. The
number of iterations of the ADMM is 500.

The results shown in Fig. 10 showcase the effectiveness of
the approach even with lower or bigger (when we are not sure
about the objects present in the scene) number of atoms.

F. Robustness to noise of Hub-GPR algorithm

In this section, we measure the robustness of both ap-
proaches to noise. We will consider the original radargram
acquired with GSSI software. The original as well as the labels
mask, are shown in Fig. 11. For the rest of the experiments, we
set ρS to 500 and ρL to 250. The threshold for Huber norm δ

in (14) is fixed to 750. We choose the number of iterations of
the gradient descent in (22) equal to 5, and step size ζc equal
to 5 · 10−4. The total number of iterations of the algorithm
is set to 20. This saves computation time, and experiments
show that the solution is not so different with this reduced
number of iterations. The sparsity parameter is equal to 0.4 as
it is a value that gives good performance for the L2-GPR and
Hub-GPR algorithms.

We consider two types of noise: one additive and one
multiplicative. For both noises, we take a Gaussian noise Ng
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(c) Inversion on IRADAR 819
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Fig. 8: ROC plots for SVD-GPR, L2-SVD-GPR, L2-GPR and Hub-GPR algorithms on IRADAR 005, IRADAR 032,
IRADAR 819 and IRADAR 00H radargrams. For each method, λ is chosen to give the best area. ρS = 500 and ρL = 250.
The threshold for the Huber norm δ is 750. The number of iterations of the gradient descent is 5, and with a step size ζc equal
to 5 · 10−4. The number of iterations of the ADMM is 500.
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(c) IRADAR 819
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Fig. 9: ROC plots for Hub-GPR algorithm on IRADAR 005, IRADAR 032, IRADAR 819 and IRADAR 00H radargrams.
For each radargram, several λ are tested. ρS = 500 and ρL = 250. The threshold for the Huber norm δ is 750. The number
of iterations of the gradient descent is 5, and with a step size ζc equal to 5 · 10−4. The number of iterations of the ADMM is
500.

of zero mean and variance between 0.01 and 10. For additive
noise the noisy image is given by: Inoisy = I +Ng , and for
multiplicative noise: Inoisy = I + I ∗ Ng . The quantitative

study is done on both the original un-processed and the pre-
processed images. We compute several metrics: the classical
MSE (Mean Square Error), the PSNR (Peak Signal to Noise
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Fig. 10: Results of Inversion with Huber norm on a crop of image 00H
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Fig. 11: Original radargram (left) and image mask (right)
localizing the labeled hyperbolas.

Ratio) and the SSIM (Structural Similarity Index) [50]. These
metrics with respect to the variance of the noise are given in
Figs 12 and 13. For all cases, the robust method gives better
performance for all metrics, and shows its resilience to noise
whether it is additive or multiplicative.

VI. CONCLUSION

We developed an inversion algorithm adapted to GPR im-
ages by using a convolutional model with a dictionary that
is directly linked with to the physics of the GPR. We then
generalized the approach by replacing the L2-norm in the
problem of optimization by a Huber norm in order to cope with
heavy-tailed noise, outliers and/or artifacts (misalignment, ...)
often encountered in GPR images. Results of the new robust
GPR inversion method showed the advantage of this new
algorithm. Furthermore, our studies showed that the method
is not overly sensitive to the choice of hyperparameters. All
of the experiments were conducted on a real dataset provided
by Geolithe, and labeled by geophysicists, which showcased
the real world applicability.

Future works will focus on the construction of a method
that can avoid gradient descent step and thus save compu-
tation times. Majoration-Minization framework [51] will be
investigated to solve this issue. Moreover, this convolutional
approach will be extended to dictionary-learning approaches
[42] in order to be able to learn the dictionary directly from
the data.
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Fig. 12: MSE (top), PSNR (middle) and SSIM (bottom)
w.r.t. noise variance with the original image and for the
multiplicative noise. λ = 0.4 and the number of iterations
is 20.

APPENDIX

The ADMM for the classical inversion problem (13) is
summarized in Algorithm 2. We will next quickly describe
the method to obtain the updates of {Ck}k=1,...,K and L.

A. Update of {Ck}k=1,...,K

By using the notations in the frequency domain and the
same transformations as IV-A, we obtain from (13) the new
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Fig. 13: MSE (top), PSNR (middle) and SSIM (bottom) w.r.t.
noise variance with the original image and for the additive
noise. λ = 0.4 and the number of iterations is 20.

optimization problem:

c(i+1) = argmin
c

ρL
2
∥Hc− x∥22 +

ρS
2
∥c− z∥22, (31)

where x = y − l + l̃ and H, z, c are as defined in Section
IV-A. Optimization problem (31) has been shown in [43] to
have a closed-form solution:

c(i+1) = (ρLH
†H+ ρSI)

−1(ρLH
†y + ρSz), (32)

where (•)† is the conjugate transpose operator. For numerical
stability, we can use the Sherman-Morrison formula instead
of the inversion of (ρLH†H+ ρSI). And finally, {C(i+1)

k } is
obtained by splitting c into the set of vectors {c(i+1)

k } and by
applying the operation F−1(unvec(•)).

As for the robust inversion, we obtain the coefficients
values by reconstructing each ck and performing the operation
F−1(unvec(•)) on each coefficient map.

B. Update of L

We need to solve the following optimization problem:

L(i+1) = argmin
L
∥L∥∗ +

ρL
2
∥

K∑
k=1

Ck ⊛Hk −Y + L+ L̃∥22,

Algorithm 2: Classical inversion of GPR model with
ADMM
Data: Image Y ∈ RNt,Nx , dictionary

{Hk ∈ RNt,Nx}k=1,...,K

Parameters: Sparsity λ, lagrangian penalties ρS, ρL,
relaxation α, stopping criterion ξ

Result: Coefficients maps {Ck ∈ RNt,Nx}k=1,...,K ,
clutter matrix L ∈ RNt,Nx

Initialize {C(0)
k }k=1,...,K , {S(0)

k }k=1,...,K , L(0),
{S̃(0)

k }k=1,...,K and L̃(0) with zeros
Precompute Fourier elements y, {hk} as in IV-A
i← 0
while η(i) > ξ as in (30) do

Compute c
(i)
k , s(i)k , s̃(i)k and l̃(i) as in IV-A

Update {C(i+1)
k } with (32), {S(i+1)

k } with (27)
and L(i+1) with (33)
∀k, S̃(i+1)

k = S̃
(i)
k + S

(i+1)
k −C

(i+1)
k

L̃(i+1) = L̃(i) +
∑K

k=1 C
(i+1)
k ⊛Hk + L(i+1) −Y

i← i+ 1

the solution of which is given by [36]:

L(i+1) = Tρ−1
L
(Y − L̃−

K∑
k=1

Ck ⊛Hk), (33)

where Tρ−1
L

is the proximal operator of thresholding the
singular values [52]. For a matrix M with Singular Value
Decomposition (SVD), M SVD

= Udiag(d)VT, we have:

Tγ(M) = Udiag(Sγ(d))VT. (34)
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