
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Angervuori, Jouko; Wichman, R.
A Closed-Form Approximation of the SIR Distribution in a LEO Uplink Channel

Published in:
2022 IEEE Globecom Workshops (GC Wkshps)

DOI:
10.1109/GCWkshps56602.2022.10008485

Published: 12/01/2023

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Angervuori, J., & Wichman, R. (2023). A Closed-Form Approximation of the SIR Distribution in a LEO Uplink
Channel. In 2022 IEEE Globecom Workshops (GC Wkshps) (pp. 856-861). IEEE.
https://doi.org/10.1109/GCWkshps56602.2022.10008485

https://doi.org/10.1109/GCWkshps56602.2022.10008485
https://doi.org/10.1109/GCWkshps56602.2022.10008485


A Closed-Form Approximation of the SIR
Distribution in a LEO Uplink Channel

Ilari Angervuori
School of Electrical Engineering

Aalto University
02150 Espoo, Finland

ilari.angervuori@aalto.fi

Risto Wichman
School of Electrical Engineering

Aalto University
02150 Espoo, Finland
risto.wichman@aalto.fi

Abstract—The Low Earth Orbit (LEO) satellite networks will
improve the quality of future communication networks. The
rapid expansion of LEO networks brings up considerations of
man-made interference from terrestrial networks or other LEO
terminals. Especially the future terrestrial networks will cause
interference in satellite receivers as higher frequency bands will
be utilised in the emerging 5G and beyond networks. We study
the distribution of signal-to-interference ratio (SIR) in a narrow
beam LEO satellite receiver affected by a dense heterogeneous
set of interfering transmitters. We propose that the distribution
of interference power approximates the Gaussian distribution for
the positive values. Furthermore, we suggest that the distribution
of SIR follows the gamma distribution. We use the tools of
stochastic geometry and derive the location, shape, and scale
parameters for the distributions of interference and SIR. The
parameters depend on the amount of interfering transmitters
inside the receiving satellite’s 3 dB footprint, the transmitting
powers, and the slow and fast fading conditions.

I. INTRODUCTION

The emerging Low Earth Orbit (LEO) satellite communica-
tion will play a vital part in the future networks supplementing
the traditional terrestrial networks. The advantages of LEO
networks include low latency and immunity to natural or man-
made calamities. In addition, they can provide reliable and fast
connections to remote parts of the world.

LEO networks work in high frequencies up to mm-waves.
Today such frequencies have been allocated for satellite com-
munications, but in the future, 5G and beyond technologies
will utilize these high-frequency bands as well. In addition,
the amount of other terrestrial-satellite terminals will increase
as the future LEO networks will potentially include thousands,
or even tens of thousands of satellites. These facts bring up
a question about the interference in a satellite uplink in the
presence of a heterogeneous set of interfering transmitters.

We will apply the tools from stochastic geometry to study
the interference in a terrestrial-satellite uplink, where the
satellite will experience additive interference power from
multiple overlapping classes of interferers inside its field of
view. We assume that each class of interfering transmitters
is Poisson distributed on the Earth. The interferers experience
slow fading and Rician fast fading conditions. We propose that
the statistical interference power approximates the Gaussian
distribution for the positive values. Furthermore, we propose

that the signal-to-interference ratio (SIR) follows approxi-
mately the gamma distribution. We derive the parameters for
the distributions based on the analysis of ratio distributions and
second-moment matching. The approximation is especially
applicable for high densities of interferers.

A. Related works and motivation

David Middleton’s seminal paper [1] derives closed-form
approximations for a statistical-physical interference wave-
form in three qualitatively different situations characterized by
the interference’s impulsiveness. These distributions are often
referred to as Middleton class A, B, and C distributions. As
a generic source of interference, Poisson point process (PPP)
has been studied, for example, in [2]-[3][4]. In these papers,
the distribution of instantaneous in-phase and quadrature com-
ponents is expressed as the alpha-stable distribution [5]. In
[6] Gaussian, Middleton class A and alpha-stable distributions
were studied in ad-hoc and cellular networks to model the
interference. Using second-order moment matching [7] pro-
poses a gamma distribution approximation for the distribution
of interference power in a heterogeneous terrestrial cellular
network – this approximation is possible by assuming a non-
singular path-loss function. In [8], a semi-analytical expression
for the tail probabilities of SIR was obtained.

In these papers, it turns out that modeling interference by
Gaussian statistics often works poorly because the tails of
Gaussian distribution decay fast. However, in satellite commu-
nications, the topology of the Earth facilitates a qualitatively
different setting, and the terrestrial models cannot be used as
such. Contrary to terrestrial networks, the distribution of inter-
ference is not heavy-tailed as the interferers are concentrated
in a small area at a high distance inside the receiver’s footprint,
and the source domain of interference can be considered even
point-like in the case of narrow state-of-the-art beamforming.
Thus, the path-loss function is constant (in contrary to a path-
loss function with a singularity), and the expected interference
power is well defined. The aggregate interference power will
follow the normal distribution with the parameters derived in
this paper.

Stochastic geometry has not been used to model satellite
networks until recently. Analysis of interference in a satellite-
terrestrial downlink is provided in [9], whereas [10] studies of



uplink and downlink coverage probabilities in inclined LEOs.
However, contrary to this paper, both [9], and [10] use the
binomial process instead of the Poisson point process. The
work in [11] used the Poisson process to model interfering
transmitters in a terrestrial-satellite uplink evaluating data rates
under Rician fading conditions. However, the analysis relies
on a rather cumbersome numerical inversion of the Laplace
transform. An analysis of data rates in a terrestrial-satellite
uplink applying PPP theory is presented in [12]. None of these
papers gives closed-form expressions for the distribution of
interference or SIR. A survey on possible implementations of
future ultra-dense satellite networks can be found in [13].

B. Our contribution

We apply the PPP analysis to satellite communications and
exploit the fact that the satellite’s main lobe is small with
state-of-the-art beamforming technologies, and the distance to
the satellite can be approximated to be equal to all trans-
mitters inside a footprint. By this assumption, we are able
to characterize the distribution of SIR by the well-known
gamma distribution. First, we derive the Laplace transform of
the interference from multiple classes of interferers assuming
that the interferers are Poisson distributed on Earth’s surface.
Each class of interferers has distinct fading conditions, mean
transmitting powers, density, and antenna pattern. From the
Laplace transform, we conclude that the distribution of the
additive interference can be approximated by Gaussian distri-
bution for positive values with the parameters we derive. Based
on this Gaussian approximation, we derive the distribution of
SIR in the terrestrial-satellite transmission, where a terrestrial
test transmitter transmits from an Earth station to a satellite at
a definite elevation angle and altitude. We validate the approxi-
mation by comparing the gamma distribution approximation to
Monte Carlo simulated distributions with a Gaussian antenna
gain. We will notice that the approximation is very good with
higher densities of transmitters and reasonable with lower
densities.

Analysis in this paper provides insight and a closed form
distribution that can be used to model the SIR in further studies
of LEO networks.

In case of dense satellite constellations, the locations of the
satellites can be modeled as a point process, see [9] - [12].
Hence, the analysis presented in this paper works with minor
modifications in a satellite-terrestrial downlink if the density
of the interfering satellites is high and the receiver’s antenna
pattern is narrow enough.

II. SYSTEM MODEL

We consider an interference-limited terrestrial-satellite up-
link transmission. A test transmitter (TX) is transmitting to a
LEO satellite receiver (RX) with a mean transmitting power
pTX. The receiving satellite is at a definite elevation angle
w.r.t. the test transmitter, and its boresight faces the test
transmitter. The test transmitter boresight steers towards the
satellite. Inside the field of view of the satellite, there are
interfering transmitters. Assuming that the transmitters are

Glossary of principal symbols
Symbol Explanation

d Distance between the test transmitter and
the satellite

h Altitude of the satellite
Φ(i) Poisson point process of class i

λ
(i)
3dB Mean number of class i interferers inside

the satellite 3 dB footprint
λ
(i)
km Mean number of class i interferers per

square kilometer
λ(i) 3/2 · λ(i)

3dB

P
(i)
I Typical virtual power (power after the fad-

ing gain) of an interfering transmitter in
class i

p
(i)
I Mean power of an interfering transmitter in

class i

K
(i)
I Rician parameter of the interferer class i

L(i) Response function of class i transmitters
I Aggregate interference
µI Mean of the interference
s2I Variance of the interference
pTX Mean power of the test transmitter
νTX LOS component of the test transmitter
σTX Scattered path component of the test trans-

mitter

Fig. 1. System model

independently distributed on Earth, we assume that they follow
the Poisson point process. That is, the number of interfering
transmitters inside the satellite footprint is Poisson distributed.
We treat the interference from the interfering transmitters as
additive noise, i.e., the transmitted signals are uncorrelated.
We do not consider any interference cancellation techniques.
All interferers radiate omni-directionally.

A. Poisson Point Process

The interfering transmitters xi ∈ Φ are Poisson distributed
on Earth surface E according to the Poisson point process
(PPP) Φ. Vaguely, Φ is a completely independent and iden-
tically distributed random set of points in the manifold E .
Equivalently, if Λ(A) denotes a (deterministic) measure of a
set A ⊂ E , Φ can be defined as a random measure s.t. Φ(A)
is Poisson distributed and EΦ(A) = Λ(A) for all measurable
A.



B. Response function

Response function L(·) maps a variable d ∈ Rn to a positive
real number R. In this work, d represents the distance between
the satellite and the test transmitter, and L is a path-loss
function

L(d) = (Ad)−α, (1)

where A ∈ R+, and the path-loss power exponent α ∈ R+.
In other applications, the response function could depend, for
example, also on time.

C. Fading

All transmitters experience Rician fading with Rician pa-
rameter K = ν2/(2σ2), where ν2 is the power in the line-of-
sight (LOS) component and 2σ2 is the power received from
the scattered paths. Consequently, the virtual power seen in the
receiver after the fading is generalized noncentral chi-squared
distributed.

D. Signal to interference ratio

We define the signal-to-interference ratio with interfering
transmitters {x(i)

j }Mj=1 in point processes { Φ(i)}Ni=1 as

SIR =
L(d)PTX

I
=

L(d)PTX∑
x
(i)
j ∈∪iΦ(i) P

(i)
j L(i)(dj)

, (2)

where d = d(x0) is the distance from the test transmitter
(at x0) to the satellite, PTX is the virtual power (power after
the fading gain) of the test transmitter. Power P

(i)
j denotes

the virtual power of a transmitter j belonging to the class i,
and L(i)(dj) denotes the path-loss function of the class i at
distance dj .

We assume that all transmitting powers {P (i)
j }Mj=1 in a class

are independent identically distributed (i.i.d.). Often we refer
to a typical power of an interferer of class i as P (i)

I . The mean
power of a typical transmitter is denoted by p

(i)
I .

E. Shadowing

Transmitters are shadowed at probability S. If the original
point process is of density λ, the shadowed transmitters form
a Poisson point process of density S ·λ, and the non-shadowed
transmitters form a PPP of density (1 − S)λ. This rather
intuitive result is a consequence of the thinning theorem of
the PPP [14].

F. Weather model and Doppler shift

We consider that the receiver’s antenna beam is narrow,
and the interferers are essentially very close to each other.
Thus, the weather conditions are approximately equal to all
transmitters including the test transmitter and cancel each other
in the definition of SIR 2. Similarly, the Doppler shift is
approximately equal to the test transmitter’s Doppler shift, and
hence does not have any effect on the aggregate interference
power even after the receivers bandpass filter.

G. Receiver antenna gain

When φRX is the width of the 3 dB beam, we approximate
the receiving antenna gain by a Gaussian beam

GRX(φ) = 2−φ2/φ2
RX for φ ≤ φRX ≤ π/2, (3)

where φ denotes the angle w.r.t. the antenna boresight.

III. ANALYSIS

A. Distribution of the interference

The Laplace transform L : C → C of the interference I
from a point process Φ is given by [14], [11]:

LI(z) := E
[
e−Iz

]
= e−

∫
E(1−LPI

(L(d(x))GRX(φ(x))z))Λ(dx),
(4)

where PI denotes the typical virtual power of an interferer.
In case of a well steered narrow antenna beam, we can

approximate that all transmitters are at an equal distance d
from the satellite. Then E reduces to a single point x0 of
mass Λ(x0) := λ and (4) gets the form;

LI(z) = e−λ(1−LPI
(L(d)z)). (5)

In this paper, we define λ := 3/2 · λ3dB , where λ3dB is the
mean number of transmitters inside the satellite’s 3 dB foot-
print, and 3/2 is an empirical parameter that compensates the
energy from the side lobes. Should the satellite be in the zenith,
the mean number of interferers can be calculated by the area
formula of a spherical cap: λ3dB = λkm2πR2

⊕(1 − cos(θ)),
where θ denotes the central angle of the 3dB footprint and
λkm is the mean number of transmitters per square kilometer.
For lower elevation angles of the satellite, the footprint is
elliptical and the expressions are more complicated. We leave
the geometrical considerations out of the scope of this paper,
and λ3dB will be always given.

We know that the Laplace transform of the non-central chi-
squared distributed faded power variable is given by

LPI
(z) =

e
− ν2

I z

1+2zσ2
I

1 + 2zσ2
I

. (6)

Substituting (6) to (5) and applying a first degree Taylor
expansion to the exponent yields

LI(z)

≈ exp

{
−λpIL(d)z + 1/2λL(d)2

2 + 4KI +K2
I

(1 +KI)2
p2Iz

2

}
.

(7)

where KI = ν2I /(2σ
2
I ) is the Rician parameter of an interferer.

One can observe that for z = −it ∈ C,

LI(−it) ≈

exp

{
λpI itL(d)− 1/2λL(d)2

2 + 4KI +K2
I

(1 +KI)2
p2It

2

}
, (8)



which is the characteristic function t 7→ φ(t) = L(−it) of
the normal distribution with mean µI = λpI and variance
s2I = λ(2 + 4KI +K2

I )/(1 +KI)
2pI2.

For the Laplace transform it holds that LI(1)+I(2)(s) =
LI(1)(s)LI(2)(s) for all s. Thus, it is easy to see from (8)
that in case of multiple classes of point processes {Φ(i)} :

Proposition 1 (Distribution of I). The interference I is
distributed as the normal distribution N (µI , s

2
I) with mean

µI =
∑
i

λ(i)L(i)(d)p
(i)
I (9)

and variance

s2I =
∑
i

λ(i)L(i)(d)2
2 + 4K

(i)
I + (K

(i)
I )2

(1 +K
(i)
I )2

(p
(i)
I )2, (10)

where λ(i), L(i),K
(i)
I , p

(i)
I are the density, response function,

Rician parameter and mean transmitting power of the inter-
ferer class i, respectively.

Finally, let us make the following observation that comes
later III-D1 into use in a special case of a Rayleigh faded test
transmitter signal: for s = t ∈ R+, only the first term in (8)
is dominating in the exponent and

LI(t) ≈ exp

{
−
∑
i

λ(i)L(i)(d)p
(i)
I t

}
. (11)

B. Inverse distribution of the interference

It can be shown that the inverse of a Gaussian distributed
random variable is approximately Gaussian under certain
conditions [15]. We propose a similar approximation by a log-
normal distribution. The following proposition applies under
the conditions presented in this paper, and it can be verified,
e.g., by Monte Carlo simulations.

Proposition 2 (Inverse of I). Let I ∼ N (µI , s
2
I), then

1/I ∼ Lognormal(−µLN, s
2
LN),

where µLN and sLN are given by µLN = log
√

µ4
I

µ2
I +s2I

and sLN =

√
2

√
log

√
µ2

I +s2I
µI

.

Proof. First, approximate the normal distribution N (µI , s
2
I)

by a log-normal distribution Lognormal(µLN, s
2
LN) with mean

µI and variance s2I . The inverse distribution is simply
Lognormal(−µLN, s

2
LN).

Consequently, the mean of 1/I is

E[1/I] = exp{−µLN + s2LN/2} =
µ2

I + s2I
µ3

I
(12)

and the variance is

V[1/I] = exp{−2µLN + s2LN}(−1 + exp{s2LN})

=
s2I (µ

2
I + s2I )

2

µ8
I

, (13)

where the mean µI and variance s2I of the interference is given
in (9) and (10).

C. Moments of ratio distribution

Should we know the distributions of PTX and 1/I , we can
calculate the moments of the distribution of PTX/I by algebra
of random variables.

The mean of the ratio distribution PTX/I is

E[PTX/I] = E[PTX]E[1/I], (14)

and the variance is

V[PTX/I] = V[PTX] · V[1/I]+
V[PTX] · (E[1/I])2+
V[1/I] · (E[PTX])

2, (15)

where for generalized noncentral chi-squared distribution

E[PTX] = ν2TX + 2σ2
TX, (16)

and
V[PTX] = 4(ν2TXσ

2
TX + σ4

TX), (17)

and E[1/I] and V[1/I] are given in (12) and (13).

D. Distribution of SIR

Finally, we will derive the closed-form distribution for the
SIR. The analysis is divided into two sections: for the non-
LOS case (K = 0) in III-D1, and for the partial LOS (K > 0)
in III-D2.

1) Rayleigh fading case: Assuming that the test transmitter
signal is Rayleigh faded (i.e. Rician faded with parameter K =
0), i.e. the power is exponentially faded, we have according
to the approximation (11):

P[SIR ≥ t] = P

[
PTX

I
≥ t

]
= P [PTX ≥ tI]

= EI

[
e−t/pTXI

]
= LI(t/pTX)

≈ e
−

∑
i λ

(i)L(i) p
(i)
I

pTX
t
. (18)

In other words, the SIR is exponentially distributed with rate
µSIR =

∑
i λ

(i)L(i)p
(i)
I /pTX should there be no LOS between

the test transmitter and the satellite.
2) General fading case: The gamma distribution is the con-

jugate prior of the exponential distribution. Thus, we propose
that the distribution of SIR follows a gamma distribution in
the general Rician fading case.

Gamma distribution depends on the shape parameter k > 0
and scale parameter θ > 0. The mean is given by kθ, and
variance is given by kθ2. To approximate the distribution of
SIR by the gamma distribution, we match the mean (14) and
variance (15) to the corresponding moments of the Gamma
distribution; {

kθ = E[SIR] = L(d)E[PTX/I]

kθ2 = V[SIR] = L(d)V[PTX/I].
(19)



Fig. 2. Figure shows the simulated points of the complementary cumulative
density function of SIR and the corresponding gamma distribution approx-
imations. Satellite is at altitude h = 2000 km, and density of interferers
λkm = 0.005/km2. Parameter K denotes the Rician parameter of the
test transmitter, and KI denotes the Rician parameter of the non-shadowed
interferers. The density function diverges from the simulated values with
elevation angle 90◦ as the mean number of interferers inside the 3 dB footprint
is small (λ3dB ≈ 10), and the theory presented in this paper does not apply.

Solving the parameters k and θ and substituting (14) and (15),
yields

Proposition 3 (Distribution of SIR). The distribution of SIR
approximates the gamma distribution Γ(k, θ) with parameters

k = L(d)E[PTX/I]
2/V[PTX/I]

= L(d)(E[PTX]E[1/I])2/
(
V[PTX] · V[1/I]+ (20)

V[PTX] · (E[1/I])2+
V[1/I] · (E[PTX])

2
)
,

θ = V[PTX/I]/E[PTX/I]

=
(
V[PTX] · V[1/I]+
V[PTX] · (E[1/I])2+
V[1/I] · (E[PTX])

2
)
/E[PTX]E[1/I], (21)

where the means E[·] and variances V[·] are given for PTX in
(16) and (17), and for 1/I in (12) and (13).

IV. RESULTS

We compare the derived gamma distribution approximation
to Monte Carlo simulated values in the figures 2 and 3 with
varying altitudes and elevation angles. The parameters for the
gamma distribution are given in Proposition 3

In the theory, the Interfering transmitters are shadowed with
probability S = 0.44 and are divided into to classes of non-
shadowed transmitters and shadowed transmitter with densities
λ(1) = (1− 0.44)λ and λ(2) = 0.44λ, respectively.

We consider that the path-loss function is equal to all
transmitters. This implies that the path-loss function cancels
itself out in the expression of SIR (2). In other words, the
altitude or the elevation angle of the satellite does not affect
the distribution of SIR should λ3dB remain constant. The

Fig. 3. Figure shows the simulated points of the complementary cumulative
density function of SIR and the corresponding gamma distribution approx-
imations. Satellite is at altitude h = 300 km, and density of interferers
λkm = 0.5/km2. Parameter K denotes the Rician parameter of the test
transmitter, and KI denotes the Rician parameter of the non-shadowed
interferers.

only parameters affecting the distribution of SIR are the mean
transmitting powers and fading conditions.

The simulated values are acquired by Monte Carlo simu-
lations by calculating an average over different realizations
of the PPP and fading. In simulations, we use a Gaussian
antenna as given in (3). Furthermore, an additive −84 dBm
noise component is present.

A. Transmitter characteristics

We consider one type of omni-directional interfering trans-
mitters transmitting with power 43 dBm. Shadowing is present
at a probability 0.44, and the powers of the shadowed transmit-
ters are reduced by 11 dBm. This leads us to two classes of in-
terferers: shadowed and non-shadowed transmitters. Shadowed
interferers experience Rayleigh fading, and non-shadowed
interferers experience Rician fading with Rician parameter
K = 65 or K = 0. Test transmitter power is 69.1 dBm,
and it experiences Rician fading with K = 65 or K = 11.

In the results section, interfering transmitters’ properties
are set to mimic a realistic LEO network. The interfering
transmitting powers follow FCC regulations for mobile inter-
faces operating in 28, 39, and 37 GHz bands in [16]. The
fast and slow fading conditions follow the values given in
the survey on terrestrial-satellite transmitters [17]. Path loss
function l(d) = (3.55d)2 and receiving satellites gain width
follows the characteristics of a SpaceX constellation [18].

B. Remarks of the results

With small densities of interferers (inside the 3 dB footprint)
(figure 2 elevation angle 90◦), the approximation is reasonable,
but the particularly the tail distribution diverges as seen in
the figure 2. With high densities (figure 2 elevation angle
35◦, and figure 3), the gamma distribution approximation
matches very well. Depending also on the relative transmitting
powers and densities in different classes of interferers, we



suggest that ∼ 10 interferers should be present so that the
gamma function approximation is valid. The variance and
skewness of the distribution increase with lower densities of
interferers. However, the tails are not heavy-tailed (neither
in simulations nor in gamma function approximation) in the
sense that they decay faster than the exponential distribution.
With high densities, the distribution of SIR is near to Gaussian
distribution (Γ(k, θ) → N (kθ, kθ2) as k → ∞), should the
Rician parameter KTX of the test transmitter channel be above
0. With KTX = 0, the distribution is always exponential, as
stated in the analysis. Particularly, the tail probabilities are well
approximated. In the figure 2, the mean number of interferers
inside the 3 dB footprint is λ3dB ≈ 10 and λ3dB ≈ 68 for
the elevation angles 90◦ and 35◦, respectively. In the figure
3, the mean number of interferers inside the 3 dB footprint is
λ3dB ≈ 24 and λ3dB ≈ 68 for the elevation angles 90◦ and
50◦, respectively.

The SIR is smaller with low satellite elevation angles if the
density of interferers and transmitter powers are kept constant;
approximately 5 dB and 2 dB variation is present in the figures
2 and 3, respectively. Furthermore, the altitude and elevation
angle have crucial effect on the distribution of SIR. This is due
to the widening of the footprint of the satellite that causes more
interferers to be present inside the main lobe. It is clear that
satellite receiver in the lower altitudes tolerate more interferers
than a receiver in the high altitudes. However, at h = 300km,
the lower elevation angles of the satellite causes the SIR to
drop to zero with the density parameter λkm = 0.5. In this
context, the gamma distribution approximation of SIR can be
used to study the power control in a terrestrial-satellite link.

The test transmitter fading conditions transmitter has bigger
effect on the SIR distribution than fading conditions of the
interferers.

The analysis presented does apply only for small footprints
as for large footprints the interferers are further away and the
mean interference is smaller considering that the same mean
amount of interferers is present. In this paper, the theory was
tested against a Gaussian antenna, and the theory was shown
to work in this case well.

V. CONCLUSION

We derived gamma distribution approximation for the distri-
bution of SIR in a terrestrial-satellite link. The approximation
is applicable when the receiver antenna beam pattern is narrow
and the density of interferers is large. With smaller densities,
the interference will become impulsive as there is a high
chance of having no interferers inside the receiving satellite’s
main lobe. We suggest that the gamma distribution is a good
approximation when there are 10 interferers on average – or
more – inside the satellite’s 3 dB footprint. The 1.5◦ 3 dB
beamwidth of the receivers used in this paper is sufficiently
narrow for the approximation to work. We conclude that the
gamma distribution can be used as a prior distribution for the
SIR in a terrestrial-satellite uplink in highly populated areas,
such as cities, where dense (possibly heterogeneous) networks
are causing additive co-channel interference.

The closed form SIR distribution presented in this paper
is straightforward to derive and applies to various fading
conditions and transmitter characteristics as well as different
altitudes and elevation angles of a LEO satellite. Furthermore,
overlapping heterogeneous interfering networks can be consid-
ered. A downside is that the transmitters have to be considered
to be Poisson distributed, that is, completely independently
located. Furthermore, only omni-directional antenna patterns
for the interferers was considered. However, these are realistic
assumptions particularly in the case of mobile user devices.
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