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Learning-based Propulsion Control for Amphibious
Quadruped Robots with Dynamic Adaptation to

Changing Environment
Qingfeng Yao1, Linghan Meng1, Qifeng Zhang1, Jing Zhao1, Joni Pajarinen2, Xiaohui Wang3,

Zhibin Li4, and Cong Wang1

Abstract—This paper proposes a learning-based adaptive
propulsion control (APC) method for a quadruped robot in-
tegrated with thrusters in amphibious environments, allowing
it to move efficiently in water while maintaining its ground
locomotion capabilities. We designed the specific reinforcement
learning method to train the neural network to perform the
vector propulsion control. Our approach coordinates the legs
and propeller, enabling the robot to achieve speed and trajectory
tracking tasks in the presence of actuator failures and unknown
disturbances. Our simulated validations of the robot in water
demonstrate the effectiveness of the trained neural network
to predict the disturbances and actuator failures based on
historical information, showing that the framework is adaptable
to changing environments and is suitable for use in dynamically
changing situations. Our proposed approach is suited to the
hardware augmentation of quadruped robots to create avenues in
the field of amphibious robotics and expand the use of quadruped
robots in various applications.

Index Terms—Quadruped robots, amphibious robots, robot
learning, reinforcement learning.

I. INTRODUCTION

AMPHIBIOUS environments, with their diverse terrains
and conditions, pose unique navigation challenges for

robotic systems. Legged robots, due to their ability to lever-
age discrete contact points [1], have demonstrated enhanced
performance across various terrains compared to other robot
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Fig. 1. Our model for adaptive propulsion control enables quadruped robots
to compensate for water disturbance through real-time adjustments. Our
approach can predict current disturbances, dynamically modify control actions,
and rectify the perturbations.

types. For instance, quadruped robots can adapt foot place-
ment to accommodate diverse terrains and tasks. Nonetheless,
despite control theory and reinforcement learning algorithms
facilitating efficient locomotion across different terrains [2],
the optimization of movements in high-dimensional action
spaces remains a substantial challenge [3], particularly in
amphibious environments.

Quadruped robots hold immense potential for amphibious
exploration [4]. However, in scenarios involving floating con-
ditions, the capabilities of quadruped robots become limited
when their legs cannot make contact with the ground. In
these amphibious settings, quadruped robots often struggle to
generate sufficient thrust using only their legs, thereby inhibit-
ing their functionality in such environments. While current
amphibious robots are predominantly hexapods, which exhibit
strong structural stability [5], their land-based mobility is often
compromised. Thus, a robot with adept terrestrial locomotion
and robust spatial mobility presents significant opportunities
for research and application in amphibious environments.
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Thrusters, providing power for aerial [6] and underwater
robots [7], allow a robot to reach its desired position through
vector propulsion control. Given their compact size and light
weight, thrusters can be integrated with quadruped robots,
enabling them to undertake tasks in amphibious environments
while preserving their walking capabilities.

In underwater settings, motion control for medium-sized
robots is challenging due to the nonlinear fluid dynamics and
the altering dynamical effects intertwined with the robot’s
configuration and movements. These variables can cause sig-
nificant shifts in accurately modelling the system’s dynamics,
thus further complicating the task of controlling the robot,
especially in the presence of external perturbations.

In this paper, an adaptive propulsion framework is in-
troduced that synchronously manages the operations of the
robot’s legs and thrusters, especially in dynamic fluid envi-
ronments and under conditions of damage or malfunction,
as illustrated in Fig. 1. The ability of our system to detect
environmental changes and water flow variations relative to
the robot allows the network to produce suitable adjustments
and responses.

The contributions of this study are summarised as follows:
1) We introduce a unique adaptive propulsion framework

that efficiently merges thrusters with the existing legged
locomotion systems of quadruped robots, facilitating
seamless movement in both terrestrial and aquatic set-
tings.

2) We demonstrate the robust control algorithm that ex-
hibits enhanced performance in speed and trajectory
tracking tasks under challenging scenarios, such as actu-
ator malfunctions and unpredictable disturbances. This
algorithm equips the robot with the capability to adjust
its behavior in real time.

3) We provide a thorough performance analysis of our
adaptive propulsion framework, illustrating its impact
and offering guidance for future research on quadruped
robots in amphibious environments.

The paper is organized as follows. Section II presents the
related work in the field of amphibious robots and propulsion
control methods. Section III describes the proposed adap-
tive propulsion control method, including the integration of
thrusters with the quadruped robot and the control algorithm.
Section IV presents the experimental setup, the results of our
training process, and the simulation results, followed by a
discussion of the performance of our method compared to
existing approaches. Finally, Section V concludes the paper
and outlines future scope of work.

II. RELATED WORK

Traditional control methods for legged robots emphasize
modelling the robot and its environment, followed by the
application of forward and inverse kinematics for position
estimation and trajectory planning [8]. Reinforcement learning
(RL) allows agents to learn from scratch within the environ-
ment [9], [10]. In recent years, deep reinforcement learning
has been employed in quadruped robots, yielding promising
results. Bellegarda et al. [11] proposed a framework for teach-
ing quadruped robots jumping skills using RL and nonlinear

trajectory optimization. Lee et al. [12] presented an RL-based
controller to help legged robots navigate extreme terrains
without visual input. Gangapurwala et al. [13] developed a
method to plan and control the movements of quadrupeds
on uneven terrains. While quadruped robots employing rein-
forcement learning demonstrate robust abilities in performing
terrestrial locomotion tasks [2], their application in non-
terrestrial environments, such as underwater exploration, is
still highly desired. In aquatic settings, the locomotive stability
of quadruped robots suffers due to leg capacity constraints and
environmental perturbations, thereby limiting their functional
capacity.

Currently, amphibious robot research is largely focused on
hexapod robots owing to their inherent stability [14]. Hexapod
robots, with varying structures, can achieve stable crawling in
different underwater environments [15], [16]. Moreover, RL-
based hexapod robots can learn swimming skills and adjust
their body to attain the desired posture [17]. Nevertheless,
these amphibious robots exhibit limited locomotion abilities
on land [18]. By augmenting quadruped robots with the
ability to traverse water surfaces, their operational range can
be significantly expanded, thereby enhancing their versatility.
This strategy boosts their performance while preserving their
inherent dexterity and widening the scope of their potential
applications.

Reinforcement learning plays a crucial role in underwater
vehicles [19]. As a thruster controller for underwater vehi-
cles [20], it has significantly enhanced underwater vehicle
navigation [21]. Traditional approaches require hydrodynamic
modelling of the underwater environment to achieve effective
control. However, RL has the potential to accomplish tasks
without establishing underwater vehicle hydrodynamics [22].
Thrusters, utilized in various underwater and spatial vehicles
[23], [24], provide a significant advantage with their compact
size and powerful thrust [25], [26], making them suitable
for quadruped robots. Numerical research on irregular objects
such as the legged robot presents challenges [27]. Certain al-
gorithms can use the quadruped robot’s historical trajectory to
infer current environmental information [28]. Similar studies
have affirmed the effectiveness of using historical trajectories
to infer the current environmental state [29]. Hence, building
on such frameworks, we employ our proposed model to
estimate underwater flow conditions and the damage status
of a propulsive legged robotic system.

Deep learning and reinforcement learning have been applied
in the motion control of autonomous underwater vehicles
(AUVs) under conditions of actuator failure and unknown
disturbances [30], [31]. To adapt to rapidly changing environ-
ments, a neural network has been used to accurately predict
pitch angles [32], while a model-free RL-based controller has
demonstrated potential in addressing time-varying dynamics
[33]. In the current study, we examined the locomotive ca-
pabilities of thrust-driven amphibious legged robots in con-
ditions of wave interference and structural damage. Here, the
primary challenge lies in the unpredictability of environmental
changes. To overcome this, we introduce a teacher-student
based algorithm for learning the latent environmental states.
Simultaneously, we implement a prediction module to facil-
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itate the learning of environmental features and enable the
prediction of current conditions. This methodology can aid
thrust-driven amphibious quadruped robots in executing tasks
within dynamic environments.

III. PROPOSED METHOD

A. Preliminary

In this work, Markov’s decision process (MDP) [34] is
expressed as {S,A,P,R, γ}, where S is the state space,
A is the action space, P is the state transition probability,
R is the reward function, and γ ∈ (0, 1) is the discount
factor. The initial state of the agent is s0 ∈ S with a
probability of p(s0). The agent selects an action at ∈ A
according to the policy π(at|st) at each time step t, and the
environment returns a reward based on the current state and
the action with r(at, st, st+1) ∈ R. The agent receives a new
state st+1 ∈ S with a probability of P = p(st+1|st, at).
By repeating this process, the agent obtains the trajectory
τ = {s0, a0, r0, s1, a1, r1, · · · , st, at, rt, · · · }. The agent up-
dates its policy to maximize the cumulative sum of discounted
rewards.

B. Propulsive Legged Robot

We introduce a vector propulsive quadruped robot structure,
as shown in Fig. 2. The main part is based on a legged robot;
accordingly, three joints in each leg allow the corresponding
link to rotate within a specified range from the initial position.
The thrusters serve as supplemental parts to supply power
under the swimming condition. We attached the thrusters on
the second link of the legs to acquire two degrees of freedom
(DOF) and were allowed to rotate with leg movement. In
addition to facilitating terrestrial locomotion, the leg joints of
a quadruped robot can serve to adjust the angle of thruster
propulsion in aquatic environments. As a result, the thrusters
can rotate to the desired direction for vector propulsion,
allowing the controller to achieve high manoeuvrability. This
adaptive functionality enhances the robot’s mobility across
different terrain types. The lateral displacement between joints
1 and 2 is small enough to be assumed as zero; the thrust of the
thruster i was applied at ri = (xi, yi, zi). The controller was
designed to obtain the desired propulsive force by controlling
the thrust and leg angles. The dynamic effect of the thrusters
can be expressed as follows:

F =

4∑
i=1

Fi , T =

4∑
i=1

Ti, (1)

where

Ti = ri × Fi , Fi = [Fxi, Fyi, Fzi]
T , (2)

where Ti is the torque vector of the thruster i, which is the
result of the cross product of the thrust and positional vectors.
Fi is the thrust vector of thruster i.

During its aquatic operations, the robot’s thrusters gener-
ate propulsion that results in force components in various
directions. This force, Fi = [Fxi, Fyi, Fzi]

T , is a vector
representing thrust in different directions, which is a function

   Quadruped robot

Thruster

Joint2

Joint3

Joint1

Fig. 2. Model of the vector propulsive legged robot. A thruster is designed and
configured on each upper leg, endowing quadrupedal robots with the ability
to move in water while maintaining their terrestrial mobility.

of the thruster’s rotation with respect to the y and z axes.
Simultaneously, when a part of the robot’s body (fuselage)
sustains damage, it is necessary for other components of the
system to adapt their output to compensate for the loss of
functionality.

The dynamics of the robot can be expressed as follows:

Mv̇ + C(v)v +D(v)v + g(η) = τ + wd, (3)

where M denotes inertia (including thruster masses), C is
the Coriolis-centripetal forces (including thruster masses), and
D is the damping. g is the vector of gravity and buoyancy, τ is
the vector of propulsion, and wd denotes external disturbances.

Given that the robot operates at relatively low speeds un-
derwater, the Coriolis-centripetal forces can be disregarded to
simplify calculations [35]. The damping matrix D is assumed
to be diagonal due to the robot’s symmetry, and any hysteresis
or dead zones within the thrusters are adjusted accordingly.

C. Adaptive Propulsion Control

We have developed a control framework, referred to as
adaptive propulsion control (APC), illustrated in Fig. 3. This
framework is designed to enable cooperative control between
legged locomotion and thruster propulsion in robotic systems.
The APC takes as inputs both the latent and current states
and, in turn, generates the necessary force for the thrusters
and adjusts the joint angles of the robot’s legs to change the
direction of movement. The overall training process is orga-
nized into several stages to optimize the procedure. In the first
stage, the teacher encoder and policy are trained in tandem,
while the training environment undergoes random disturbances
and structural damage, supplemented by privileged disturbance
and fault information, denoted by prealt . The teacher encoder
maps this privileged information prealt to a latent state zt, and
the policy is tasked with making decisions based on both the
latent and current states.

In the subsequent stage, the student encoder and predictor
are trained to produce the corresponding latent state ẑ′t using
historical data, and to reconstruct the privileged information
p̂′t or p̂t—which includes existing disturbance and damage
scenarios—from the latent state ẑ′t or zt. During this stage,
the parameters of the policy and the teacher encoder remain
constant, while the policy employs the output of the student
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Fig. 3. Illustration of the proposed adaptive propulsion control framework. The training process is arranged in two stages. Initially, the teacher encoder learns
to map environmental data into a latent state, while the policy learns to use both the latent and current states to control leg positions and generate thrust for
the propeller. Subsequently, the student encoder is trained to output the current latent state, and the predictor is trained to map the latent state back to the
environmental data, supervising the training of the student encoder simultaneously. Ultimately, the student encoder, policy, and predictor are applied in test
scenarios, achieving both prediction and tracking control in underwater environments.

encoder, ẑ′t, to create actions and interact with the environ-
ment. The predictor is expected to learn how to reconstruct
the environmental information by minimising the ℓ1 distance
between p̂t and prealt , between p̂′t and prealt , and the difference
between p̂t and p̂′t. This training approach helps guide the
student encoder towards convergence as follows:

losspre =
∥∥prealt − p̂t

∥∥1 + α
∥∥prealt − p̂′t

∥∥1 + β ∥p̂t − p̂′t∥
1
.

(4)
The student encoder is designed to learn the environmental

latent information from historical trajectories so that it closely
resembles the current real latent state and can be reconstructed
into environmental information by the predictor, as follows:

lossstu =
∥∥zt − ẑt

′∥∥1 + γ ∥p̂t − p̂′t∥
1
. (5)

Here, α, β, and γ serve as hyperparameters. Ultimately, the
student encoder, policy, and predictor were implemented on a
physical robot, enabling it to perform a wide array of tasks in
unknown disturbance and damage conditions without requiring
any fine-tuning. The policy takes normalized proprioceptive
measurements of the robot, which consist of 57 dimensions, in-
cluding base linear (3 values) and angular velocities (3 values),
the estimated gravity vector (3 values), commands (4 values),
historical actions (16 values), joint positions (12 values) and
velocities (12 values), and the current thrust (4 values). The
neural network architecture consists of a policy network, a
dual-encoder system for environmental representation, and a
predictor. The encoders include teacher and student encoders;
this architecture has the ability to infer the characteristics of
the environment [28], [29].

The teacher encoder processes specific environmental infor-
mation and generates a latent state, while the student encoder
estimates the current latent state based on historical data.
The student representation module is implemented as a 1-
D convolutional neural network (CNN) to capture temporal
correlations. The remaining components are designed as multi-
layer perceptron (MLP) networks, ensuring high training speed
while capturing temporal relationships. Finally, the predictor
reconstructs various latent states into specific environmental
information regarding the current environment, such as pre-
dicting current disturbances of water flow and existing damage
status. Meanwhile, the predictor assists the student encoder in
completing the training.

The desired action at represents the required thrust for 4
thrusters and 12 leg joint positions, which are sent to the PD
controller at a frequency of 50 Hz. Notably, the first two joints
of each leg play a crucial role in controlling the direction of
the thrusters.

D. Reward Design

The reward function is denoted as follows:

rvel := exp(−2(vx − vxd)2) + exp(−2(vy − vyd)2)

+ exp(−2(vz − vzd)2)
(6)

rang := exp(−2(ωyaw − ωyawd)2) (7)

rorn := −(ω2
vpitch

+ ω2
vroll

), (8)



5

where rvel is the speed tracking reward and rang is the angle
tracking reward. vx, vy , vz , and ωyaw denote the current
linear velocity and angular velocity of the body, respectively,
while vxd , vyd , vzd , and ωyawd represent the desired linear
velocity and angular velocity of the body, respectively. The
angle balance reward is denoted as rorn, and ωvpitch and ωvroll

are the current pitch and roll rate of the body, respectively. To
facilitate smoother and more efficient motion, action rate and
torques are also penalized as follows:

rpenalty := −0.0001 ∥τ∥2 − 0.01 ∥q∗∥2 , (9)

where τ represents the joint torques and q∗ represents the
changes in target joint positions. The power of a thruster is
assumed to be proportional to the square of the thrust. All the
aforementioned rewards are added together to derive the total
reward, rtotal, as follows:

rtotal = 2rvel + 2rang + 0.5rorn + rpenalty. (10)

IV. SIMULATION VALIDATIONS

To evaluate the adaptability of the proposed adaptive propul-
sion control (APC) method in varying underwater environ-
ments, we conducted a series of simulation experiments.
Specifically, we assessed the APC’s ability to accurately track
target trajectories underwater, infer water flow, and assess
damage conditions. These experiments aim to demonstrate the
effectiveness of the APC in handling unknown disturbances
and actuator failures in underwater environments, highlighting
its potential for real-world applications.

A. Fluid Dynamics

To simulate fluid dynamics in the context of an underwater
robot, we considered the fluid forces and torques exerted on the
robot’s rigid bodies. These forces and torques are dependent
on the fluid density (ρ), fluid viscosity (µ), and the geometry of
the robot’s structure. The fluid forces experienced by the robot
are categorized into two types: (1) density-dependent forces,
and (2) viscosity-dependent forces. Density-dependent forces,
which are proportional to the square of the velocity, mainly
contribute to lift and drag forces. Viscosity-dependent forces,
linear with respect to velocity, provide additional damping
effects.

For the rigid body of the robot, we compute its equivalent
rectangular box, which approximates the shape of the body for
fluid dynamics calculations. We then calculate the local linear
(v) and angular (ω) velocities of the body in its local frame,
which aligns with the equivalent rectangular box.

The density-dependent forces and torques are computed
using the following formulas:

density force i : − 1

2
ρsjsk |vi| vi

density torque i : − 1

64
ρsi

(
s4j + s4k

)
|ωi|ωi.

(11)

Here, si, sj , and sk are the dimensions of the equivalent
rectangular box. The index i denotes the component of the
force or torque vector, and j and k are the other two indices
in a cyclic permutation of 1, 2, 3.

The viscosity-dependent forces and torques are calculated
using the following formulas:

viscosity force i : − 3δπdvi

viscosity torque i : − δπd3ωi.
(12)

Here, δ is the dynamic viscosity of the fluid, and d is the
average of the dimensions of the equivalent rectangular box.

B. Training Details

Initially, we trained our policies on the Isaac Gym simulator
[36], which has been shown to produce effective results for
quadruped robots [37]. In these experiments, we used a Unitree
B1 robot 1 with 12 DOF and four T200 thrusters 2 to generate
propulsive force.

The elusive environmental vector was acquired through
the prediction of the latent state. To train the adaptation
module, we only needed the state-action history to derive the
corresponding latent states for dynamic information prediction.
Both these elements can be obtained within a real environment.
Random desired speed commands were generated, allowing
the robot to perform tasks in different directions. Each leg
joint’s range of motion was [−0.5π, 0.5π], and each thruster
provided a maximum thrust of 50N . If the robot’s body roll
or pitch exceeded 0.4 radians, the simulation was terminated
prematurely without further reward, and the robot must sur-
vive as long as possible in the environment to maximize
the cumulative rewards. Disturbances in different directions
and thruster faults were also randomly generated during the
training process. Every 4 s, there is a probability 1% that
a fault occurs in each thruster, and new disturbances are
generated randomly at the same time.

TABLE I
VARIATION OF PARAMETERS SAMPLED UNIFORMLY THROUGHOUT THESE

RANGES DURING EACH TRAINING SESSION.

Parameters Range Units

X-axes velocity command [-1, 1] m/s
Y-axes velocity command [-0.5, 0.5] m/s
Z-axes velocity command [-0.5, 0.5] m/s
Angular command [−π, π] rad
Disturbing force [-50, 50] N
Joint positions noise [-0.1, 0.1] rad
Joint velocities noise [-1.5, 1.5] rad/s
Linear velocity noise [-0.02, 0.02] m/s
Angular velocity noise [-0.05, 0.05] rad/s

To enhance the model’s generalization capabilities, we
randomized several components, including parameters and
observation noise. The detailed parameters are provided in
TABLE I.

The student encoder’s input was the robot state and actions
from the past 50 timesteps. The student encoder employed
two 1-D convolutional layers across the time dimension to
capture temporal correlations. The output channel number,
kernel size, and stride of each layer were [32, 3, 2] and [32,
5, 1], respectively. The flattened CNN output was then used

1https://shop.unitree.com/products/unitree-b1
2https://bluerobotics.com/store/thrusters/t100-t200-thrusters/t200-thruster-

r2-rp
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to predict ẑ′t with a linear layer. The values of α, β and γ
were set to 0.2. The teacher encoder and predictor used a two-
layer neural network, with each layer comprising 32 neuronal
nodes. We employed the Adam optimizer [38] to minimize the
mean absolute error (MAE) loss. We adopted the proximal
policy optimization (PPO) [39] method for the policy. The
experiment had 4096 robots training concurrently in parallel,
employing a two-layer neural network with a learning rate
of 5e-4. Each network layer contained 32 neuronal nodes
and utilized the Adam optimizer. The student and predictor
modules were trained on 500 robots for 500 episodes.

C. Simulation Results

We achieved 1500 policy updates utilizing a single NVIDIA
RTX 3080 GPU. The velocity tracking performance achieved
by the APC is depicted in Fig. 4. These results demon-
strate that our method, even amidst disturbances, enables the
thrusters and legs to collaboratively track the desired speed.
The results also suggest that our proposed method is capable
of resisting water disturbances.
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Fig. 4. Result of speed tracking effect of APC. The APC can accurately track
the linear velocity in the x-axis, y-axis, and body yaw.

We evaluated the APC’s predictive capabilities and its ef-
fectiveness in adjusting actions when confronted with random
disturbances and faults. The prediction results are displayed in
Fig. 5. As shown, the trend of disturbances in different direc-
tions can be predicted via the latent state. Besides disturbances,
actuation failures also impact tracking performance. Thus,
the network must use the latent state to predict current fault
conditions. We evaluated scenarios involving sudden faults
during motion and visualized the prediction output for actuator
fault tasks. Simulating a propeller failure during motion shows
that the network can predict the damage based on historical
trajectory data. Simultaneously, the agent can adjust its output
to perform tracking tasks.

We evaluated various trajectory tracking tasks. For testing
the robot’s dexterity, we used a line and a cycle trajectory,
as illustrated in Fig. 7. Sudden disturbances occur during
operation. Here, it was observed that the APC could swiftly
adjust its actions and accomplish trajectory tracking upon
encountering disturbances, whereas the PPO method deviated
from the trajectory due to disturbances. The results reveal that
the legs and thrusters can collaborate to achieve smoother
performance in the face of disturbances, which is a challenge
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Fig. 5. Predicted disturbance and faults, along with the actions of the thrusters
and leg joint positions. When disturbances and failures arise, the APC can
adaptively adjust its actions to counteract the effects, thus providing predictive
ability to various perturbations.

for the PPO method. We demonstrate the process of the robot
following a circular trajectory in Fig. 6, showing that the robot
can flexibly turn to complete the circular path tracking.

We evaluated the effect of the latent dimension on the results
by training with latent state dimensions of 16, 32, 64, and
compared the results with PPO and conducted ablation studies,
as presented in Table II. The results present the average reward
values under different disturbances. We calculated the mean of
the results for each experiment after 50 runs to illustrate this
effect. Concurrently, we tested the effect of different sizes of
perturbations on the results. We found that under conditions
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Fig. 6. Snapshots of the APC trajectory tracking performance, showcasing
the robot’s ability to accurately follow a circular path by executing turns.
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Fig. 7. Tracking effects of velocity tracking based on different methods. Under
the influence of perturbations, the PPO deviates from the intended trajectory.
However, due to its predictive capacity and dynamic action adjustments, the
APC can still accomplish trajectory tracking amidst disturbances.

of perturbations and faults, the performance of PPO was rela-
tively poor, whereas the proposed method demonstrated more
reasonable results. This indicates that by relying solely on the
domain randomization technique, PPO fails to achieve optimal
results, and the APC method exhibited increased robustness for
varying magnitudes of perturbations. In addition, a latent state
dimension of 32 offers the highest overall performance; this
indicates that increasing or decreasing the dimensionality of
the latent state does not guarantee improved performance and
robustness. We further conducted a comparative analysis of
the disturbance prediction capabilities of APC and the model
without reconstruction (w/o Re), both set with 32 latent state
dimensions. Err(A) denotes the disturbance prediction error for
APC and Err(w) represents the error for the model without the
reconstruction of environmental features, the results reflect the
average estimation error of disturbances in various directions,
expressed in Newtons (N). The results highlight that, while
APC ensures performance, it exhibits superior capabilities in
environmental prediction.

To understand the estimated perturbed latent states, we
evaluated the clustering of the latent state vectors under
distinct scenarios. We sampled the robot’s latent state under
various conditions, including different thruster malfunctions
and disturbances from multiple directions. In Fig. 8, we used
t-SNE to visualize the estimated latent states under different
disturbances and faults. The results reveal that the latent states
in different environments frequently occupy separate regions
and exhibit unique characteristics.

V. CONCLUSION AND FUTURE WORK

In this study, we successfully developed an adaptive propul-
sion control (APC) framework that allows for the integration of
thrusters with quadruped robots. This integration enables the
robot to move seamlessly between terrestrial and aquatic envi-
ronments. The key contributions of our work are coordinated

Fig. 8. The t-SNE result of the estimated latent state for different disturbances
or various damage situations. The APC generates distinctive latent states
based on the unique characteristics of various types of disturbances and
failures, enhancing the controller’s versatility and adaptability in dynamic
environments.

TABLE II
ANALYSIS OF LATENT STATES ACROSS DIMENSIONS SHOWS THAT LOW OR

HIGH DIMENSIONS DEGRADE THE MODEL PERFORMANCE AND APC
DEMONSTRATES SUPERIOR ENVIRONMENTAL PREDICTION CAPABILITIES

WHILE MAINTAINING ITS PERFORMANCE.

Force 16 32 64 PPO w/o Re Err(A) Err(w)

0N 9.22 9.51 9.56 6.50 9.41 7.39 5.68
30N 9.25 9.43 9.48 6.29 9.35 6.88 4.45
50N 8.95 9.24 9.21 5.85 9.17 6.93 4.36
80N 7.98 8.28 8.11 3.92 8.15 12.12 8.90

control of the legs and propellers, the adaptive neural network
to predict and compensate for disturbances and actuation
failures, and simulation experiments that demonstrated the
ability to effectively perform speed and trajectory tracking
tasks, even under challenging conditions.

However, while our simulation experiments were successful,
there are many more possibilities to explore. We are looking
towards conducting real-world experiments, which will require
significantly more resources, facilities, and hardware support.
Future studies could consider incorporating additional sensing
and control modalities to improve performance in complex
environments. We are also interested in performing a deeper
analysis of the transition mode between landing and swim-
ming.

In conclusion, our proposed method shows substantial po-
tential for the hardware augmentation of quadruped robots,
creating new applications in amphibious environments, and
opening new areas of research in the field of robotics.
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