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ABSTRACT 

Commercial photodiodes suffer from reflection losses and different recombination losses that reduce the collection 
efficiency of photogenerated charge carriers. Recently, we realized a near-ideal silicon photodiode, which steps closer to 
the physical performance limits of silicon photodiodes than any other silicon photodiode realized before. Our device 
exhibits an external quantum efficiency above 95% over the wavelength range of 235 – 980 nm, and provides a very 
high response at incident angles of up to 70 degrees. The high quantum efficiency is reached by 1) virtually eliminating 
front surface reflectance by forming a “black silicon” nanostructured surface having dimensions in the range of 
wavelength of optical light and 2) using an induced junction for signal collection, formed by negatively charged alumina, 
instead of a conventional doped p-n junction. Here, we describe the latest efforts in further development of the 
photodiode technology. In particular, we report improvements both in the short wavelength response via better control of 
the surface quality, and superior response to photons with energies close to the silicon bandgap.  
 
Keywords: Silicon, photodiode, black silicon, induced junction, quantum efficiency, nanostructure, alumina, broadband 
photodiode, ideal photodiode 
 

1. INTRODUCTION  
Silicon photodiodes are used in wide range of applications ranging from automotive twilight detectors to medical 
imaging. When illuminated, they generate an output which is proportional to light level with excellent linearity over 
several decades of light intensity. As a first approximation within their typical range of use, when used in photovoltaic 
mode without bias, one electron is released per incoming photon having energy exceeding silicon bandgap. However, in 
practice all of these charges can’t be collected as the performance of photodiodes is limited by both reflectance of 
incoming light and recombination of generated charges before they get collected to external circuit, resulting in typical 
quantum efficiencies of about 80%. The most important recombination modes are surface recombination on the (top) 
surface and auger recombination in doped region forming the diode pn-junction. Methods of effective passivation have 
been developed to reduce surface recombination and junction doping profile and anneal processes have been optimized 
to reduce auger recombination, but there’s plenty of room for improvement. Various antireflective layers have been 
implemented to reduce the reflectance but they are typically optimized to some wavelength range at the cost of reduced 
response at other wavelengths.  
 
Nanostructured silicon, or black silicon, with feature sizes smaller than the wavelength of visible light, can create an 
effective refraction index gradient and thus absorb all incident light1. These nanostructures also result in longer optical 
paths and wider acceptance angles for incident photons. A significant challenge included in the nanostructures is the 
greatly increased surface area, which makes nanostructured devices prone for surface recombination. This issue has been 
solved using conformal atomic layer deposited (ALD) alumina (Al2O3).2-3. Alumina passivated black silicon has been 
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2.2  Device characterization 

Basic diode properties of the devices were first measured using normal current to voltage (IV) and capacitance to voltage 
(CV) measurements, some of which have been reported earlier5. Most of the responsivity data presented here were 
measured at VTT Technical Research Centre of Finland Ltd, Centre for Metrology MIKES together with National 
Metrology Research Institute (MRI). The responsivities were calibrated against reference trap detector, which is 
traceable to a cryogenic electrical substitution radiometer6. The measurements were further checked with the optical 
power calibration facility based on lasers7. The latest generation of devices, depicted by the purple curve in Fig. 3 was 
measured using a QEX7 Solar Cell Spectral Response device and calibrated against one of our own diodes, which was 
earlier calibrated at MRI. All measurements were performed at zero-bias conditions with a focused light beam essentially 
perpendicular to diode surface 
 

2. RESULTS 
3.1  Diode performance 

One of the most important figures of merit of photodiodes is their external quantum efficiency, which is the ratio of the 
number of electrons collected to the number of photons incident on the device. Figure 2 shows the external quantum 
efficiency of our second generation of diodes further developed from the prototypes introduced 5, measured at zero-bias 
condition under a continuous-wave light source. For comparison, two other diodes have been depicted: a broadband 
reference photodiode (Newport 818-UV) as well as the black silicon photodiode realized by SiOnyx8. The gray dashed 
line indicates the EQE of an ideal photodiode, which converts every single incident photon into exactly one electron-hole 
pair.  
 
It is evident, that our device is significantly superior to both of the compared diodes. Our device has close to 100% 
efficiency over the full range of visible wavelengths. Additionally, our device maintains high EQE in the near infrared 
with a 95% conversion up to 980 nm. The b-Si nanostructure also increases the optical path of the photons, further 
enhancing the efficiency close to the silicon bandgap of 1.11 eV which corresponds to approximately 1170 nm 
wavelength of light. For example at 1100 nm, our device still exceeds 50% EQE. 
 
Our device also has quite exceptional performance in the UV range. Here, the the induced junction is particularly 
powerful, because the UV photons are absorbed very close to the surface, and the strong electric field separates charge 
carriers from each other preventing recombination. In conventional pn-junction photodiodes charge carriers generated 
close to the surface are typically recombined due to dopant-induced Auger recombination or implantation damage. 
Additionally, from around 300 nm downwards, the energy of the incident photons becomes so high, that the electron 
released by the photoelectric ionization carries high enough kinetic energy to have a chance of ionizing a secondary 
electron. Probability of secondary ionization increases with photon and thus also electron energy as can be seen in the 
response graph. This phenomenon results in an effective EQE of over 100 % at wavelengths below 300 nm. For further 
discussion on this phenomenon, please see9.  
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Figure 2 External quantum efficiency as a function of wavelength of the photodiode presented (purple solid line) representing our 
second generation of development, as well as a calibrated Newport 818-UV photodiode (black dotted line) and a doped black silicon 
photodiode realized by SiOnyx8 (green dashed line). The EQE of an ideal photodiode (100%) is shown as a dashed grey line. 
 
 

3.2  Process development towards 100% broadband external quantum efficiency 

Here, we report on the progress to push the performance of our device even closer to 100% EQE.  
 
Simulations performed and partially reported5 indicated that an even higher EQE could be achievable with this 
combination of black silicon and ALD induced junction. To analyze possible causes for signal losses, more thorough 
simulations were performed related to for example the shape, dimensions and doping parameters of diode contacts. 
Additionally, devices of the first cycle were visually inspected for possible damage, which was not found. Finally, a scan 
across the active area of the best performing device was performed with a focused 325 nm laser beam of about 200-300 
µm in diameter. This scan revealed lower quantum efficiency regions on the active area, as can be seen in Figure 3. The 
shape and dimensions of these areas were characteristic to mechanical damage. The nanostructured non-reflective 
surface had probably been damaged during test device installation process. The second generation of our devices 
included improvements derived from the simulations, as well as careful handling during all process stages. This resulted 
in quite an impressive improvement in the long-wavelength regime, improving the EQE around 800 nm from 96% to 
98.5%.  
 
For the third round of devices, some further improvements were incorporated, still addressing some handling issues and 
further developing guard ring structures to improve other characteristics of the devices. This resulted in 98% or better 
external quantum efficiency over the entire wavelength range of 300 – 950 nm, according to preliminary measurements 
made by QEX7 Solar Cell Spectral Response device. Of the 2% that still remain lost, approximately 1% is lost to surface 
reflectance, and the other per cent due to surface and bulk recombination. 
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Figure3  Relative response across a black silicon induced junction photodiode scanned with a 325 nm laser beam focues to about 200-
300 µm in diameter. The overall response of this device was ~96% including the clearly damaged areas. 
 
 
Figure 4 shows results from these three generations of manufactured devices. The first one we reported earlier5, which 
exhibited slightly over 96% EQE for the wavelength range of 250 – 950 nm, the second one achieved higher response in 
IR range, and the third one achieved the ~98% level across the same range.  
 

 
 
Figure 4 External quantum efficiency as a function of incident light wavelength for three generations of our devices. The first one 
(black dotted line) we reported earlier5, the second one (blue dashed line) achieved higher response in IR range, and the third one (red 
solid line) achieved the ~98% level. The first and second generation were measured at VTT Technical Research Centre of Finland Ltd, 
Centre for Metrology MIKES together with National Metrology Research Institute (MRI) and the third generation is a preliminary 
result obtained with QEX7 Solar Cell Spectral Response device.  
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3. CONCLUSIONS
We have demonstrated a silicon photodiode with near-unity spectral response in the wavelength range of 250 – 950 nm, 
even with high incident angles. Here, we report for the first time the superior quantum efficiency of our diode in the NIR 
regime, close to the silicon bandgap, exceeding 50% at 1100 nm, as well as new data from deeper in the UV regime. We 
also showed that additional cycles of learning after our prototype device5 further enhanced the performance of our diode. 
Preliminary results from our latest generation of devices exhibit over 98% EQE over the wavelength range 300 – 950 
nm. 
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