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A charged Yukawa liquid confined in a slit nanopore is studied in order to understand excluded vol-
ume effects in the interaction force between the pore walls. A previously developed self-consistent
scheme [S. Buyukdagli, C. V. Achim, and T. Ala-Nissila, J. Stat. Mech. 2011, P05033] and a new
simpler variational procedure that self-consistently couple image forces, surface charge induced elec-
tric field, and pore modified core interactions are used to this aim. For neutral pores, it is shown that
with increasing pore size, the theory predicts a transition of the interplate pressure from an attractive
to a strongly repulsive regime associated with an ionic packing state, an effect observed in previ-
ous Monte Carlo simulations for hard core charges. We also establish the mean-field theory of the
model and show that for dielectrically homogeneous pores, the mean-field regime of the interac-
tion between the walls corresponds to large pores of size d > 4 Å. The role of the range of core
interactions in the ionic rejection and interplate pressure is thoroughly analyzed. We show that the
physics of the system can be split into two screening regimes. The ionic packing effect takes place
in the regime of moderately screened core interactions characterized with the bare screening pa-
rameter of the Yukawa potential b � 3/�B, where �B is the Bjerrum length. In the second regime
of strongly screened core interactions b � 3/�B, solvation forces associated with these interactions
positively contribute to the ionic rejection driven by electrostatic forces and enhance the magnitude
of the attractive pressure. For weakly charged pores without a dielectric discontinuity, core inter-
actions make a net repulsive contribution to the interplate force and also result in oscillatory pres-
sure curves, whereas for intermediate surface charges, these interactions exclusively strengthen the
external pressure, thereby reducing the magnitude of the net repulsive interplate force. The pro-
nounced dependence of the interplate pressure and ionic partition coefficients on the magnitude
and the range of core interactions indicates excluded volume effects as an important ion speci-
ficity and a non-negligible ingredient for the stability of macromolecules in electrolyte solutions.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3684880]

I. INTRODUCTION

The first experimental test of the Lifshitz theory of van
der Waals (vdW) forces between surfaces was performed for
surface separations between 100 to 1000 nm by Derjaguin
et al. in 1954.1 The improvement of experimental technics
allowed in 1970s the confirmation of the theory for inter-
plate separations of a few nanometers.2, 3 These experimen-
tal breakthroughs were followed by a simpler reformulation
of the Lifshitz theory.4, 5 It is known that the stability of
various biological and chemical systems such as membrane
assemblies,6 colloidal suspensions,7 or cement paste8 result
mainly from the competition between the attractive vdW
forces and repulsive double layer interactions induced by the
charge groups at the surface of the molecules. This competi-
tion is the basis of the Derjaguin–Landau–Verwey–Overbeek
(DLVO) theory.9, 10 Although the DLVO theory has been suc-
cessful to explain several phenomena in colloidal science, it
treats these opposing forces in an additive way. The additivity

a)Electronic mail: sahin_buyukdagli@yahoo.fr.
b)Electronic mail: Tapio.Ala-Nissila@aalto.fi.

assumption is, however, an uncontrolled approximation that is
expected to break down at ionic concentrations where many-
body effects become significant.

A Gaussian field theory of heterogeneous ionic solutions
that couples both effects in a systematic way was proposed in
Ref. 11. By comparison with MC simulations, it was shown
that the theory reproduces the correct trend for the devia-
tion of the exact interplate pressure from the mean-field (MF)
prediction. During the last decade, the field theoretical for-
mulation of heterogeneous ionic liquids has been applied at
the Gaussian level to more complicated systems in order to
understand the impact of various effects on macromolecu-
lar forces, such as surface charging,12 charge disorder,13 sur-
face polarity,14 and dielectric disorder.15 An analytical theory
for the non-equilibrium behaviour of Casimir forces has been
also proposed in Ref. 16. By construction, the Gaussian the-
ories are known to be valid for dilute ionic concentrations. A
first order cumulant expansion that goes beyond the Gaussian
theory and allows to consider higher concentration regimes
was introduced in Ref. 17. In addition to the screened vdW
forces, this calculation was shown to give rise to a new attrac-
tive force, namely a depletion force that originates from the
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density difference between the bulk electrolyte and the inte-
rior of the pore.

Close to molar concentrations where various electrostatic
effects act in a self-consistent way, one can exclusively rely on
non-perturbative methods. Electrostatic self-consistent equa-
tions for the two point correlation function and the surface
charge induced electrostatic potential were first derived within
a variational procedure in Ref. 18. These equations were
recently shown to be equivalent to Hartree equations that
can also be obtained from a summation over a particular
class of perturbative diagrams.19 Within a Wentzel–Kramers–
Brillouin (WKB) approximation, they were solved for cylin-
drical systems with a dielectric discontinuity in order to un-
derstand ionic correlation effects. A variational calculation
based on a more restricted variational kernel that can self-
consistently take into account the depletion forces discussed
above was also proposed for neutral slit pores in Ref. 20. A
different variational approach based on a separation of the
Coulomb potential into a short and a long wavelength com-
ponent was presented for charged slit pores without a dielec-
tric discontinuity in Ref. 21 and in the presence of a dielec-
tric discontinuity but without salt in Ref. 22. By comparison
with MC simulations, it was shown that the predictions of the
theory for ionic densities and interplate pressure were very
accurate from weak to strong coupling limit. In order to be
able to consider on the same footing the salt, the dielectric
discontinuity, and the surface charge effects, we proposed in
Ref. 23 a simpler variational approach for electrolytes con-
fined in slit pores. The approach in question is inspired by
a modified Onsager–Samaras (OS) approach frequently used
in nanofiltration studies24–26 and it considers uniform trial
screening parameters whose value can differ from the bulk
one due to confinement effects. The variational scheme was
shown to agree well with MC simulation results beyond
the MF regime. It was also shown that the approach ap-
plied to cylindrical ion channels yields a new type of liquid–
vapor phase transition that we proposed as the underlying
mechanism behind the ionic current fluctuations observed in
experiments.27, 28

The field theoretic approaches discussed above do not
consider excluded volume effects associated with core–core
collisions between the charges. These effects included in nu-
merical simulations of electrolyte solutions are known to be
non-negligible if the packing fraction of the electrolyte be-
comes important. More precisely, Monte Carlo (MC) simula-
tion results of ions with hard core (HC) interactions show that
for an electrolyte with a bulk density about 1 M, ions close
to the solid interface feel an attraction towards the wall.29, 30

Previous integral theories of HC charges at planar surfaces
showed that this feature is a wetting effect caused by the
particle collisions within the bulk that push ions towards the
interfaces.31–34 We have recently developed a self-consistent
calculation scheme40 in order to study a field theoretic model
of charged liquids with repulsive Yukawa interactions.35 It
was shown that the theory is able to reproduce the ionic wet-
ting effect in question and exhibits a good agreement with MC
simulation results for the density profile of neutral Yukawa
particles at simple interfaces. We also investigated ion size
effects on the adsorption of ions onto dielectric interfaces

as well as on the dielectric exclusion mechanism from slit
nanopores. It is important to emphasize at this stage that al-
though different potentials could be used in order to model
core–core interactions, our choice of a Yukawa potential is
motivated by the fact that its inverse is well defined. We note
that similar charged liquids with repulsive Yukawa interac-
tions have been studied in bulk systems with MC simulations
in order to investigate vapor–liquid equilibrium.36 Further-
more, the most important benefits of the present theory over
MC simulations are the transparency of the closure equations
that allows an easy interpretation of the underlying physics,
and a considerable reduction of the computation time. Indeed,
in the most complicated case of the charged Yukawa liquid
confined in a dielectrically heterogeneous pore with charged
walls, the numerical solution of the general self-consistent
equations (GVS-see below) does not exceed 10 min for pores
of total thickness d < 3 nm.

A different effect related to this wetting phenomenon was
observed in MC simulations of HC charges confined in slit
nanopores without dielectric discontinuity.37, 38 For large bulk
concentrations, the interplate pressure was shown to interpo-
late between an attractive regime of ionic depletion at small
pore sizes and a repulsive regime characterized by an ionic
packing state at large interplate separations. Although the first
regime associated with confinement effects is included in field
theoretic models of vdW interactions,20, 39 the second regime
of ionic packing driven by core–core collisions is absent in
these theories. In this article, we revisit the theory developed
in Ref. 40 in order to show that the model includes both
regimes and also thoroughly analyze the underlying mecha-
nism responsible for the interpolation between them.

The article is organized as follows. We explain in
Sec. II the derivation of the field theoretic model for the
charged Yukawa system confined between two membrane
walls containing fixed surface charges with a uniform am-
plitude σ s (see Fig. 1). Each wall separates two dielectric
media, namely the membrane matrix composed of biologi-
cal or synthetic substance associated with a low dielectric
permittivity (εm = 2), and the pore medium that contains

FIG. 1. Geometry for a slit-like pore of thickness d. The dielectric permittiv-
ities of the pore and the membrane are respectively εw and εm.
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the solvent molecules (i.e., water) and solvated ions. The pore
is in contact with an external particle reservoir at the extrem-
ities, and the electrostatic interactions between the ions in the
bulk reservoir are modeled with a Coulomb potential vc =
�B/r, where �B is the Bjerrum length (defined in Sec. II). The
repulsive core–core interactions resulting from the excluded
volume associated with the size of hydrated ions are taken
into account with a Yukawa potential of the form w(r) =
�ye−br/r, where the model parameters �y and b respectively
fix the amplitude and the range of these interactions. We note
that a mapping between these parameters and the effective
ion radius has been presented in Ref. 40. Since we aim in the
present work at understanding the importance of core–core
interactions with respect to the magnitude of electrostatic in-
teractions, the parameters �y and b will be varied in terms of
the Bjerrum length. Furthermore, the solvent molecules renor-
malize the dielectric permittivity of the air to a high value
(εw = 78) and in the presence of ions, the resulting dielec-
tric discontinuity between the membrane and the pore media
gives rise to induced polarization charges that are called im-
age charges. Although an ion located close to a single dielec-
tric interface has a single image charge, the confinement of
the ion between two interfaces gives rise to an infinite num-
ber of images. The present theory can fully take into account
the interaction between an ion in the pore and its multiple
images, as well as the screening of these image interactions
by the surrounding ions in a consistent way. Section III is
devoted to the derivation of the computational schemes. We
first develop the MF theory of the model and calculate the
MF pressure for the slit system. Then, we introduce two self-
consistent calculation schemes that account for the correla-
tion effects neglected at the MF level. Namely, we revisit
the derivation of the variational equations introduced in Ref.
40 and introduce as well a simpler variational approach. We
also derive the interaction force between the pore walls within
these self-consistent methods. The numerical results are dis-
cussed in Sec. III. In the first part, we apply the theory to
neutral Yukawa particles confined in the slit pore in order to
evaluate the net contribution from excluded volume effects
to the interplate pressure. The second part considers the in-
terplay between electrostatic and core interactions for neutral
pores with various matrix permittivities. In the third part, we
thoroughly analyze the impact of the range of core interac-
tions on ionic rejection rates and the interaction force between
the plates. Finally, we discuss in the fourth part the effect of
core interactions on the interplate pressure in the presence of a
fixed surface charge. In all cases considered above, we com-
pare the restricted variational scheme with the general one
and also illustrate the MF predictions in order to identify the
MF regime of the theory. The limitations of the theory, po-
tential generalizations, and applications are discussed in the
conclusion.

II. FIELD THEORETIC MODEL FOR THE CHARGED
YUKAWA FLUID

We review in this section the derivation of the grand
canonical partition function of the charged Yukawa model
introduced in Ref. 35 that will be the starting point for

Secs. III and V. The canonical partition function of interact-
ing charged Yukawa particles reads

Zc =
p∏

i=1

eNiEs

Ni!λ
3Ni

T

∫ Ni∏
j=1

dxij e
−Hc({xij })−Hy ({xij }), (1)

where p is the number of particle species, Ni is the number of
particles for each species, and λT is the thermal wavelength of
each particle. The electrostatic and repulsive core interactions
are given by

Hc({xij }) = 1

2

∫
drdr′ρc(r)vc(r, r′)ρc(r′), (2)

Hy({xij }) = 1

2

∫
drdr′ρp(r)w(r, r′)ρp(r′)

+
∫

drVw(r)ρp(r), (3)

where ρp(r) = ∑p

i=1

∑Ni

j=1 δ(r − xij ) is the particle density,
xij is the coordinate of the particle j of species i, ρc(r)
= ∑p

i=1

∑Ni

j=1 qiδ(r − xij ) + σ (r), the total charge density,
qi the valency of mobile ions and σ (r) stands for a uniform
fixed surface charge density (expressed in units of the ele-
mentary charge e). We note that in this article, we will ex-
clusively consider the case of negatively charged membrane
pores, i.e., σ (r) < 0. Furthermore, the wall potential Vw(r)
takes into account the fact that the particles cannot penetrate
into the membrane by restricting the phase space accessible
to the ions according to

Vw(z) = 0 , 0 ≤ z ≤ d,

Vw(z) = ∞ , z < 0 and z > d. (4)

Moreover, the electrostatic and core potentials are respec-
tively defined as the inverse of the following operators

v−1
c (r, r′) = −kBT

e2
∇[ε(r)∇δ(r − r′)], (5)

w−1(r, r′) = b2 − �

4π�y

δ(r − r′), (6)

where we introduced the spatially varying dielectric permit-
tivity ε(r). In the case of a slit pore that confines a solvent
composed of water molecules, the permittivity is given by ε(z)
= εwθ (z)θ (d − z) + εm[θ (−z) + θ (z − d)], where εm and εw

are respectively the dielectric permittivity of the membrane
and the water medium. We first note that the Yukawa oper-
ator Eq. (6) can be easily inverted in Fourier space, which
yields the short range core interaction potential in the form
w(r) = �ye

−b|r|/|r|. Furthermore, the self-energy of ions that
should be subtracted from the total Hamiltonian is given
by Es = (q2

i /2)vb
c (r − r′)|r=r′ + (1/2)w(r − r′)|r=r′ , with the

Coulomb operator in a bulk medium defined as vb
c

−1
(r, r′)

= −(kBT εw/e2)�δ(r − r′), where �B = e2/(4πεwkBT) � 7 Å
is the Bjerrum length at ambient temperature T = 300 K.
The inverse of the Coulomb kernel is the Coulomb potential
vb

c (r) = �B/|r|.
Performing two Hubbard–Stratanovitch transformations

in order to pass from the density to the field representation and
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using the relation ZG = ∏p

i=1

∑
Ni≥0 eμiNi Zc, one can obtain

the Grand canonical partition function from the canonical one
in the form

ZG =
∫

DφDψ e−H [φ,ψ], (7)

where the functional Hamiltonian reads

H [φ,ψ] =
∫

dr

[
[∇φ(r)]2

8π�B(r)
− iσ (r)φ(r)

]

+
∫

dr
8π�y

[[∇ψ(r)]2 + b2ψ2(r)]

−
∑

i

λi

∫
dreEs−Vw(r)+i[qiφ(r)+ψ(r)]. (8)

In Eq. (8), φ(r) is the fluctuating electrostatic potential and
ψ(r) stands for the Yukawa potential associated with core in-
teractions between the particles. We also introduced above the
spatially varying Bjerrum length �B(r) = e2/ [4πε(r)kBT ]
and the rescaled particle fugacity λi = eμi /λ3

T . We finally
note that in this article, we will consider exclusively the
case of symmetric electrolytes with bulk concentration ρ+

b

= ρ−
b = ρb and valency q+ = −q− = q, where + is for

cations and − for anions.

III. CALCULATION SCHEMES

A. MF theory

1. MF equations

The MF limit of the partition function Eq. (7) corre-
sponds to the parameter regime associated with a low surface
charge and a dilute electrolyte. The physics of the liquid is de-
scribed in this regime by the MF equations that follow from
the saddle-point evaluation of the functional integral Eq. (7),
that is δH/δφ(r) = 0 and δH/δψ(r) = 0,35 which yields

�φ(r) − κ2
DHe−Vw(r)−ψ(r)+ψb sinh φ(r) = −4πq�Bσ (r),

(9)

�ψ(r) − b2ψ(r) + 8π�yρbe
−Vw(r)−ψ(r)+ψb cosh φ(r) = 0,

(10)

where we rescaled the electrostatic and Yukawa fields accord-
ing to ψ̄(r) = −iψ(r) and φ̄(r) = −iqφ(r), and dropped the
bar over the potentials for the sake of simplicity. In the equa-
tions above, we introduced the Debye–Hückel screening pa-
rameter κ2

DH = 8π�Bq2ρb. Furthermore, the particle fugacity
within the pore was determined from the chemical equilib-
rium condition between the pore and the bulk reservoir, i.e.,
λi = λb,i = ρbe

ψb , where

ψb = 8π�yρb

b2
(11)

stands for the bulk limit of the Yukawa potential.40

The boundary conditions associated with Eqs. (9)
and (10) that were derived in Ref. 40 for a charge distribu-

tion of the form σ (z) = σ [δ(z) + δ(z − d)] read

dφ

dz

∣∣∣∣
z=0+

= −4πq�Bσ, (12)

dψ

dz

∣∣∣∣
z=0+

= bψ(z = 0+), (13)

dφ

dz

∣∣∣∣
z=d−

= 4πq�Bσ, (14)

dψ

dz

∣∣∣∣
z=d−

= −bψ(z = d−). (15)

In this article, we will consider the case of negatively charged
pores, i.e., σ = −σ s, with σ s ≥ 0.

We note that the MF Eqs. (9) and (10) do not contain an
analytical solution. However, they can be linearized in the
regime ψb < 1 and κDHμ > 1, where μ = 1/(2πq�Bσ s) stands
for the Gouy–Chapman length. The linearization gives

d2φ

dz2
− κ2

DHφ = −4πq�Bσ (z), (16)

d2ψ

dz2
− κ2

ybψ = −κ2
ybψb, (17)

where κ2
yb = b2 + 8π�yρb. These simple differential

equations can be solved with the boundary conditions
(12) and (15). One obtains

ψ(z) = ψb − bψb cosh[κyb(d/2 − z)]

κyb sinh[κybd/2] + b cosh[κybd/2]
, (18)

for the Yukawa field and

φ(z) = − 2

κDHμ

cosh[κDH (d/2 − z)]

sinh[κDHd/2]
, (19)

for the electrostatic field.

2. MF pressure

The equations derived so far were already introduced in
Ref. 40. In this part, we will use these results in order to com-
pute the MF level interplate pressure. This can be obtained
either from the derivative of the MF free energy with respect
to d, or by finding the constant of integration associated with
the Eqs. (9) and (10). By multiplying Eqs. (9) and (10) respec-
tively with φ′(z) and ψ ′(z), and integrating once with respect
to z, one obtains after an integration by part

φ′2

2
− κ2

DHeψb−ψ cosh φ − κ2
DH

∫
dzeψb−ψψ ′ cosh φ = c1,

ψ ′2

2
− b2

2
ψ2 + 8π�yρb

∫
dzeψb−ψψ ′ cosh φ = c2. (20)

By combining these two relations in order to cancel the in-
tegral terms on the lhs, one obtains the first integral for the
system of Eqs. (9) and (10), which can be in turn related to
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the interplate pressure. The latter reads

β� = − 1

8π�y

[
ψ ′2(z) − b2 (

ψ2(z) − ψ2
b

)] − φ′2(z)

8π�Bq2

+ ρ+(z) + ρ−(z) − 2ρb, (21)

where we subtracted the bulk osmotic pressure �b = 2ρb

+ b2ψ2
b /(8π�y) and introduced the MF level local densities

in the form

ρ±(z) = ρbe
ψb−ψ(z)∓φ(z). (22)

As implied by the mechanical equilibrium, � does not depend
on the coordinate z. The evaluation of the rhs of Eq. (21) at z
= d/2 yields

β� = b2

8π�y

[
ψ2(d/2) − ψ2

b

] + ρ+(d/2) + ρ−(d/2) − 2ρb.

(23)
This relation indicates that at the MF level, the net pressure is
the osmotic pressure difference between the mid-pore and the
bulk reservoir. Moreover, by setting on the rhs of Eq. (21) z
= d, one can relate the interplate pressure to the contact ion
density as

β� = −ψbρb − 2π�Bσ 2
s + ρ+(d) + ρ−(d) − 2ρb. (24)

Equation (24) is a contact value relation modified by core in-
teractions. By taking the limit d → ∞ where the net pressure
vanishes, one obtains for the single interface system a modi-
fied Grahame equation that relates the total contact density of
ions to the physical parameters of the system,

ρ+
s + ρ−

s − 2ρb = ψbρb + 2π�Bσ 2
s . (25)

It is seen in this relation that core interactions increase the
total particle density on the wall. We note that the same effect
is responsible for the adsorption of HC charges onto neutral
interfaces in MC simulations.29, 30 The corresponding wetting
mechanism driven by core collisions was investigated in detail
in Ref. 40. Furthermore, by substituting Eq. (25) into Eq. (24),
one gets

β� = ρ+(d) + ρ−(d) − ρ+
s − ρ−

s . (26)

Equation (26) shows that as in the case of the primitive ion
model, the net pressure is also equal to the variation in the
total contact density as one approaches the plates from an in-
finite to a finite separation d.

In the linear limit, the electrostatic and core contributions
decouple, and one gets from Eq. (21) � � �core + �el, where
the part associated with excluded volume effects reads

β�core = ψbρbκ
2
yb

[κyb sinh(κybd/2) + b cosh(κybd/2)]2
, (27)

and the electrostatic pressure is given by41

β�el = 4ρb

μ2κ2
DH sinh2 (κDHd/2)

. (28)

For large interplate separations, Eq. (27) reduces to

β�core � 4ψbρbκ
2
yb

(κyb + b)2
e−κybd . (29)

Hence, in this limit, the MF level interplate force induced by
core collisions exhibits an exponential decay characterized by
the length scale κyb. The MF results of Eqs. (21) and (27) will
be compared in Sec. IV with the self-consistent results that
will be derived below.

B. Self-consistent approaches

1. General variational scheme

A self-consistent calculation scheme that allows to par-
tially capture correlation effects neglected at the MF level was
introduced in Ref. 40. The variational reference Hamiltonian
of this self-consistent approach is a Gaussian functional in
Yukawa and electrostatic potentials, and it is of the form H0

= H0φ + H0ψ , with the Coulombic and Yukawa parts respec-
tively given by

H0φ = 1

2

∫
r,r′

[φ(r) − iφ0(r)]v−1
0 (r, r′)[φ(r′) − iφ0(r′)],

H0ψ = 1

2

∫
r,r′

[ψ(r) − iψ0(r)]w−1
0 (r, r′)[ψ(r′) − iψ0(r′)],

(30)

where the variational electrostatic and Yukawa kernels are
given by

v−1
0 (r, r′) = kBT

e2

[−∇(ε(r)∇) + ε(r)κ2
c (r)

]
δ(r − r′), (31)

w−1
0 (r, r′) = −� + κ2

y (r)

4π�y

δ(r − r′). (32)

The piecewise trial screening parameters introduced in
Eqs. (31) and (32) read κc(z) = κcθ (z)θ (d − z) and κy(z)
= b[θ (−z) + θ (z − d)] + κyθ (z)θ (d − z). The variational
Grand potential to be optimized with respect to the trial func-
tions κy, κc, ψ0(z), and φ0(z), is defined as �v = �0 + 〈H
− H0〉0, where �0 = − ln Z0 = − ln

∫
DφDψ e−H0[φ,ψ]

= �0φ + �0ψ is the Gaussian part that in the absence of core
interactions yields the vdW interaction energy.39 Evaluating
the functional integrals in �v , the variational Grand potential
takes the form

�v = �0φ + �0ψ + S

∫
dz

(
− [∇φ0(z)]2

8π�B(z)
+ σ (z)φ0(z)

)

−S

∫
dz

8π�y

(
[∇ψ0(z)]2 + b2ψ2

0 (z)
)

−S

∫ d

0
dz

[
κ2

c

8π�B

v0(r, r) + κ2
y − b2

8π�y

w0(r, r)

]

−S
∑

i

∫ d

0
dzρi(z). (33)

In Eq. (33), the one loop contributions read

�0φ = − ln
∫

Dφ e−H0φ [φ], (34)
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�0ψ = − ln
∫

Dψ e−H0ψ [ψ], (35)

and the local density is given by

ρi(r) = λie
−Vw(r)− q2

i
2 [v0(r,r)−vb

c (0)]− 1
2 [w0(r,r)−w(0)]

×e−ψ0(r)−qiφ0(r). (36)

We now introduce the external potentials

Vc(z) = q2

2
[�B(κDH − κc) + δv0(z)] , (37)

Vy(z) = 1

2
[�y(κyb − κy) + δw0(z)]. (38)

The potentials Vc(z) and Vy(z) were computed in Ref. 40 by
inverting the operators (31) and (32). The derivation is briefly
explained in Appendix B. The result reads

Vc(z) = q2�B

2
(κDH − κc)

+q2�B

2

∫ ∞

0

dkk�c

ρc

e−2ρcz + e−2ρc(d−z) + 2�ce
−2ρcd

1 − �2
ce

−2ρcd
,

(39)

Vy(z) = �y

2
(κyb − κy)

+ �y

2

∫ ∞

0

dkk�y

ρy

e−2ρyz + e−2ρy (d−z) + 2�ye
−2ρyd

1 − �2
ye

−2ρyd
.

(40)

The potentials Vc(z) and Vy(z) generate purely repulsive forces
that exclude ions from simple interfaces and pores.40 Vc(z)
contains image charge forces associated with the dielectric
discontinuity between the pore and the membrane as well as
electrostatic solvation forces that originate from the distortion
of the ionic cloud around a central charge by the pore walls.
Vy(z) contains solvation forces associated with the modifica-
tion of the screening of core interactions by the interfaces.

By rescaling the electrostatic potential according to
φ̄0(z) = qφ0(z), the density function expressed in terms of the
potentials Vc(z) and Vy(z) takes the form

ρ±(z) = ρbe
−Vw(z)−Vc(z)−Vy (z)+ψb−ψ0(z)∓φ̄0(z). (41)

In the rest of the article, we will drop the bar sign over the
electrostatic potential in order to simplify the notation. The
variational equations for the trial functions follow from the re-
lations δ�v/δφ0(r) = 0, δ�v/δψ0(r) = 0, ∂�v/∂κc = 0, and
∂�v/∂κy = 0. The minimization yields

�φ0(z) − κ2
DHe−Vw(z)−Vc(z)−Vy (z)+ψb−ψ0(z) sinh φ0(z)

= −4π�Bqσ (z), (42)

�ψ0(z) − b2ψ0 + 8π�yρb

× e−Vw(z)−Vc(z)−Vy (z))+ψb−ψ0(z) cosh φ0(z) = 0, (43)

κ2
c = κ2

DH

〈
e−Vc(z)−Vy (z)+ψb−ψ0(z) cosh φ0(z)

∂Vc

∂κc

〉
p

〈
∂Vc

∂κc

〉−1

p

,

(44)

κ2
y = b2 + 8π�yρb

〈
e−Vc(z)−Vy (z)+ψb−ψ0(z) cosh φ0(z)

∂Vy

∂κy

〉
p

×
〈
∂Vy

∂κy

〉−1

p

. (45)

We will call the closure Eqs. (42) and (45) the general varia-
tional scheme (GVS). In the above relations, we defined the
pore average as 〈·〉p = ∫ d

0 dz · /d. We also introduce the parti-
tion coefficient of coions k− and counterions k+, that is, their
pore averaged density renormalized with their bulk density
as k± = 〈ρ±(z)/ρb〉p. For neutral pores where φ0(z) = 0, one
naturally gets k− = k+ = k. The numerical implementation of
the self-consistent relations (42) and (45) is briefly explained
in Appendix A.

Equation (42) is a modified PB equation that takes
into account pore-modified correlation effects associated with
electrostatic and core interactions. Equation (43) yields the
local value of the external Yukawa potential that embod-
ies the wetting effect issued from particle collisions. Finally,
Eqs. (44) and (45) take into account the modification of the
screening of Yukawa and Coulomb interactions in the slit
pore. The Eqs. (43)–(45) were solved in Ref. 40 for the case of
neutral pores, where the external electrostatic potential φ0(z)
vanishes, in order to understand the role of the ion size in the
mechanism of dielectric exclusion. In this article, we will first
extend this study to the case of charged pores by solving the
full set of Eqs. (42) and (45) and also use the numerical solu-
tion for the variational functions κy, κc, ψ0(z), and φ0(z) to
compute the pressure between the plates, whose derivation is
explained below.

2. Evaluation of interplate pressure from GVS

The derivation of the interplate pressure requires an ex-
plicit evaluation of the Grand potential in Eq. (33). The details
are explained in Appendix C. The result reads

�v

S
= 1

S
(��0φ + ��0ψ )

+
∫ d

0
dz

{
− [∇φ0(z)]2

8π�B(z)q2
+ σ (z)

q
φ0(z)

}

−
∫ d

0

dz

8π�y

{
[∇ψ0(z)]2 + b2ψ2

0 (z)
}−b

[
ψ2

0 (0)+ψ2
0 (d)

]
8π�y

−
∫ d

0
dz[ρ+(z) + ρ−(z)], (46)

where the linear part of the corrections to the MF theory
writes
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1

S
��0ψ = d

24π
(κy − b)

(
κ2

y + κyb − 2b2)

+ b2

8π
ln

4bκy

(b + κy)2
+

∫ ∞

0

dkk

4π
ln

(
1 − �2

ye
−2ρyd

)

−κ2
y − b2

8π

∫ ∞

0

dkk�y

ρ2
y

�2
y + 2dρy�y − 1

1 − �2
ye

−2ρyd
e−2ρyd

(47)

for core interactions and

1

S
��0φ = κ3

c d

24π
+ �0κ

2
c

16π
+

∫ ∞

0

dkk

4π
ln

(
1 − �2

ce
−2ρcd

)

− κ2
c

8π

∫ ∞

0

dkk�c

ρ2
c

�2
c + 2dρc�c − 1

1 − �2
ce

−2ρcd
e−2ρcd

(48)

for electrostatic interactions. We note that the functions �0,
�c, �y, ρc, and ρy are reported in Appendix B.

The interplate pressure is defined as the derivative of the
Grand potential Eq. (46) with respect to d minus the bulk
pressure,

β� = − 1

S

∂��v

∂d
− β�b, (49)

where the bulk pressure follows from Eq. (46) in the limit V
= Sd → ∞ as

β�b = 2ρb − κ3
DH

24π
+ψbρb− 1

24π
(κyb−b)

(
κ2

yb+κybb−2b2).
(50)

The first two terms on the rhs. of this equation respectively
correspond to the well-known entropic and electrostatic con-
tributions to the bulk pressure. The third term takes into ac-
count the excluded volume of ions at the MF level, and the last
term results from correlation effects associated with the repul-
sive Yukawa interactions. By taking into account the fact that
the variation of the Grand potential Eq. (46) with respect to
κc, κy, φ0, and ψ0 vanishes, the interplate pressure takes the
form

� = − 1

S

∂

∂d
(��0ψ + ��0φ) − 2π�Bσ 2

s − ψbρb

+κ3
DH

24π
+ 1

24π
(κyb − b)

(
κ2

yb + κybb − 2b2
)

+ρ+(d) + ρ−(d) − 2ρb

−
∫ d

0
dz[ρ+(z) + ρ−(z)]

(
∂Vc

∂d
+ ∂Vy

∂d

)
. (51)

The relation (51) indicates that ionic penetration into the pore
makes a repulsive contribution to the interplate pressure at
three different levels. The first contribution is the screening of
attractive vdW forces contained in the term ��φ . The second
repulsive effect corresponding to the third line of the equa-
tion results from the translational entropy of ions within the
pore. Finally, the last effect contained in the fourth line is an
energetic contribution. This integral term is a pore-averaged
force acting on the plates, and weighted by the ion density.
The force in question is related to the energetic cost (associ-
ated with repulsive solvation and image charge interactions)

to bring an ion from the reservoir into the pore. In Sec. III,
Eq. (51) will be investigated in the case of neutral and charged
pores.

3. Restricted variational scheme

We will also propose in this article a restricted variational
approach that simplifies the closure Eqs. (42) and (45). The
calculation scheme is inspired by the variational Donnan ap-
proximation developed in Refs. 23, 27, and 28. Within this
approximation, by taking into account the weak variations of
the electrostatic potential in small pores and in the presence
of weak surface charges, one replaces the spatially varying
potential φ0(z) with a constant trial potential φD, whose value
follows from the minimization of the Grand potential. It was
shown in Ref. 23 that in the case of an electrolyte without
core interactions, the approximation agrees quite well with the
more general variational equations for pore averaged quanti-
ties such as partition coefficients. This is the approximation
that we will adopt for the surface charge induced electro-
static interactions. However, the same approximation cannot
work for Yukawa interactions, because it is impossible to sat-
isfy the continuity of the derivative of a constant ψ0 at the
surface. Indeed, an inspection of Eq. (43) suggests that an
effective external Yukawa potential ψD should be rather in-
troduced around the zero density solution of this equation,
that is, the full potential should be of the form ψ0(z) = ψD

+ ccosh [b(d/2 − z)], where c is a constant that should be
fixed by the boundary condition Eq. (13). Finally, the poten-
tial takes the form

ψ0(z) = ψD{1 − e−bd/2 cosh[b(d/2 − z)]}. (52)

By injecting the trial potentials φD and ψ0(z) into Eq. (33),
the Grand potential becomes

�v

S
= 1

S
(�0φ + �0ψ )

+2σs

q
φD + bψ2

D

8π�y

(1 − bd − e−bd )

−
∫ d

0
dz

[
κ2

c

8π�B

v0(r, r) + κ2
y − b2

8π�y

w0(r, r)

]

−2ρb cosh φD

∫ d

0
dze−Vc(z)−Vy (z)+ψb−ψ0(z). (53)

The first variational equation δ�v/δφD = 0 yields

2� sinh φD = −γ, (54)

where we defined the ratio between the pore volume den-
sity of the fixed surface charge and the bulk ionic density as
γ = 2|σ s|/(qdρb), and

� = 〈e−Vc(z)−Vy (z)+ψb−ψ0(z)〉p. (55)

We note that for neutral pores, one has � = k. Equation (54)
is clearly an electroneutrality relation taking into account im-
age charge and core interactions. By inverting this relation in
order to express φD in terms of the model parameters and in-
jecting the solution into the remaining variational equations
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δ�v/δκc = 0, δ�v/δκy = 0, and δ�v/δψD = 0, one ends up
with the following nonlinear equations:

κ2
c = κ2

DH

√
1+ γ 2

4�2

〈
e−Vc(z)−Vy (z)+ψb−ψ0(z) ∂Vc

∂κc

〉
p

〈
∂Vc

∂κc

〉−1

p

,

(56)

κ2
y = b2 + 8π�yρb

√
1 + γ 2

4�2

〈
e−Vc(z)−Vy (z)+ψb−ψ0(z) ∂Vy

∂κy

〉
p

×
〈
∂Vy

∂κy

〉−1

p

, (57)

ψD= bdψb

−1+bd+e−bd

√
1+ γ 2

4�2
〈e−Vc(z)−Vy (z)+ψb−ψ0(z)F (z)〉p.

(58)

We introduced in Eq. (58) the auxiliary function F(z)
= ψ0(z)/ψD = 1 − e−bd/2cosh [b(d/2 − z)]. We will call the
calculation scheme of Eqs. (56) and (58) the restricted varia-
tional scheme (RVS). It can be analytically shown that in the
limit d → ∞, these equations are reduced to κc = κDH, κy =
κyb, and ψD = ψb. The meaning of the potential ψD can be
understood by injecting Eq. (52) into Eq. (43) and integrating
once from z = 0 to z = d. One immediately gets ψD = ψb(k+
+ k−)/2. This equality shows that ψD accounts for the mod-
ification of the bulk Yukawa potential ψb by pore modified
correlation effects. Strictly speaking, the value of ψD given
by this equality differs from the one obtained from Eq. (58).
However, we verified that both values coincide with a very
good accuracy for the range of parameters considered in this
article (data not shown). Furthermore, the partition coeffi-
cients can be rewritten as

k± = 1

2
(
√

γ 2 + 4�2 ± γ ). (59)

4. Evaluation of interplate pressure from RVS

The interplate pressure within RVS is obtained by tak-
ing the derivative of the Grand potential Eq. (53) with re-
spect to d. By taking into account the fact that �v is op-
timum with respect to κc, κy, φD, and ψD, the pressure
becomes

� = − 1

S

∂

∂d
(�0φ + �0ψ ) + b2ψ2

D

8π�y

(1 − e−bd ) − ψbρb

+κ3
DH

24π
+ 1

24π
(κyb − b)

(
κ2

yb + κybb − 2b2
)

+ρ+(d) + ρ−(d) − 2ρb

−
∫ d

0
dz[ρ+(z) + ρ−(z)]

(
∂Vc

∂d
+ ∂Vy

∂d
+ ∂ψ0

∂d

)
.

(60)

The importance of RVS Eqs. (56) and (58) is threefold. First
of all, they significantly simplify the numerical investigation
of Eqs. (42) and (45). We note that self-consistent equations

derived with drastic approximations and similar in form to
Eq. (44) have been used in theoretical as well as experimental
nanofiltration studies.24–26 Hence, the relations (56) and (58)
present themselves as a practical way to account for excluded
volume effects in these studies. Secondly, they would allow to
investigate these effects in more complicated geometries, such
as spherical colloid systems or cylindrical ion channels, where
the integration of Eqs. (42) and (43) becomes quite involved.28

Finally, the proposed scheme is equally promising for under-
standing in pore geometries further ion specific effects, such
as hydration interactions, whose consideration would add to
the closure relations (42) and (45) further external fields asso-
ciated with these forces.42 In Sec. IV, the prediction of RVS
for ion densities and interplate pressure will be compared with
the result of GVS equations.

IV. NUMERICAL RESULTS

We investigate in this section excluded volume effects in-
duced by core collisions on the interaction between two pla-
nar walls (see Fig. 1). The MF level computation of the in-
terplate pressure � consists in evaluating Eq. (24) with the
numerical solution of Eqs. (9) and (10). The calculation of �

within GVS given by Eq. (51) is carried out after an itera-
tive solution of Eqs. (42) and (45) that yields κc, κy, φ0(z),
and ψ0(z) (see Appendix A for details). We will also com-
pare the results obtained from these equations with the RVS of
Eqs. (56) and (58).

A. Neutral particles with core interactions

We illustrate in Fig. 2 the partition coefficient of neutral
Yukawa particles (q = 0 and κc = 0) and the interplate pres-
sure mediated by core collisions between them against the
pore size d for b = 2/�B and two values of �y, ρb, and a vanish-
ing surface charge. In order to evaluate exclusively the contri-
bution from excluded volume effects, we consider the case εm

= εw where the unscreened vdW contribution �vdW (κc = 0)
= −Li3(�2

0)/(8πd3) vanishes. First of all, Fig. 2(a) shows
that the pore density of neutral Yukawa particles exceeds their
reservoir density. In other words, there exists a net particle ad-
sorption into the pore. Repulsive core interactions within the
bulk reservoir that drive the Yukawa particles into the con-
fined pore medium are responsible for this effect.40 Moreover,
we see that according to the MF calculation, due to an inten-
sification of particle packing induced by core collisions, this
adsorption effect is amplified with decreasing d, or increas-
ing �y. Although the variational estimation of pore averaged
particle density within GVS agrees with the MF one for inter-
mediate to large values of d, the MF result deviates from the
variational prediction below a characteristic pore size where
k becomes non-monotonical. Indeed, this deviation originates
from repulsive solvation forces (similar to the ones observed
for purely electrostatic systems37, 38), embodied in the poten-
tial Vy(z) of Eq. (40), that come into play exclusively at the
variational level. It was shown in Ref. 40 that at small pore
sizes, the magnitude of these forces may grow faster than core
collision effects that drives particles into the pore (the term ψb
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− ψ(z)) with decreasing d. As a result, while decreasing d, the
pore averaged particle density reaches a maximum and starts
to decrease.

A comparison of Figs. 2(a) and 2(b) shows that for the
neutral Yukawa liquid, the behaviour of the interplate pres-
sure is mainly dictated by particle packing into the pore. First
of all, the particle excess within the slit pore yields a posi-
tive pressure between the walls. Then, one sees that at the MF
level, a reduction of the pore size or an increase of �y and
ρb that amplifies particle adsorption leads to a monotonous
increase of the interplate pressure. Moreover, while decreas-
ing the pore size, at small values of d where the deviation of
the MF result from the variational one becomes noticeable,
the variational pressure first reaches a repulsive peak and then
starts decreasing with d. We also note that the analytical solu-
tion of the MF pressure Eq. (27) reported in Fig. 2(b) shows a
good agreement with the exact MF expression Eq. (24). Fur-
thermore, it is shown that the results obtained with GVS and
RVS show a very good agreement. To conclude, we plot in
Fig. 2 the partition coefficient and the interplate pressure for
a larger bulk density ρb = 1 M and a weaker Yukawa cou-
pling �y = �B/3 in order to show that an increase of ρb at fixed
�y is equivalent to an increase of �y at fixed ρb, that is, both
enhance the strength of excluded volume effects.

In the case where the particles possess a finite charge,
electrostatic interactions that come into play will compete
with the excluded volume effects discussed so far. This com-
petition will be thoroughly investigated in Secs. IV B–IV D.

B. Interplay between electrostatic forces
and core interactions

The results presented in this part are derived in the case
of a vanishing surface charge (σ s = 0) where the electro-
static potential φ0(z) vanishes. The variational results are ob-
tained from GVS and they will be compared with RVS in all
cases. Figure 3 displays the ionic partition coefficient and the
net interplate pressure against the pore size for Coulomb and
charged Yukawa particles of valency q = 1, with �y = �B, b
= 2/�B, and several values of ρb in the case εm = εw where
image forces vanish. As in the case of neutral Yukawa par-
ticles, one notices the direct correlation between k and �.
For dilute electrolytes (e.g., the curve for ρb = 0.1 M), one
sees that there is a net particle exclusion from the pore (i.e.,
k < 1) and the pore-averaged density of the Yukawa elec-
trolyte is very close to that of the Coulomb liquid. This weak
depletion effect is known to be due to electrostatic solvation
forces associated with the distortion of the ionic cloud by the
pore walls, and leads to a negative interplate pressure.20, 23

For the lowest bulk concentration considered in Fig. 3
(i.e., ρb = 0.1 M), the increase of the pore size is accompa-
nied with the weakening of solvation forces and an increase of
the pore ionic density towards the bulk value. As seen in the
top and bottom plots of Fig. 3, the ionic penetration results in
a monotonous decay of the negative pressure with increasing
d. Furthermore, one notices that with increasing ρb, the de-
viation of k and � from the purely Coulombic case (�y = 0)
becomes more pronounced. Namely, the evolution of the par-
tition coefficient and the pressure with the pore size becomes

(a)

(b)

FIG. 2. (a) Partition coefficients and (b) interplate pressure for neutral parti-
cles in the slit pore against the pore size for two values of ρb and �y. Solid
and dotted lines are obtained from GVS, squares show the result of RVS,
dashed curves are the MF results, and triangles in (b) mark the analytical
expression (27).

non-monotonic. In the small d regime, ionic penetration into
the pore is mainly driven by repulsive solvation forces, which
leads to a net particle depletion and a negative pressure. In
the large d regime where excluded volume effects induced
by core interactions begin to take over solvation forces, the
pore density of particles exceeds their reservoir density. As
the consequence of this ionic packing in the pore, the inter-
action between the pore walls changes its sign and becomes
repulsive. With further increase of the pore size, 〈ρ〉 reaches
a maximum and starts decreasing towards 〈ρb〉. In this large
d regime where core interactions play the main role in ionic
penetration, � follows the same trend as k. Namely, � reaches
a repulsive peak and begins to decrease with increasing d.
We note that this interpolation of k and � between a parti-
cle depletion limit with � < 0 and a particle excess regime
with � > 0 was also observed in MC simulations of Refs. 37
and 38 for charged particles with HC interactions confined in
slit pores without dielectric discontinuity. It is also shown in
Fig. 3 that for d > 4 Å, the linear and nonlinear MF predic-
tions of Eqs. (21) and (27) for the interplate pressure agree
well with the variational result, which enables us to identify
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(a)

(b)

FIG. 3. (a) Partition coefficients and (b) interplate pressure against the pore
size for charged particles with �y = 0 (dotted lines), �y = �B and b = 2/�B

(solid lines) in the case εm = εw. Solid and dotted curves are obtained from
GVS, and the crosses and triangles are respectively the nonlinear and linear
MF predictions of Eqs. (21) and (27).

this large pore size range d > 4 Å as the MF regime of the
model. The failure of the MF theory for small pores can be
simply explained by the fact that for neutral pores, electro-
static interactions are not taken into account at the MF level.

We finally note that the presence of core interactions re-
verses the behaviour of k and � with respect to a change in
ρb. Namely, for the Coulomb fluid (dotted lines in Fig. 3(a)),
an increase of ρb that amplifies repulsive solvation forces
leads to a reduction of k (up to molar concentrations where
these forces start to be screened). The increase of the particle
depletion yields in turn an enhanced attractive pressure (see
Fig. 3(b)). In the case of the Yukawa liquid, in addition to the
amplification of solvation forces, the increase of ρb also am-
plifies the particle packing in the pore. Consequently, for in-
terplate separations within the range d > 1 Å where the latter
effect dominates the former one, the increase of ρb at fixed d
from a small value makes the initially attractive pressure grad-
ually more repulsive and pushes the equilibrium point where
the pressure vanishes towards smaller interplate separations.

FIG. 4. Interplate pressure for charged particles with �y = �B, b = 2/�B,
and ρb = 0.5 M, for various εm. Solid and dotted curves that correspond
respectively to the Yukawa and the Coulomb liquid are obtained from GVS.
The squares show the prediction of RVS.

Figures 4 and 5(a) display, respectively, the evolution
of the interplate pressure and the partition coefficient of the
Coulomb and the Yukawa liquids for �y = �B, b = 2/�B, ρb

= 0.5 M and several values of the matrix permittivity from εm

= 2 to εm = εw. A small value of εm is known to yield a strong
van der Waals energy and a pronounced ionic depletion.20, 23

It is also known that both effects bring an attractive contri-
bution to the pressure. As seen in these figures, the decrease
of εm at fixed d has the effect of reducing the intensity of the
particle adsorption into the pore induced by core collisions
within the bulk, thereby shifting the equilibrium distance to-
wards larger interplate separations. This delicate balance be-
tween excluded volume effects and image forces clearly indi-
cates the former as an important ingredient to understand the
stability of macromolecules in electrolyte solutions.

In order to better understand the role played by core
collisions in the interaction between the walls of a dielec-
trically heterogeneous pore, we illustrate in Figs. 5(a) and
5(b) the partition coefficient and the interplate pressure of the
Coulomb and Yukawa fluids against the pore size for εm = 2
(the characteristic value for lipid bilayers) and two values of
ρb. For small pore sizes where the dielectric exclusion mech-
anism considerably reduces the pore density of ions, the pres-
sure Eq. (51) reduces to � � −Li3(�2

0)/(8πd3) − �b, where
the outer osmotic pressure �b is given by Eq. (50). This lim-
iting law is reported in Fig. 5(b) (crosses). One first notices
that in this small d or dilute pore regime, for both types of
ionic liquid, an increase of the bulk concentration that en-
hances the magnitude of the outer pressure �b strengthens the
attraction between the plates. Then, by comparing the curves
corresponding to �y = 0 and �y = �B, one sees that in the same
small pore limit, the presence of core interactions adds to the
attractive force mediated by purely electrostatic interactions.
The intensification of the attraction between the plates by core
collisions originates from the Yukawa contribution to the bulk
osmotic pressure �b.

An inspection of the solid curves for εm = 2 in Fig. 5(a)
shows that with increasing surface separation, the decay of
repulsive image forces leads to a rapid increase of the ionic
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(a)

(b)

FIG. 5. (a) Partition coefficients and (b) interplate pressure for charged par-
ticles with �y = 0 (dotted lines), �y = �B (solid lines), and b = 2/�B. The
inset in (b) displays � against ρb for d = 7 Å and εm = 2. Solid curves are
obtained from GVS, crosses mark the dilute pore regime reported in the text,
and the squares in (a) and in the inset of (b) display the prediction of RVS.

density within the pore. Moreover, by comparing at fixed d
the dotted and solid curves with concentrations ρb = 0.5 and
1 M, we also note that as in the case without a dielectric dis-
continuity, the presence of core interactions makes k a rapidly
increasing function of ρb. Consequently, one sees in Fig. 5(b)
that in the large surface separation regime where ionic pack-
ing within the pore becomes important (d > 5 Å), the increase
of the bulk concentration of the Yukawa liquid makes the
pressure less attractive. The non-monotonical behaviour of �

with respect to a change in ρb is also illustrated for d = 7 Å in
the inset of Fig. 5(b). One also notices that for large enough d
and ρb where the intensity of excluded volume effects become
comparable with the magnitude of vdW and depletion forces
responsible for the attractive part of the interplate pressure,
� becomes purely repulsive, before reaching a repulsive peak
and decaying with increasing d. We note that the transition
of the pressure from an attractive to a repulsive regime with
increasing interplate separation was equally observed within
the AHNC method for concentrated electrolytes with HC in-
teractions confined in dielectrically heterogeneous pores (see
Fig. 5 of Ref. 33).

FIG. 6. (a) Ionic partition coefficients versus the pore size at bulk density ρb

= 0.5 M. The membrane permittivity is εm = 2. The dashed line corresponds
to vanishing core interactions (i.e., Coulomb liquid), reached in the limit �y

→ 0 or b�B → ∞. The solid lines show the case �y = 2�B for various b.
(b) Ionic partition coefficients ky = k(�y) renormalized with kc = k(�y = 0)
against the screening length b�B at d = 8 Å, ρb = 0.5 M, εm = 2 (solid lines),
εm = 39 (squares) and εm = εw (circles). The inset displays the interplate
pressure for the same model parameters and εm = 2. The horizontal reference
line marks the value of the pressure for �y = 0. All results are obtained from
GVS.

We finally illustrate in Figs. 4 and 5 the prediction of the
simple self-consistent scheme Eqs. (56) and (58) for the parti-
tion coefficients Eq. (59) and the interplate pressure Eq. (60)
for a wide range of bulk ion density, pore size, and membrane
permittivity. It is seen that in all cases, the restricted scheme
shows a very good agreement with the general one.

C. Influence of the range of core interactions

The results discussed in this part were all derived within
GVS. In order to understand the role of the range of core inter-
actions in the ionic exclusion mechanism and the interaction
force between the pore walls that we still consider neutral,
we first compare in Fig. 6(a) the partition coefficient of the
Coulomb and Yukawa particles for �y = 2�B and four val-
ues of b. With an increase of b at fixed d that weakens core
collision effects driving the ions from the bulk into
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the pore and also towards the interfaces, one would
expect the partition coefficient of Yukawa charges ky

= k(�y = �B) to monotonously decrease towards the par-
tition coefficient of Coulomb charges kc = k(�y = 0).
However, an inspection of Fig. 6(a) shows that the be-
haviour of ky deviates from this picture. First of all, with
the increase of the bare screening parameter from b�B

= 2.25 to b�B = 5 at the coupling parameter �y = 2�B, ky

drops below kc. Then, if one continues to increase the screen-
ing parameter, ky changes its trend and begins to rise towards
kc, until it reaches in the limit b�B → ∞ the partition coef-
ficient of the Coulomb liquid. As it will be shown below in
detail, the effect of an additional ionic exclusion arising in
the presence of strongly screened core interactions is mainly
driven by the balance between core collisions within the reser-
voir that drive the particles into the pore, and solvation forces
associated with core interactions that exclude them from the
pore. We note that this effect is partly responsible for a higher
rejection rate of finite size ions from dielectrically heteroge-
neous membranes.40

To progress further in the analysis of the range of Yukawa
interactions, we plotted in Fig. 6(b) the reduced partition
coefficient ky/kc against b�B at fixed interplate separation
(d = 8 Å), and for various values of �y and εm. The inset
shows the interplate pressure for the same model parameters.
The non-monotonic evolution of ky and �y = �(�y > 0) with
b is clearly illustrated in this figure. Namely, while increas-
ing the screening parameter from b�B = 2, ky decreases and
reaches kc at b�B = 3–5. This screening range corresponds
to the regime of moderately screened core interactions dis-
cussed in Figs. 2 and 5, where core collision effects embodied
in the potential term ψ0(z) − ψb of Eq. (41) dominate solva-
tion forces associated with these interactions, i.e., the poten-
tial Vy(z) of the same equation. This balance leads to an ionic
packing, that is ky > kc, which leads to �y > �c = �(�y = 0).
With a further increase of b, one gets into the second regime
of strongly screened core interactions where due to a faster
decay of ψ0(z) − ψb with respect to Vy(z), ky rapidly drops
below kc, until it reaches a minimum located at b�B � 5−7.
Moreover, it is seen in the inset of Fig. 6(b) that �y follows
the same trend as ky. We also show in Fig. 7 the transition of
the core interaction energy Vy(z) − ψb + ψ0(z) from a nega-
tive to a positive value with an increase of b�B from 2.5 to 3.
One notices that the screening of ψb − ψ0(z) is indeed much
stronger than the decay experienced by Vy(z). Then, for larger
values of b in Fig. 6(b) where the solvation energy Vy(z) sig-
nificantly decays, ky and �y change their trend and begin to
slowly increase towards kc and �c, respectively.

It is seen in Fig. 6(b) that for large enough b, the extra
ionic exclusion effect associated with core interactions sur-
vives for all values of �y and εm < εw. More precisely, by
comparing at fixed b the curves for various �y, one notices that
an increase of the coupling parameter of the Yukawa potential
that enhances the magnitude of the potential Vy(z) amplifies
the effect in question. Then, because a stronger dielectric dis-
continuity adds to the difference between the density of bulk
and pore particles, the reduction of εm increases the solvation
energy �y(κyb − κy) in Eq. (40), thus equally amplifying the
additional ionic rejection effect.

(a)

(b)

FIG. 7. (a) Yukawa potential profiles for b�B = 2.5 (black curves) and b�B

= 3.0 (red curves), for the pore size d = 8 Å, the bulk concentration ρb

= 0.5 M, the coupling parameter �y = 2�B and the membrane permittivity εm

= 2. (b) Ionic partition coefficients against the bulk density at d = 8 Å and for
the same model parameters as in Fig. 6(a). The inset illustrates the interplate
pressure against ρb. All results are obtained from GVS.

We finally illustrate the interpolation between the two
screening regimes by displaying in Fig. 7(b) the competition
between core collision effects and solvation forces as a func-
tion of ρb. One sees in this figure that in the regime of mod-
erately screened core interactions (the curve for b�B = 2.5),
the domination of solvation forces by core collisions leads
to a partition function and an interplate pressure that rapidly
increases with ρb. In this regime, the pressure remains less
attractive than the pressure for the Coulomb liquid, until it
becomes purely repulsive at ρb � 1 M (see the inset). In the
second regime of highly screened core interactions where re-
pulsive solvation forces dominate core collision effects, one
ends up with a partition coefficient that decays with increas-
ing bulk ion concentration. Furthermore, �y remains signif-
icantly more attractive than �c. It is also important to note
that interestingly, the additional ionic exclusion phenomenon
associated with excluded volume effects comes into play at
significantly low bulk concentrations, for example at ρb > 0.1
M in the case b�B = 5.
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(a)

(b)

(c)

FIG. 8. Partition coefficients of (a) coions and (b) counterions, and (c) the
interplate pressure against the pore size for ρb = 0.5 M and εm = εw. Dashed
lines are for the Coulomb liquid (�y = 0) and solid lines correspond to the
Yukawa liquid with �y = �B and b = 2/�B. The curves are obtained from RVS
and the squares mark the prediction of GVS. The circles and crosses illustrate
the MF level pressure for the Coulomb and Yukawa fluids, respectively.

It is known that the range of core interactions, or more
precisely the exponential tail of the repulsive Yukawa poten-
tial is intimately related with the electronic structure of ions.
Hence, the strong dependence of the ionic partition coeffi-
cients and the interplate pressure on the range of the repulsive
Yukawa potential indicates these interactions as an important
ion specific effect.

D. Excluded volume effects in charged pores

We investigate in this part the effect of a finite surface
charge σs on the distribution of Yukawa particles and the be-
haviour of the interplate pressure. In order to simplify the nu-
merical task, the pressure and the partition coefficients will
be computed within the RVS Eqs. (56) and (58) and the results
will be compared with the numerical solution of the GVS Eqs.
(42) and (45).

Figure 8 illustrates the ionic partition coefficients and the
net pressure for εm = εw, �y = 0 and �y = �B, and various
values of σ s. First of all, one notices for the Coulomb and
the Yukawa liquids the close correlation between the partition
coefficient of counterions and the pressure curves. Then, it is
seen that in the absence of core interactions, the ionic selec-
tion of the charged pore is characterized by two regimes.23

In small pores, one is in the GCE (good coion exclusion)
regime where the ionic penetration is mainly fixed by the sur-
face charge. Within this regime where γ � �, Eq. (59) yields
k+ � γ ∝ d−1 and k− � k+. In other words, there is an almost
total coion exclusion and the counterion density rapidly drops
with increasing pore size. For the weakest surface charge in
this figure (σ s = 7.5 10−3 nm−2), this fast drop of the counte-
rion density leads to a decrease of the initially positive pres-
sure that becomes attractive at a characteristic pore size. In
the opposite regime of large size pores where repulsive elec-
trostatic solvation forces take over the electrostatic field cre-
ated by the surface charge, the system behaves like a neutral
pore. Namely, with increasing d, the density of both species
converge towards their bulk value and the attractive pressure
decay in a monotonous way. Moreover, because the surface
charge induced electric field is the only force that survives at
the MF level, we show in Fig. 8(c) that the MF pressure agrees
with the variational one exclusively in the GCE regime.

As seen in Fig. 8, for weakly charged pores (the curve
with σ s = 7.5 × 10−3 nm−2), the inclusion of core interac-
tions considerably complicates the picture described above.
The neutral pore regime being now characterized by the par-
ticle packing effect, the pressure curves exhibit an oscillatory
shape. Namely, in the transition regime between the GCE and
neutral pore limits where core collisions driving the Yukawa
charges into the pore as well as solvation forces start to dom-
inate the electrostatic force induced by the surface charge,
the counterion density and the pressure curve change their
trend and begin to rise, until the characteristic pore size where
� reaches the repulsive peak observed in the part on neu-
tral pores (see Fig. 3). Beyond this turning point, k± and �

start to decay with the weakening of the particle packing ef-
fect. For stronger surface charges (e.g., the case σ s = 3.0
× 10−2 nm−2), the GCE regime dominates up to larger pore
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FIG. 9. Interplate pressure against the pore size for εm = 2, ρb = 0.5 M and
several values of σ s. The curves are obtained from RVS and the squares mark
the prediction of GVS.

sizes where solvation forces considerably weaken. Conse-
quently, the oscillatory shape of the pressure curve is sup-
pressed. In this case, excluded volume effects simply increase
the pore density of both species and the magnitude of the in-
terplate pressure. Furthermore, we show that the MF pressure
agrees with the variational prediction in the GCE limit as well
as the large d (or the neutral pore) regime characterized by
the ionic packing effect, whereas a discrepancy takes place
between these regimes where correlation effects carried by
solvation forces become significant.

Figure 9 illustrates the behavior of the interplate pres-
sure in the presence of a dielectric discontinuity with εm = 2.
It is seen that while increasing the surface charge, the ionic
packing regime associated with �y > �c is gradually re-
duced, until it dies out at large surface charges (i.e., σ s � 7.0
× 10−2 nm−2) where a pronounced repulsive peak takes
place. In this regime of strong surface charges where the pore
densities of the Coulomb and Yukawa liquid are very close,
the difference between �y and �c is mainly due to the con-
tribution from the core collisions to the outer pressure �b.
We also show in Figs. 8 and 9. that the restricted variational
scheme agrees very well with the general one over a broad
range of σ s, and in the absence as well as in the presence of a
dielectric discontinuity.

V. CONCLUSIONS AND DISCUSSION

In this article, we analyzed the interaction force between
two planar walls that confine a charged Yukawa liquid. We
investigated the modifications of the predictions of the vdW
and more elaborated theories20, 39 by core interactions be-
tween the particles. To this aim, we used a recently devel-
oped self-consistent calculation scheme40 and also introduced
a new restricted variational procedure that simplifies the nu-
merical task of the former one. Both methods allow to take
into account in a self-consistent way the coupling between the
surface charge induced electric field, image forces, and pore
modified core interactions. We also developed the MF theory
of the model in order to derive simple expressions for the MF

level pressure that enabled us to identify the MF regime of the
system.

In Sec. I of the article, we considered the case of neutral
Yukawa particles in a slit pore. We showed that due to core
collisions within the bulk reservoir that drive the Yukawa par-
ticles into the pore, a net particle adsorption takes place. This
ionic packing within the pore yields in turn a purely repulsive
pressure.

In Sec. II of the article, we studied the coupling of elec-
trostatic and core interactions between Yukawa particles of
finite charge in a neutral pore. It was shown that for very
small pores without a dielectric discontinuity, the ionic re-
jection driven by repulsive solvation interactions leads to an
attractive force between the pore walls for both Coulomb and
Yukawa particles. With increasing pore size, core interactions
that push the Yukawa particles into the pore leads to an ionic
excess within the pore, and changes the sign of the pres-
sure that becomes repulsive. It was also shown that the MF
regime of the theory where the analytical expression for
the interplate pressure agrees with the variational one corre-
sponds to large pore sizes, e.g., d > 4 Å for ρb = 0.5 M.

For small pore sizes and a strong dielectric discontinu-
ity where the pore is in the dilute regime, core interactions
contribute exclusively to the outer pressure mediated by the
bulk particles, thereby increasing the magnitude of the at-
tractive pressure. For larger pores where the magnitude of
core collision effects become comparable with image forces,
the accumulation of ions into the pore makes the pressure of
the Yukawa liquid less attractive than the pressure associated
with the Coulomb liquid. We also showed that for concen-
trated electrolytes (ρb � 1 M), the interplate pressure may
even become purely repulsive despite the strongly attractive
vdW contribution.

In Sec. III of the article, we analyzed the role of the range
of core interactions in the ionic rejection mechanism and the
interaction force between the pore walls. We showed that the
physics of the system can be roughly split into two screening
regimes. The ionic packing effect discussed in the second part
corresponds to the regime of moderately screened core inter-
actions. In the second regime of strongly screened Yukawa
potential, solvation interactions associated with core interac-
tions result in an additional ionic exclusion from the pore,
which in turn leads to an amplification of the magnitude of
the attractive pressure. This unexpected effect that was shown
to take place at quite low electrolyte concentrations calls for
experimental verification. Furthermore, the high sensitivity of
the interaction force between the plates to the range of core in-
teractions suggests core–core collision effects as an ion speci-
ficity considerably more complex than a simple excluded vol-
ume effect induced by the packing fraction of charges.

In Sec. IV of the article, we dealt with excluded vol-
ume effects in charged pores. We showed that for very weakly
charged pores without a dielectric discontinuity, the interme-
diate regime between the GCE (small d) and the ionic pack-
ing (large d) regimes is characterized by oscillatory pressure
curves. The oscillatory shape of the pressure is rapidly sup-
pressed with an increase of the surface charge or the dielectric
discontinuity. Furthermore, it was shown that the MF pressure
agrees with the variational one exclusively in the GCE and
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ionic packing regimes. In the presence of a dielectric discon-
tinuity, while increasing the surface charge, the ionic pack-
ing regime gradually disappears and a large repulsive peak
sets in at small interplate separations. In this range of pore
sizes, core interactions solely increase the external pressure
�b, thereby decreasing the magnitude of the net pressure. We
can conclude by noting that the significant repulsive contri-
bution from core collisions for neutral and weakly charged
pores suggest excluded volume effects as an important ingre-
dient for the stabilization of colloidal molecules in electrolyte
solutions.

It was also shown that over a broad range of surface
charge, dielectric discontinuity, and bulk concentration, the
restricted variational equations show a very good agreement
with the prediction of the more general equations for the parti-
tion coefficients and the interplate pressure. As stressed in the
text, the restricted variational scheme can be helpful if one
wishes to consider the excluded volume effects in more com-
plicated geometries, such as cylindrical ion channels, whose
importance in biophysics is well established.43, 44 It is also
important to note that nonlinear equations similar in form to
Eq. (56) are frequently used by the nanofiltration community
in water purification and desalination processes.24, 25 Hence,
the restricted self-consistent scheme presents itself as a prac-
tical method to check the importance of excluded volume ef-
fects in the artificial nanofiltration process, where very con-
centrated salt solutions are used in experiments. Finally, the
idea used in the derivation of the restricted equations could be
followed as well in order to take into account additional non-
electrostatic particle interactions in various pore geometries.

It is important to emphasize that the present theory is
based on the dielectric continuum formulation of electrostat-
ics, where the solvent molecules are considered as a simple
dielectric background that locally renormalizes the dielectric
permittivity of the air, rather than polar molecules subject to
electrostatic interactions present in the system. An explicit
electrostatic modeling of solvent molecules presents itself as
a non-trivial problem that we are currently investigating. Fur-
thermore, we note that for the concentrated solvent system
investigated in this work (solvent density ρw = 55 M and
bulk dielectric permittivity εw = 78), the core–core collisions
between solvated ions are associated with the excluded vol-
ume of hydrated ion size (i.e., an ion surrounded by solvent
molecules) rather than the bare ion size. Investigating core
collisions in low density solvents where ionic solvation is not
perfect may require a consideration of solvent molecules and
ions as separate entities. However, the complications result-
ing from both issues discussed in this paragraph are beyond
the scope of this article.

As discussed in Ref. 40, the present theory is a first or-
der approach that has its limitations. First of all, it is based on
a generalized Onsager–Samaras theory characterized by uni-
form screening parameters. Moreover, the closure relations
(42) and (45) are derived from a first order cumulant expan-
sion. In view of these limitations, we considered exclusively
the submolar concentration regime of monovalent ions and
weak surface charges, namely σ s ≤ 0.12 nm−2. This upper
boundary for the surface charge corresponds to an electro-
static coupling parameter � = 0.37, i.e., the weak coupling

regime. We are currently working on the relaxation of the gen-
eralized Onsager–Samaras approximation, which will enable
us to estimate the error induced by this approximation. To our
knowledge, MC simulations for Yukawa charges in slit pores
are still missing. When these simulation data become avail-
able, it will be necessary to test the accuracy of the theoretical
tools presented in this article.
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APPENDIX A: NUMERICAL SOLUTION OF THE
SELF-CONSISTENT EQUATIONS

We explain in this appendix the numerical solution of the
self-consistent Eqs. (42), (45), (56) and (58) by iteration. First
of all, by using the bulk values κin

c = κDH and κin
y = κyb in

the potentials Vy(z) and Vc(z), the Eqs. (42) and (43) should be
solved either with Wolfram Mathematica 7 software or with a
Fortran code. Then, the obtained potential profiles φ0(z) and
ψ0(z) are injected together with κin

c and κin
y into Eq. (44)

in order to obtain the updated value κout
c . The potential pro-

files and κout
c are finally put into Eq. (44) to obtain the new

value κout
y . The updated screening parameters are then sub-

stituted into the Eqs. (42) and (43) in the second iteration to
obtain the new potential profiles, and the cycle is repeated
until self-consistency is achieved. The solution to the RVS
Eqs. (56) and (58) can be found with the same iterative
scheme.

The Eqs. (42) and (43) can be solved with Wolfram Math-
ematica 7 software for weak surface charges, submolar con-
centrations, and pore sizes below 1 nm. For model parameters
where the numerical solver of the software fails, we used a
Fortran code with a 4th order Runge–Kutta integrator. In the
Fortran code, a shooting algorithm that allows to find the sur-
face potentials ψ0(0) and φ0(0) satisfying the mixed bound-
ary conditions (12) and (15) was used. The shooting method
consists in integrating first these differential equations from
the surface at z = 0 until the mid-pore with an arbitrary ini-
tial surface potential. Depending on the sign of the derivative
of the potential in the mid-pore, the initial surface potential
is updated with a lower or a higher value and the numerical
integration is reiterated with the new boundary values. This
procedure is repeated until the derivative of the potential van-
ishes in the middle of the pore. We finally note that the choice
of the updated values for the surface potentials was done with
a dichotomy algorithm in order to minimize the number of
iteration of the numerical integration.

APPENDIX B: ELECTROSTATIC
AND YUKAWA KERNELS

In this appendix, we report the electrostatic and Yukawa
potentials for the slit pore geometry depicted in Fig. 1.
These potentials are defined as the inverse of the operators in
Eqs. (31) and (32). They can be obtained with a single calcula-
tion as explained in Ref. 40, i.e., by inverting the generalized
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DH equation,

[−∇(ε(r)∇) + ε(r)κ2(r)]U (r, r′) = λδ(r − r′), (B1)

with the piecewise dielectric permittivity and the inverse
screening length given by

ε(z) = ε>θ (z)θ (d − z) + ε<[θ (−z) + θ (z − d)], (B2)

κ(z) = κ<[θ (−z) + θ (z − d)] + κ>θ (z)θ (d − z). (B3)

The free parameter λ will be fixed in the end in order to re-
cover v0(r, r′) and w0(r, r′) from U (r, r′). The solution of
Eq. (B1) with Eqs. (B2) and (B3) is rather trivial and can be
found for example in Ref. 39. The kernel is composed of a
bulk and an anisotropic part, that is,

U (r, r′) = λ

4πε(z)

e−κ(z)|r−r′ |

|r − r′| + δU (r, r′). (B4)

The derivation of the results presented in this article requires
exclusively the knowledge of the Green’s function evaluated
at the same point, which reads

δU (r′ = r) = − λ

4πε<

∫ ∞

0

dkk�

ρ<

1 − e−2ρ>d

1 − �2e−2ρ>d
e2ρ<z,

(B5)
if z ≤ 0,

δU (r′ = r) = − λ

4πε>

∫ ∞

0

dkk�

ρ>

×e−2ρ>z + e−2ρ>(d−z) + 2�e−2ρ>d

1 − �2e−2ρ>d
,

(B6)

if 0 ≤ z ≤ d and

δU (r′ = r) = − λ

4πε<

∫ ∞

0

dkk�

ρ<

1 − e−2ρ>d

1 − �2e−2ρ>d
e2ρ<(d−z),

(B7)
if z ≥ d, where we have defined

� = ρ> − ηρ<

ρ> + ηρ<

, (B8)

ρ> = √
k2 + κ2

> and η = ε</ε>.
First, by setting κ< = 0, κ> = κc, ε< = εm, ε> = εw, λ

= 4πε>�B and defining ρc = √
κ2

c + k2,

�c = ρc − ηck

ρc + ηck
, ηc = εm/εw, (B9)

one recovers from Eqs. (B5) and (B7) the variational electro-
static potential v0(z).

Second, by setting κ< = b, κ> = κy, ε< = ε>, λ

= 4πε>�y, and defining ρm = √
b2 + k2, ρy =

√
κ2

y + k2 and

�y = ρy − ρm

ρy + ρm

, (B10)

Equations (B5) and (B7) yield the variational Yukawa poten-
tial w0(z).

APPENDIX C: COMPUTATION OF THE EXCESS
GRAND POTENTIAL WITH THE CHARGING METHOD

We explain in this appendix the derivation of the excess
Grand potential with the charging procedure. The computa-
tion will be carried out in terms of the general kernel U (r, r′)
(see Appendix B) and the fluctuating potential ϕ in order to
recover from the final result the excess potential of electro-
static and Yukawa interactions.

The charging method consists in reexpressing the
Gaussian part of the Grand potential in terms of integrals over
auxiliary charging parameters η and ξ , that is,

�0 = − ln
∫

Dϕ e− ∫
dr
2λ

ε(r)[(∇ϕ)2+κ(r)2ϕ2], (C1)

= −
∫ 1

0
dξ

d

dξ
ln

∫
Dϕ e− ∫

dr
2λ

ε(r)[(∇ϕ)2+κ2
ξ (r)ϕ2]

−
∫ 1

0
dη

d

dη
ln

∫
Dϕ e− ∫

dr
2λ

ε(r)[(∇ϕ)2+ηκ2
<(r)ϕ2]

− ln
∫

Dϕ e− ∫
dr
2λ

ε(r)(∇ϕ)2

= �01 + �02 + �vdW , (C2)

where we defined the screening parameter κ2
ξ (r) = κ2

<

+ ξ [κ(r)2 − κ2
<]. The unscreened vdW energy reads39

�vdW = S

4π

∫ ∞

0
dkk ln

(
1 − �2

0e
−2kd

)
. (C3)

The remaining two terms �01 and �02 can be calculated by
evaluating the derivatives with respect to η and ξ , which
yields

�01 = S
κ2

> − κ2
<

2λ
ε2

∫ d

0
dz

∫ 1

0
dξU (r′ = r; κ(r) → κξ (r)),

(C4)

= Sd

4π
(κ2

> − κ2
<)

∫ ∞

0

dkk

ρ> + ρ<

+ S

4π

∫ ∞

0
dkk ln

(ρ> + ηρ<)2

(η + 1)2ρ>ρ<

+ S

4π

∫ ∞

0
dkk

[
ln(1−�2e−2ρ>d )− ln

(
1−�2

0e
−2ρ<d

)]

�02 = S
κ2

<

2λ

∫ ∞

−∞
ε(z)dz

∫ 1

0
dηU (r′ = r; κ(r) → ηκ<)

= S

4π

∫ ∞

0
dkk

[
ln

(
1 − �2

0e
−2ρ<d

) − ln
(
1−�2

0e
−2kd

)]
,

(C5)

where we used the kernel Eqs. (B5) and (B7) and analytically
performed the integrals over z, η and ξ . We also introduced

�0 = εw − εm

εw + εm

. (C6)

Although the first and second integrals in Eq. (C4) are
UV-divergent, this divergence is artificial and disappears
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when we substract the correction terms arising in the cumu-
lant expansion in Eq. (33), i.e.,

��0

S
≡ �0

S
− κ2

> − κ2
<

2λ
ε>

∫ d

0
U (r′ = r; κ(r)), (C7)

which reads
1

S
��0(κ<, κ>, η) = d

24π
(κ> − κ<)(κ2

> + κ>κ< − 2κ2
<)

+ �0

16π
(κ2

> − κ2
<) + κ2

<

8π
ln

(η + 1)2κ<κ>

(ηκ< + κ<)2

+
∫ ∞

0

dkk

4π
ln(1 − �2e−2ρ>d )

−κ2
> − κ2

<

8π

∫ ∞

0
dkk

�

ρ2
>

�2 + 2dρ>� − 1

1 − �2e−2ρ>d
e−2ρ>d .

The Coulombic and Yukawa parts ��0φ and ��0ψ directly
follow from Eq. (C8) by making the identification explained
in Appendix B, that is,

��0φ = ��0(κ< = 0, κ> = κc, ηc), (C8)

��0ψ = ��0(κ< = b, κ> = κy, η = 1). (C9)
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