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Imitation-guided Multimodal Policy Generation from Behaviourally
Diverse Demonstrations

Shibei Zhu 1, Rituraj Kaushik 1, Samuel Kaski 1,2 and Ville Kyrki 1

Abstract— Learning policies from multiple demonstrators is
often difficult because different individuals perform the same
task differently due to hidden factors such as preferences.
In the context of policy learning, this leads to multimodal
policies. Existing policy learning methods often converge to a
single solution mode, failing to capture the diversity in the
solution space. In this paper, we introduce an imitation-guided
reinforcement learning framework to solve the multimodal
policy learning problem from a limited number of state-
only demonstrations. Then, we propose LfBD (Learning from
Behaviourally diverse Demonstration), an algorithm that builds
a parameterised solution space to capture the variability in
the behaviour space defined by demonstrations. To this end,
we define a projection function based on the state density
distributions from demonstrations to define such space. Our
goal is not only to learn how to solve the task as the human
demonstrator but also to extrapolate beyond the provided
demonstrations. In addition, we show that with our method,
we can perform a post-hoc policy search in the built solution
space to recover policies that satisfy specific constraints or to
find a policy that matches a given (state-only) behaviour.

I. INTRODUCTION

In many real-world tasks such as driving a car, humans
often perform the same task in different ways due to the influ-
ence of their individual preferences such as driving style [1],
[2]. The underlying policies are therefore multi-modal, where
each mode represents a unique behaviour. Recent works
show the advantages of having a diverse set of policies,
for instance, rapid damage adaptation in robotics [3], [4],
[5] and safe sim-to-real policy transfer [6]. However, Re-
inforcement Learning (RL) methods that learn policies by
maximising a given task reward typically seek to converge
to either a global or local optimum, thus leading to a fixed
solution mode. How to explore diverse solutions remains an
open problem for the community. Possible solutions include
intrinsic motivation [7], [8] that encourages visitations of
unseen states or noise injection [9] for better exploration.
However, these works are typically focused on learning a
(novel) single-mode policy rather than a multimodal policy.

Learning from demonstrations (LfD) [10] provides an
alternative way to RL by learning policies that mimic human
behaviour in a supervised manner. However, with multi-
modal demonstrations, typical LfD methods, such as Be-
haviour Cloning (BC) and Generative Adversarial Imitation
Learning (GAIL), either learn a policy that converges to one
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A. Diverse demonstrations B. Mean-seeking LfD
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C. Mode-seeking LfD D. LfBD (Ours)

Fig. 1: Given the demonstrations from several individuals in A, the
mean-seeking policy produces unseen behaviour that is unsafe as
shown in B, the mode-seeking policy only recovers one mode as
shown in C. We propose a new framework that recovers all the
possible solution modes as shown in D. Example inspired by [11].

of the modes resulting in mode-seeking behaviour or exhibit
mean-seeking behaviour by trying to average across different
modes [11], [12], [13]. The former recovers only one solution
mode. The latter may cause undesirable out-of-distribution
behaviours that fail to satisfy the task constraints (see Fig. 1).
Moreover, none of these approaches is able to learn policies
that generate behaviours for a wide range of individuals.

Unlike RL or LfD, our goal is not how to perform a
task or how to mimic humans, but rather how to perform
a task in all possible ways guided by the demonstrations as
shown in Fig. 1D. Thus, we consider a setup where the task
reward can be defined. However, the preference components
cannot be defined mathematically to characterise multimodal
policies. And we use demonstrations to solve this latter
issue. Specifically, we consider Imitation Learning from
Observations (ILfO) [14], [15] setup in low data regimes.

The contributions of this work are: 1) We formulate
demonstration-guided multimodal policy generation as a con-
strained optimisation problem. 2) We propose an algorithm
called Learning from Behaviourally diverse Demonstration
(LfBD) to generate multimodal policies in a parameterised
latent space, with each policy satisfying different constraints
while being optimised for the task. 3) We propose a novel
projection function that captures preferences as state-region
visitations to define this parameterised latent space in an
unsupervised manner. 4) We show that we can generate
multimodal solutions from within and beyond the provided
demonstrations. 5) We show that we can perform different
types of post-hoc policy searches in the solution space: a)
Given a (state-only) demonstration, find the closest policy
capable of generating this demonstration. b) Search policies
that have a high/low likelihood according to the provided
demonstrations (i.e., similar to the provided demonstrations).



A. Mode-seeking B. Mean-seeking

Fig. 2: Fitting a Gaussian to a multimodal distribution (blue) by
minimising the reverse-KL (A, mode-seeking) and the forward-KL
(B, mean-seeking)

c) Find policies that satisfy different constraints.

II. BACKGROUND

A. Imitation learning as divergence minimisation

Prior works [13], [11], [12] show that Imitation Learning
(IL) methods can be derived as a family of f-divergence
minimisation methods, where a divergence of the state-
action distributions of the expert pπexp

(s, a) and learning
agent pπθ

(s, a) is minimised, such as Kullback-Lebler (KL)
divergences or Jensen-Shanon (JS) divergence. However,
these divergences are not capable of dealing with multimodal
distributions, as they either exhibit mean-seeking (Forward
KL divergence) or mode-seeking (Reverse KL divergence
and JS divergence) behaviours [12], [13], [16] (Fig. 2).

The state-of-the-art approaches are commonly based on
Generative Adversarial Networks (GAN) [17] variants. For
instance, Adversarial Inverse Reinforcement Learning [18]
which optimises the reverse KL, and Generative Adversarial
Imitation Learning (GAIL) [19] which optimises the JS-
divergence. The generator is used as the policy network and
the discriminator as a proxy of the reward function. And
due to the min-max optimisation nature of GAN, it faces
additional challenges from the adversarial learning such as
training instability where the generator and the discriminator
fail to converge optimally at the same time [20], or mode
collapse [21], [22], where the generator collapses to produce
only a small set of data samples (partial collapse) or even
a single sample (complete collapse), which disregards the
multi-modal nature of the distribution.

B. Imitation Learning from Observation only

Towards solving ILfO, [15] proposes a new approach
called BCO, where an inverse dynamics model is learnt
through interaction with the environment. The policy is learnt
from state observations by using the action inferred by the
inverse dynamics. However, as with most LfD methods, BCO
does not handle multimodal demonstrations.

Similarly, ILPO [23] learns a forward dynamics model and
a latent policy to circumvent the need for actions. However,
it is limited to discrete action space. Latent policy learning
from demonstrations has also been proposed by [24], [25],
[26]. GAIfO [27] extends GAIL to state-only observations by
using a discriminator that discriminates the state transitions
instead of state-action pairs from the expert. State-alignment
based Imitation Learning [28] uses state alignment to recover
state sequences close to the demonstrations using local
state alignment and global state alignment. While it shares
some similarities with our method (i.e., state distribution
matching), it needs state-action pairs to pre-train the model.

The closest work is [12], where a multi-modal policy
is recovered from state distributions using a modified re-
verse KL. However, this multimodality is due to the use
of a stochastic policy (i.e., outputs mean and variance of
a Gaussian distribution). Unlike our approach, it does not
allow the post-hoc policy search we propose. Therefore, it
cannot obtain a specific policy deterministically. [29] uses a
transformer to learn multimodal demonstrations; however, it
does not deal with state-only data.

C. Combining RL with Demonstrations

Demonstrations have been used to overcome the difficulty
of exploration and improve sample efficiency in RL [30],
[31], [32], [33]. The common ways to use demonstrations
are: 1) use BC to initialise the policies and/or regularise
the policy loss with weighted BC loss [34], [33], [35], 2)
integrate demonstrations in the reply buffer for off-policy
learning [36], [31]. Our method differs from the first as we
do not require pre-training nor a weighting constant for the
BC loss. It differs from the second, as the demonstrations are
not used during training. Instead, they are used to model the
preference factors to define a parameterised solution space.

Existing approaches are interested in learning a general-
isable (single-mode) policy from multi-task demonstrations
or (single-mode) novel policy. Methods such as [37] that
use GAIL and PPO to learn diverse visuomotor skills are
essentially multi-task and therefore generate deterministic
behaviours for each task. In contrast, we are interested in
learning multimodal policies for the same task. We formulate
the multimodal policy learning problem as a constrained op-
timisation problem. The existing works aim to find a single-
mode solution with mode-seeking behaviour or multimodal
policy with a stochastic policy. In this latter case, the stochas-
tic policy might produce undesired results, such as the mean-
seeking behaviour shown in Fig. 1. Our approach differs from
these by aiming to generate a set of (deterministic) policies
that satisfy different preference constraints while maximising
the task reward.

III. PROBLEM SETUP

Consider a finite-horizon Markov Decision Process (MDP)
⟨S,A, p, p0, R, γ, T ⟩, where S ⊆ Rds and A ⊆ Rda are the
continuous state and action spaces, p(s′|s, a) is the state-
transition probability, s and s′ are the current and the next
state, a is the applied action, p0 the initial state distribution,
γ ∈ [0, 1] the discount factor, R : S × A → R the
reward function, and T the time horizon. We assume that this
MDP has differentiable dynamics with a continuous states
transition function st+1 = fc(st, at), such that d(st, st+1) <
δ, with d as a distance metric, and δ a small constant.

Let D = {τ0, τ1, . . . , τn−1} be a small set of state-
trajectories (demonstrations) collected from n human poli-
cies (demonstrators) {πi

h(a|s)|i = 0 : n − 1}, where τi =
(si0, s

i
1, . . . , s

i
T−1), s

i
t ∈ Rds , τi ∈ RT×ds . We hypothesise

that while all human policies maximise the same task reward
Rtask(s, a), each policy might be constrained by different



preference factors. Similar to prior methods such as Max-
margin planning [38], we assume that different individuals
prefer to visit different states while solving the task. Existing
methods commonly interpreted this preference as discrete
state-visitation counts. In contrast, we assume that it is
defined by the state distribution. And human policies are
the results of solving the following constrained optimisation
problem:

πi
h := argmax

π
E
[ T−1∑

t=0

γtRtask(st, at)|π
]
, (1)

subject toDKL[pπ(s)||gi(s)] < ϵ (2)

where gi(s) = p(s|πi
h) is the state distribution preferred by

the individual i, and pπ(s) the state distribution of the learn-
ing agent. As different individuals optimise the task reward
function with different preferred states, the demonstration
distribution can have multiple solution modes.

Assuming that the general task reward can be defined,
but the preference factors cannot be mathematically defined,
e.g., due to the lack of a universal mathematical form.
Our goal is to learn a large set of policies capable of
solving the same task in different ways without explicit
hand-crafted definitions of preference factors.To this end, we
use demonstrations with diverse behaviours that allow our
learning agent to optimise its policies towards the unobserved
(as it is not explicitly defined) preference components present
within these demonstrations. This gives us the equation
above that constrains the optimisation scheme of RL with
the divergence.

IV. POLICY GENERATION FROM BEHAVIOURALLY
DIVERSE DEMONSTRATIONS

Our method consists of two steps: 1) latent space mod-
elling from the demonstration, and 2) diverse policy genera-
tion on the latent space. In addition, our method allows us to
perform post-hoc solution searching on this space in order to
obtain solutions (policies) that satisfy different constraints.

To find out a large set of policies, one for each gi(·) as
per the KL constraint in Eq. 2, we first need to construct
a latent space Z , such that any gi(·) can be mapped onto
that space. Now, if we use a projection function that maps
two similar gi(·)s closer to each other in the latent space
Z , the KL constraint in Eq. 2 can be approximated using a
Euclidean constraint in this space Z . More concretely, for
some constant δ ∈ R+, zi ∈ Z , and projection function
Enc(·) the problem can be reformulated on the latent space
Z as

πi := argmax
π

E[(Rtask|π)],

subject to ||Enc(τπ)− zi||2 < δ
(3)

Practically, we want to find one policy for each zi ∈ Z ,
optimising the objective in Eq. 3, where zi are uniformly
and densely distributed in the space Z . In other words,
we optimise policies for each zi or niche, such that they
maximise the task reward while producing state trajectories
specified by its own niche only. This is a quality-diversity

optimization problem [39]: finding high-quality solutions
according to a cost/fitness function in a space that specifies
the behaviour of the solutions. We solve this optimisation
problem using a quality-diversity algorithm called MAP-
Elites [40], [41], where we determine the behaviour of
the solutions as the latent preferences extracted from our
projection function.

A. Latent space modelling from density estimation

We first model the latent factors that explain the diversity
in the behaviours from the demonstrations to define our
projection function. As mentioned in Sec. III, we hypothesise
that the diversity is caused by individual preference over the
state visitations; i.e., different individuals prefer visiting dif-
ferent regions in the state space. Max-margin planning [38]
has proposed a similar hypothesis, where the demonstra-
tions are results of optimising an unknown reward function
that matches the state-visitation frequency for every single
state and the state-action feature vector. However, it uses
numerical state visitation counts for each state, which cannot
handle large continuous state space. While, we approach this
problem from a distribution matching perspective, where the
state region visitation frequencies, instead of the single state
visitation counts, are captured by density modelling using
Gaussian Mixture Model (GMM).

Given the demonstrated state distributions p(s) as defined
in Sec III, we use a GMM of k mixture components to
model the density as p(s) =

∑K
i ϕiN (s|µi, σi), where ϕi

is the mixture weight for each mixture component. This
state density p(s) models the state observations of all the
demonstrations. Under the assumption of a continuous state
transition,i.e., states close in time will be in the same state
region (see Sec III), each mixture component will cover
a state region in the state space. The state distribution
of each individual, gi, belongs to a subset of the entire
state distribution. As a mixture component can be seen as
a state region, different trajectories would have different
state region visitations or assigned mixture components.
Given a fitted GMM model, we can estimate the state
distribution of each gi(s) given its observations by a subset
of mixture components according to their corresponding
posterior probability or responsibilities p(k|s). That is, given
the sequence of states, we can estimate the responsibilities
p(k|s) for these states using the fitted GMM, and use the
corresponding mixtures to approximate its state distribution.
Given the assigned mixture components {kj}, and their
assignment frequencies fj

T (e.g., number of assignment for
each component w.r.t the total number of states T ) for gi(s),
we can approximately define the density of gi(s) using a
new GMM model composed of these mixture components
as gi(s) ≈

∑ fj
T N (s|µkj , σkj ), where the assigned mixture

components correspond to state region visitations, and the
new mixture weight is readjusted based on their assignment
frequencies fi

T . An illustration can be found in Fig .3.
Now, we can define our projection function, or encoder

function Enc : RT×ds → Rdz , dz ≪ (T × ds), based
on the assignment of the mixture components. Given a



C. Latent spaceA. State observations (Demos) B. Density distribution (GMM)

Fig. 3: Generation of the latent space from the demonstration. The
state observations (A) are modelled by a GMM (B). The latent space
(C) is built based on different combinations of mixture components.

set of states from a policy, the GMM is used as an un-
supervised clustering method to classify these states into
different mixture components. There are different ways to
represent this information. For instance, we can have an
encoding of size K and give the frequency values of each
component [f1, f2, . . . fk]. However, to limit the size of the
encoding, we choose to take the indices of the m most
frequently assigned components without explicitly referring
to the actual frequencies (see Algorithm 1). The precision of
the mapping depends on our choice of m as we will have
information loss with a small value of m. (further discussion
in Appx. VI-A.2).

Algorithm 1 State region visitation frequency

1: function ENCODE(gmm, state sequence, size descriptor)
2: list comp=gmm.predict(state sequence)
3: unique comp, n counts = unique(list comp)
4: comp indices = top comp(n counts, unique comp,

size descriptor)
5: return comp indices
6: end function

Implicitly, we are defining the feature vector of a trajectory
as the mixture components responsible for its states. The
visitation frequency is explicitly taken into account by taking
the top dz most assigned mixture components in descending
order (see Fig. 4). In addition, the use of GMM allows us
to evaluate the likelihood of a given trajectory according to
the density distribution modelled from demonstrations. For
instance, in Fig. 4, we can evaluate whether these trajectories
belong to in-distribution data or out-of-distribution based on
their likelihood (of the state sequence).

Average likelihood : 0.25 Average likelihood : 0.78

A B

Fig. 4: Mixture components/clusters assignment (represented by
coloured confidence ellipsoids) for the state distributions of tra-
jectories τ1 ∈ R80 and τ2 ∈ R50. A. Out-of-distribution trajectory
τ1 with low average likelihood. B. In-distribution trajectory τ2 with
high average likelihood.

a) Solution matching: We can measure the similarity
of 2 trajectories by measuring their associated mixture com-
ponents. As we have the analytical form of each component
(i.e., Gaussian with its mean and variance), we can directly

measure the distance between their distributions by using
measurements as Bhattacharyya distance or KL divergence.

B. MAP-Elites (EA) as implicit conditional generative model

Given Z as the latent space defined by the projection func-
tion, we aim to generate a solution archive Pz parameterised
by the latent encoding z, where each entry in this archive
has a unique encoding z as shown in Eq. 3. The goal is to
generate policies and map them into this space according to
encoding values for their respective g(·). While the latent
space contains all the possible state distributions defined by
the mixture components of the GMM, the solution space
is constrained by the system’s dynamics, as the possible
solutions are subject to the system constraints that cannot
generate certain state distributions. Thus, Pz ⊂ Z . As the
solution archive is the result of filling the latent space with
policies, we may use latent space interchangeably to refer to
the empty solution space.

EA can be seen as an implicit state density model over
states with high fitness/reward [42]. In our case, the solu-
tion space is constrained by the state distribution and the
generation of the policy in this space conditioned on the
encoding. Thus, the use of EA can be seen as an implicit
state density modelling over the solution space, conditioned
on the latent encodings. In other word, our method can be
regarded as a conditional generative model that generates
policies with high reward. The workflow is shown in Fig. 5,
and the detailed algorithm in Algorithm 2.

Algorithm 2 Solution archive generation

1: function ARCHIVE GENERATE(gmm, size descriptor)
2: Initialise policy π, solution archive P , fitness archive
R, number of iteration N , number of initial samples M

3: while i ≤M do
4: θ = uni sampling(0,1)
5: πθ = policy.set parameter(π, θ)
6: τ , rtask = simulate(πθ)
7: z = encode(gmm, τ , size descriptor)
8: P(z)← θ, R(z)← rtask
9: end while

10: while i ≤ N do
11: θ = ramdom solution select(P)
12: θ′ = mutate(θ) # Gaussian noise injection
13: τ , rtask = simulate(πθ′ )
14: z = encode(gmm, τ , size descriptor)
15: if P(z) = ∅ or R(z) < rtask then
16: P(z)← θ′, R(z)← rtask
17: end if
18: end while
19: return P,R
20: end function

As mentioned in Sec. IV, we use MAP-Elites as the algo-
rithm of our choice. It starts with sampling N random policy
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Fig. 5: Workflow of policy generation and allocation in the latent space. To initialise, the parameters of the policy (here we use a neural
network) are sampled uniformly, and then the policies are executed on the simulator to get the corresponding trajectories (set of states),
in order to allocate the policies into the latent space according to their encoding. Then, in a loop, policies are selected from the archive,
small variations are added, and new encodings are obtained to insert them into the archive based on their reward.

parameters from a uniform distribution: θi=0:N−1 ∼ U[a,b].
Then it evaluates the policies in simulation using the reward
function Rtask(·, ·), and at the same time generates the state
trajectories τi=0:N−1, and their corresponding encodings
zi=0:N−1. Then the policies are inserted into the closest
cells in the solution archive P . If two policies compete for
the same cell, the one with a higher reward occupies the
cell. Once this initialization is done, MAP-Elites randomly
selects a policy from the archive, adds a small random noise
(mutation) to the parameters, and evaluates the policy on the
simulator for the reward, state trajectory, and the correspond-
ing encoding. This new policy is inserted into the archive if
either the cell is empty or the new policy has a higher reward;
the policy is discarded otherwise. The selection, variation,
and insertion continue until the maximum assigned policy
evaluation count is reached.

As the highest rewarding policies occupy the nearest cells
in the archive, those policies produce maximally rewarding
behaviour staying close to the state distribution specified in
the cell. In other words, the policies in the archive essentially
optimise the objective in Eq. 3 for different zi.

a) Post-hoc policy search: Having a set of solutions
parameterised by latent encodings allows us to find solutions
in a post-hoc manner that satisfy different constraints. For
instance, a solution archive G built for a 2D navigation
environment with one obstacle contains solutions for an
equivalent environment J with two obstacles, as the latter
space is more restricted, where J ⊂ G (see example in
Sec. V-.0.e). In addition, given a new demonstration, we can
find the closest policy in our archive by finding a policy with
the closest distribution distance (see Sec. IV-A.0.a).

V. EXPERIMENTS

We test our method in 3 environments with continuous
state and action spaces. We use 2 (motion) planning examples
where the task is to generate a non-colliding path from
two points end-to-end. The first is a 2D toy environment
and the second the Franka Emika robot environment with
Pybullet [43] as the physic simulator. Finally, we show a
driving experiment modified on [44] as a close-loop control
example, using neural networks for a step-wise decision-
making policy. As results, we show that we can generate
policies that optimise implicitly the density distribution from
demonstrations. All the experiments are run 3 times. The

average performance and further ablation study can be found
in Appx. VI-A. The latent encoding is a vector of 6 dimen-
sions defined by the top 6 most frequent mixture components
responsible for the state sequence.

a) 2D path planning: We use 28 non-colliding trajec-
tories with fixed lengths generated artificially using Bézier
curves as shown in Fig. 6A. We use B-spline as the policy
function, which takes control points θ ∈ R6 to generate a
continuous curve as the path proposal. We use a GMM of 20
components for the multimodal distribution and 10 for the
single-mode distributions. Under the exact same setup, we
demonstrate that the control points are optimised towards
state distributions modelled by their respective GMM. As
shown in Fig. 6, the resulting control points from the single-
mode setup are scattered mainly in the region within single-
mode state distribution. While for the multi-modal setup, the
control points are scattered in both regions of the state space.
This comparison is even more noticeable after filtering out
the solutions with a higher likelihood (according to their
respective GMM models).

b) Comparison with VAE: VAE is commonly used as a
feature encoding method as well as a (conditional) generative
model, we show its capability of feature encoding and
generation ability as comparison. We use the same encoding
size and trained the model for 30000 iterations. As shown
in Fig. 7A, for a small dataset, the generator suffers from
a partial collapse that only generates samples from certain
modes and fails to produce diverse samples. Moreover, the
encoder fails to produce unique encoding values as shown
in Fig. 7(C, D). While training the same model using the
data generated from our solution, both its capability of re-
construction and encoding improves considerably (Fig. 7(C,
E)). Unlike our projection function, it does not provide an
interpretable encoding value (e.g., closer distance in the
encoding space does not guarantee a closer distance in the
behaviour space), as shown in the post-hoc solution search
in Fig. 10. And it cannot take advantage of the simulator that
is available to interact with.

c) Franka arm manipulation: We collected 140 demon-
strations using a motion tracker (MoCap) that tracks the
movement of a pointer to draw the trajectories without
considering the real dynamics of the robot (Fig. 8A). The
length of demos spans between 240 and 726 time-steps. We
changed the end coordinate for the policy optimisation in the



Fig. 6: Solution archives optimised for different GMM models fitted to single mode and multimodal demos. A. Multimodal demonstration.
B. Trajectories with GMM from multimodal demonstration with colour bar as their corresponding average likelihood. C. Control points
for policies from B shown with their colour and size re-adjusted according to their likelihood. D. Trajectories from solution space build
for the single-mode demonstrations (i.e., lower regions) with their average likelihood. E. Control points for the policies of Fig. D.
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Fig. 7: VAE failed on the original demonstrations but can be
fully trained using trajectories from our method. A. 1000 samples
from VAE trained on the original demonstrations. B. 1000 samples
from VAE trained on trajectories generated from our method. C.
Histogram of the unique encodings from both VAEs. D. Histogram
of the predicted encodings for the samples (i.e., mean and variance
for the isotropic Gaussian) from the VAE in A).E Histogram of the
predicted encoding values from the VAE in B.

simulator due to the range limitation of the robot. We use
this to show that the solution space still optimises toward
the given state distribution. We also tested the resulting
trajectories in a real robot to show that the solution archive
contains valid solutions with different constraints, as seen
in Fig. 8D. As the demonstrations do not contain Z-axis
information, we fix this as constant during training. We
increase the mixture component of the GMM to 25 as more
data are available. This environment contains a 3D obstacle,
where the generated trajectories in the solution archive are
plotted in 2D space for visualisation purposes in Fig. 8B.

d) Highway driving: We collected 40 demonstrations
of 151 time-steps using a manual controller from the simu-
lator. The observations contain both the position coordinates
and the rotation angles of the vehicle, s ∈ R4. The action is
the steering applied to the vehicle to overtake the obstacle,
as shown in Fig. 9A. The resulting solution archive is shown
in Fig. 9B which proves that our method is capable of
optimising parameters of neural networks where θ ∈ R201.

e) Post-hoc solution search: Given that our archive
contains a diverse range of solutions, we can still find valid
solutions when the constraints in the environment change.
As shown in Fig. 8E, the same solution archive in Fig.6B
contains 1738 valid trajectories for a modified environment

Fig. 8: A. Demonstrations collected using MoCap. B. Solution
archive built by using the simulator in C. D. Trajectory that satisfies
the constraint in the real robotic. E. Solutions that satisfy a different
constraint without re-training in 2D environment.

Fig. 9: Our method finds feasible driving styles that overtake the
obstacle in different ways. A. Demonstration. B. Trajectories from
the multimodal solution archive shown with their likelihood values.

with different obstacles. Similarly, the solution archive built
on the Franka simulator (Fig. 8C) contains trajectories valid
for the real robot (Fig. 8D).

It is also possible to obtain a set of trajectories close to a
given demonstration by matching the latent encodings (see
Sec. IV-A.0.a) in the solution archive (see Fig. 10). Here,
we compare the result of encoding matching using VAE
trained on the trajectories generated from our method (see
Fig. 7C) and the result from our proposed projection func-
tion. The results show that our projection function enables
better matches, as we can measure the distances between the
underlying state distributions based on the encoding values.

VI. CONCLUSIONS

In this paper, we propose a novel method to build a
parameterised solution space to generate a diverse range
of behaviours (i.e., multimodal policies) from state-only
observations in low data regimes. We show empirically
that the generated policies are optimised toward different
state density distributions to satisfy preference constraints. In
addition, we can perform different post-hoc policy searches
in the solution space to obtain the desired policies.
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Fig. 10: Post-hoc policy searching in the solution space to find
policies for a given demonstration. A/B: 5 closest policies in the
solution archive using our projection function with GMM. C/D: 5
closest policies from samples in Fig 7B using VAE encodings.

APPENDIX

A. Numerical quantification of solution and ablation studies

For 2D path planning, we use Intel Core i7-6850K CPU
@3.60GHz with 6 cores and 12 parallel threads. For Franka,
we use a single thread process with 1 CPU core of Xeon
Gold 6148 @2.40GHz, and 16GB of RAM without multi-
threading. For the highway environment, we use 8 cores of
Intel Xeon Gold 6248 @2.50GHz with 12 parallel threads
and 8GB of RAM.

As the performance indicator, we show the total number
of policies generated and the total valid solutions that reach
the given task reward, i.e., reaching the goal while preventing
collisions. We report the results in Table I with 3 independent
runs and record their respective means and standard devia-
tions. We also show the average training time used to obtain
these statistics in Table II.

TABLE I: Number of demonstrations vs archive solutions. +M:
multimodal, U: upper (single mode), L: lower. ∗Number compo-
nents for the encoding / total number of mixture components.

Experiments+ Demos Encoding∗ # solutions # valid

Planning (M) 28 × 50 6/20 7703 ± 20 6584 ± 38
Planning (U) 14 × 50 6/10 2329 ± 47 1999 ± 27
Planning (L) 14× 50 6/10 3920 ± 29 3314 ± 34

Highway (M) 40 × 151 6/20 3900 ± 59 1009 ± 42
Highway (U) 20 × 151 6/10 1657 ± 33 464 ± 16
Highway (L) 20 × 151 6/10 1187 ± 14 261 ± 9

TABLE II: Training time

Experiments # iterations Time duration

Planning (multimodal) 105 3m49s ± 1m6s
Planning (upper) 105 2m33s ± 0m12s
Planning (lower) 105 2m27s ± 0m44s

Franka 105 6h49m ± 11m57s
Highway (multimodal) 5× 105. 2h46m ± 4m19s

Highway (upper) 5× 105. 1h54m ± 0m56s
Highway (lower) 5× 105. 1h26m ± 11m57s

1) Encoding space dimensionality: Given a GMM with
dgmm components and an encoding size of dz . The number

of possible encodings is defined by different permutations of
dgmm with a theoretical upper bound of dgmm!

(dgmm−dz)!
. In prac-

tice, the real upper bound depends on the system’s dynamics,
e.g., it may be impossible to have a state distribution with
only 2 different state regions that are far away from each
other as the state transition is continuous.

2) Comparison of different choices for GMM: The size
of the latent (encoding) space depends on the number of
mixture components and the size of the descriptor. Here we
show the result of using 2 different GMMs with 10 and 5
mixture components respectively. As shown in Fig. 11, the
size of solution archives reduces with respect to the number
of mixture components.

0.1

0.2

0.1

0.2

Fig. 11: Comparison of solution archives optimised with different
sizes of GMM mixture components in the projection function. Top:
10 mixture components with 7-dimensional encoding components.
Bottom: 5 mixture components with 4-dimensional encoding.

B. Comparison with GAN

We show the result of GAN in the 2D path planning
environment in Fig. 12. As GAN cannot deal with a small
dataset, we trained it using the trajectories generated by our
archive (Fig. 6). The discriminator has 3 hidden layers with
128, 32, and 8 neurons respectively, and the generator has
3 hidden layers with 128, 64, and 32 neurons respectively.
The model is trained for 23000 iterations. The results are
consistent with mode-seeking behaviour as discussed in
Sec II-A.
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