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Abstract—With the advancement of device capabilities, Inter-
net of Things (IoT) devices can employ built-in hardware to
perform machine learning (ML) tasks, extending their horizons
in many promising directions. In traditional ML, data are sent
to a server for training. However, this approach raises user
privacy concerns. On the other hand, transferring user data
to a cloud-centric environment results in increased latency. A
decentralized ML technique, Federated learning (FL), has been
proposed to enable devices to train locally on personal data and
then send the data to a server for model aggregation. In these
models, malicious devices, or devices with a minor contribution
to a global model, increase communication rounds and resource
usage. Likewise, heterogeneous data, such as non-independent
and identically distributed (Non-IID), may decrease accuracy of
the FL model. This paper proposes a mechanism to quantify
device contributions based on weight divergence. We propose
an outlier-removal approach which identifies irrelevant device
updates. Client selection probabilities are computed using a
Bayesian model. To obtain a global model, we employ a novel
merging algorithm utilizing weight shifting values to ensure
convergence towards more accurate predictions. A simulation
using the MNIST dataset employing both non-iid and iid devices,
distributed on 10 Jetson Nano devices, shows that our approach
converges faster, significantly reduces communication cost, and
improves accuracy.

Index Terms—Federated learning, communication reduction,
non-iid data, edge computing, fog networks, Internet of things.

I. INTRODUCTION

With the explosive growth in IoT devices, massive amounts
of data are being generated. In 2025, more than 25 billion
devices will be connected, and this number is expected to
rise to 80 billion by 2030 [1]. By 2025, 180 trillion gi-
gabytes of data are expected to be generated [2]. In the
traditional cloud-centric approach, all devices send their data
to a centralized node for training. However, this approach
poses several challenges regarding resource requirements and
user privacy [3]. Federated Learning (FL) has gained signifi-
cant attention recently. It solves these challenges by allowing
devices to train their data locally. In each round, devices send
local updates to a server which then aggregates the received
weights. FL allows learning from distributed data without
exposing user data and is currently being used in health care,
transportation [4], and autonomous driving [5]. Although FL
can receive input from different users, training is affected by
the overall data distribution [6]. It was shown in [7] that

the accuracy of FedAvg [8] is significantly reduced on the
non-independent-and-identically-distributed (non-iid) CIFAR-
10 dataset [9]. A major FL challenge is data heterogeneity
among the clients [10]. Non-iid data slows model training [11].
The model may even diverge if deployed over non-iid sam-
ples [12] (cf. Fig 1). In realistic settings, devices acquire
different data and classes [6] due to various types of sensor
equipment.

Several authors have proposed solutions to the non-iid
data issues, such as [7], [11], [13]–[21]. In [13], the authors
propose a modification to the FedAvg algorithm [8] designed
to improve the model convergence by adding a proximal term
to the objective function. This approach does not consider
the data imbalance in client selections. SCAFFOLD [14]
adds a drift in the local training to correct local updates.
However, the number of communication rounds needed for
this approach is significantly greater than that for the original
scheme. The authors of [7] measured the weight divergence
using an earth mover’s distance metric of both global and
local data distributions. The authors propose to share a subset
of data with all nodes to reduce divergence. However, this
approach requires that the size of transmitted data be defined
and the communication load be increased; furthermore, sharing
sensitive data with all nodes violates user privacy. In [15], the
authors propose to select a subset of users to create iid data.
This approach requires that some users upload their data to the
server for model aggregation. However, uploading data from a
device may also expose sensitive data. Similarly, in [16] a data
augmentation technique is proposed to reduce the global data
imbalance. The authors employ mediators to reschedule client
training based on KullbackLeibler Divergence [22]. However,
assuming that users will share their data is not practical. The
authors of [17] address FL training over a wireless network.
They focus on selecting the most relevant subset of users for
training to minimize the loss function. In addition, the authors
study the relationship between packet error rates and FL per-
formance. However, they focus on the communication aspects
rather than the data distribution aspects. In [18], a reputation-
based client selection mechanism is based on a multi-weight
subjective logic model. The authors also propose a blockchain
scheme for managing clients’ reputations in a decentralized
manner. They employ a contract theory approach to frequently



Fig. 1. Comparison between update drifts in iid and non-iid settings

select devices that have high accuracy to participate in FL. In
addition, a Semi-Asynchronous Federated Averaging (SAFA)
protocol is proposed in [11] for efficient client selection based
on their impact on overall learning. The approach also adopts
a lag-tolerant mechanism to address the trade-off between
faster convergence and communication rounds. In [19], a
convergence rate comparison is conducted between random
scheduling (RS), round-robin (RR), and proportional fair (PF)
scheduling schemes. The work reveals that under a fixed
spectrum, a tradeoff between the number of devices and the
subchannel bandwidth exists.

Most work has focused on the communication aspect or
IoT device characteristics rather than data distribution to solve
the non-iid issue, such as in [16]–[18], or redistributing data
to other users, which exposes sensitive data, such as in [7].
In [7], the global set is uploaded to all devices with high
weight divergence, which increases communication rounds and
decreases user privacy. A few authors have considered data
heterogeneity. In [6], weight divergence is used to determine
non-iid clients. However, client selection relies on a to-be-
determined selection factor.

This paper proposes a mechanism that addresses data het-
erogeneity issue, improving classification accuracy and ac-
celerating model convergence. The main contributions of our
work are as follows:

• We employ weight divergence to measure node contribu-
tions to the global model.

• We propose client selection based on a Bayesian model.
• To discard nodes with lower contribution, we employ an

outlier removal mechanism that does not require a pre-
defined threshold.

• We propose a merging mechanism based on adapting
model weights.

Our scheme measures the weight divergence between each
device and the global model, before the weight divergence
values are fed to the proposed outlier mechanism. After outlier
identification, the device selection probability is updated using
the beta function. Devices with regular positive updates will
have higher selection probabilities, while those with negative
updates will be assigned lower probabilities (cf. Fig 2).

II. SYSTEM MODEL

Let F be a set of devices. Users are denoted by u ∈ U and
the training dataset is D = {x, y}. Each device possesses a

Fig. 2. Overview of proposed FL scheme. It consist of three phases,: (a)
measuring weight divergence, (b) calculating selection probability, and (c)
finding weight shifting values with which to merge the global model.

portion of data Dk, and transmit models to base station, where
Dk = {(xk, yk)} , k ∈ N. Each device k in round i locally
updates the model as follows:

wk
i = wk

i−1 − η∇L
(
wk

i−1

)
(1)

where L is the loss function, and η is the learning rate.
The communication among IoT devices takes place through

wireless access points. The bandwidth allocated to packets
transmission is Bi for each communication round. Each
packet occupies 60 KHz and 0.25 ms according to 3GPP
5G specification. We consider a log-distance path-loss model
with log-normal shadowing [1], namely PL[dB] = 140.7 +
36.7 log10 d[km] + N (8) [23]. The transmission rate of the
access points ai ∈ A is

ri = ηiB
i log2

(
1 +

ptxi − PL[dB]

σ2

)
(2)

where ηi ∈ [0, 1] denotes the fraction of the allocated
bandwidth to the access point for data sending, ptxi is the
transmission signal power, σ2 is the noise power.

The communication between devices and base stations
follows Eq. 2. The energy (ϑ) of IoT device required to offload
a data d at a round i is

ϑi = ptxi δdi (3)

A. Non-iid and weight divergence

Non-iid data can affect the FedAvg algorithm [8] perfor-
mance due to the disparities among the local and the global
distributions. In addition, weight averaging at the server often
suffers when the data in the devices is heterogeneous [24].

The weight divergence among iid data should be smaller
than that in non-IID data [6]. Therefore, the rate of divergence
can be employed to distinguish non-iid clients (Alg. 1). The
weight divergence is defined as follows:

divki ←
∥∥wk

i − w̃i

∥∥ (4)



Algorithm 1: Learning based client selection
Input : A set of local updates d ∈ D, λ
Output : group A, group B

1 group A← ∅
2 group B← ∅
// Local device update

3 foreach d ∈ D do
4 foreach epoch ∈ E do
5 wi+1 ← (di, wi)
6 wi+1 ← wi − η∇L(wi)

// For each communication round
7 foreach c ∈ C do
8 foreach d ∈ D do
9 divk

i ←
∥∥wk

i − w̃i

∥∥
10 IF divk

i is an outlier
11 group A ← add(d)
12 ELSE
13 group B ← add(d)

14 return group A, group B

where wk
i is the weight of client k at round i, and w̃i is

the weight for global model. When the weight divergence is
large, the model performance will be lower [25], [26]. The
time complexity for the Alg. 1 is O(n).

Employing the bounding techniques found in [25], [27],
the weight divergence at round i for clients k and k′ can be
expressed as:∥∥∥wk′

i − wk
i

∥∥∥ ≤ ηgmax(w̃0)

C∑
j=1

∥∥∥pk′
(y = j)− pk

∥∥∥ (5)

where gmax(w̃) = maxC
j=1

∥∥∇w̃Ex|y=j [log fj(x, w̃)]
∥∥ , C

represents the classes, pk is the data distribution of set samples
(x,y) on device k, and w̃ is the initial global model weights.
The previous equation 5 shows the relationship between
weight divergence and the data distribution; thus, we employ
weight divergence in client selection.

B. Client selection

Using a random client selection mechanism during FL learn-
ing can result in the inclusion of clients without significant
improvements, thus increasing the communication overhead.
We propose to employ the beta distribution function of a
variable x in this work which is defined as:

f(x) =

{
1

B(a,b)x
a−1(1− x)b−1 IF 0 < x < 1

0 ELSE
. (6)

where B(a, b) =
∫ 1

0
xa−1(1− x)b−1dx

The mean of the beta distribution of a variable X is defined
as:

E[X] =
α

α+ β
(7)

where α = α0 + xα, β = β0 + xβ ; xα is the number of
positive updates by a client k, and xβ represents the negative
updates, α0 and β0 are expected prior probabilities in which
we consider α0 = β0.

Algorithm 2: Weight divergence outlier detection al-
gorithm

Input : A set of weight divergence values d ∈ D,
λ, Y, Shiftvec

Output : Outlier score ∂
// Compute KNN

1 foreach X ∈ divi do
2 Sk ←ComputeNearestNeighbors(X,divi)

// Calculates the mean of neighbors

3 m̃ =
∑N

i=0 Si
k

∥S⃗k∥
// Replace by the mean of the neighbors

4 X ′ ← m̃
5 Y ← add(X’)

6 foreach X ,X ′ ∈ divi, Y do
7 Shiftvec ← |X − X ′|
return Shiftvec, stdv(Shiftvec)

When Alg.2 determines that if the weight divergence of an
update is an outlier, it is considered to be a negative update.
An outlier is identified if a standard deviation of a point and
its shifted value is higher than the overall standard deviation
|X −X ′| > stdv (which is computed from all shifted values).
The stdv is considered as a a threshold outlier value. To avoid
excluding high-performing updates, which may be identified
as outliers, the points showing significant contributions to the
global model are removed from the outlier list. The parameters
of the beta function are defined as follows:

xα, xβ =

{
xα = xα + 1 IF |X − X ′| < stdv

xβ = xβ + 1 ELSE
(8)

where X ,X ′ are the original weight divergence value and
its shifted value, stdv is the standard deviation of all shifted
values according to Alg.2, respectively.

C. Blocking malicious devices

Malicious devices or devices with meager updates nega-
tively affect FL. Therefore, a weight divergence metric is used
to quantify contributions to the overall learning, and an outlier
detection mechanism is adopted from [28]. Any device update
that is considered to be an outlier i.e., a negative update, will
be further inserted into the beta distribution function to update
the selection probability. After frequent negative updates, the
selection probability is significantly reduced, excluding non-
useful devices.

D. Adaptive weight shifting at the server

In addition to FedAvg [8], we propose a new technique for
weight merging at the server. Our proposed merging algorithm
is described in Alg.3. After the local updates are sent to the
server, the combination of the received weights must still be
determined for the next communication round. Let w̃i be the
global model at the server at round i, and wk

i the weights
acquired from client k at round i, ∀k such that 0 ≤ k < n.
The new weights w̃i+1 are then calculated as follows (Alg.3):



Algorithm 3: Adaptive-weight shifting federated
learning algorithm

Input : A set of local updates d ∈ D, λk: weight shifting
value, W̃ : global model weight.

Output : Global model FLacc loss
1 selection proba← ∅;
2 selection proba← c̄ompute proba();
3 D=select devices(selection proba);
// Local device update

4 foreach d ∈ D do
5 foreach epoch ∈ E do
6 wi+1 ← (di, wi);
7 wi+1 ← wi − η∇L(wi)

// For each communication round
8 foreach i ∈ C do
9 foreach k ∈ D do

10 λk ← 1.0
11 τ ← 0.2
12 vals ← []
13 while λk > 0

14 λk, W̃ ←
(
wk

i − w̃i

)
15 vals ← add(λk)

16 vals ← evaluate(W̃ )
17 λk ← λd

i − τ

18 λk ← max(vals)

19 w̃i+1 = w̃i +
1
n

∑n
k=1 λk

(
wk

i − w̃i

)
20 return w̃i+1

w̃i+1 = w̃i +
1

n

n∑
k=1

λk

(
wk

i − w̃i

)
(9)

Where λk are tradeoff parameters such that 0 ≤ λk ≤ 1,
∀k ∈ {1, . . . , n}. The λk parameter characterize the impact of
the new weights with two special cases to consider, namely,
λk = 0, which completely ignores the weights from client k ;
and λk = 1, which entirely replaces the global model weight
with that of client k.

III. SIMULATION RESULTS

In this section, we describe our evaluation settings. We
prepare ten Jetson Nanos, small devices with 128 NVIDIA
CUDA cores, a Quad-core ARM Cortex-A57 MPCore pro-
cessor, 4 GB 64-bit LPDDR4 of RAM, and 16 GB of storage
(the testbed is shown in Fig. 3a). The Jetson Nano devices
support the popular machine learning framework and libraries
such as TensorFlow, OpenCV and Keras. We employ a laptop
as a server with 32 GB of RAM and i7-7700HQ CPU.
To measure the performance of our approach, we compute
the classification accuracies of the obtained models. In our
experiment, we divide the devices into iid devices and non-iid
devices. Let K be the number of devices, and ξ be the fraction
of non-iid devices (as shown in Fig. 3b).

We propose two evaluation scenarios, one a hybrid with iid
and non-iid devices, and the other containing just iid devices.

TABLE I
NUMBER OF COMMUNICATION ROUNDS NEEDED TO ACHIEVE TA

(TARGET ACCURACY) FOR ξ = 0.3

Scheme/target accuracy 87% 88% 88.5% 89.2% 89.4% 89.8%

Original FL scheme 5 9 14 29 NaN NaN
Outlier removal FedAvg scheme 3 5 6 15 20 36

TABLE II
NUMBER OF COMMUNICATION ROUNDS NEEDED TO ACHIEVE TA

(TARGET ACCURACY) FOR ξ = 0.4

Scheme/target accuracy 85% 86% 87.5% 88.5% 89.5% 89.7%

Original FL scheme 4 5 8 16 - -
Outlier removal FedAvg scheme 2 3 5 20 28 37

TABLE III
NUMBER OF COMMUNICATION ROUNDS NEEDED TO ACHIEVE TA

(TARGET ACCURACY) FOR ξ = 0.5

Scheme/target accuracy 85% 86% 87.5% 88.4% 88.5% 88.8%

Original FL scheme 8 10 27 - - -
Outlier removal FedAvg scheme 2 2 5 12 14 24

TABLE IV
NUMBER OF COMMUNICATION ROUNDS NEEDED TO ACHIEVE TA

(TARGET ACCURACY) FOR ξ = 0.7

Scheme/target accuracy 85% 85.5% 86% 86.8% 87% 87.6%

Original FL scheme 22 29 44 - - -
Outlier removal FedAvg scheme 2 2 3 4 5 13

TABLE V
NUMBER OF COMMUNICATION ROUNDS NEEDED TO ACHIEVE TA

(TARGET ACCURACY) FOR ξ = 0.8

Scheme/target accuracy 82.5% 83.5% 84.5% 85.8% 86% 86.2%

Original FL scheme 32 - - - - -
Outlier removal FedAvg scheme 1 2 3 7 8 13

A. Comparative scheme

We compare our outlier removal scheme with the traditional
FedAvg algorithm. We also compare our averaging technique
(adaptive weight shifting in Alg.3) with FedAvg algorithm [8].
Finally, we evaluate the communication and the energy cost
of our proposed scheme.

B. Model Architecture

We use a CNN for MNIST dataset [29] classification and
testing, a widely used dataset, with 60,000 training samples.
The model is implemented using Keras and TensorFlow. It
consists of two one-Dimensional convolutional layers. The first
layer has 200 neurons and the second convolutional layer is
trained with 100 neurons. Both layers trained with a ReLU
activation function. The last dense layer is trained with a
Softmax activation function. Adam optimizer is employed
at a learning rate of 0.001 and ϵ set to 1e-07. We design
scenarios where devices hold both iid and non-iid data and
other scenarios where only iid devices exist.



(a) Illustration of system learning; the server receives various weights for the
clients, and then detect outlier updates before constructing the global model.

(b) Environmental testbed setting with 10 Jetson Nano IoT devices

Fig. 3. Illustration of the experimental setting and distribution strategy utilized in our case study. 10 Jetson Nano IoT devices are utilized as remote devices
storing the data while a server is computing the model aggregations.
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(a) 30% of devices are non-iid
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(b) 40% of devices are non-iid
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(c) 50% of devices are non-iid

Fig. 4. The impact of device outliers removal on the classification accuracy; note that the y-axis range in figures (a), (b), (c) is adapted to the respective gains

C. Scenario1: training with hybrid devices

To evaluate the case of hybrid iid and non-iid devices, we
consider the following proportions of non-iid devices, ξ ∈
{0.3, 0.4, 0.5, 0.7, 0.8}.

1) Classification accuracy: Fig. 4 and Fig. 5 depict the
comparison of the proposed approach to the traditional FL
scheme. We also compare our weight adaptive mechanism to
the FedAvg algorithm. The results demonstrate an increase
in accuracy compared to traditional FL. Our approach sig-
nificantly reduces the communication rounds and converges
faster (Table I-Table V). In addition, our adaptive weight
approach improves the classification accuracy further.

2) Communication and energy cost: We measure the com-
putational and communication for both our scheme and tradi-
tional FL scheme. For the case of ξ = 0.7, our scheme required
2408 Kb compared to 3440 Kb for the traditional FL. In
addition, our scheme converged in 13 communication rounds
compared to 44 rounds for traditional FL. Both schemes have
average energy consumption of ϑ =2.3 watts (recorded every
two seconds) which is adequate for IoT scenarios.

D. Scenario2: training with iid devices

We consider a set of devices constituting only iid data in
this scenario. The experiment depicted in Fig.5c demonstrates
that when our approach was applied to devices with iid data
only, its performance remained very close to that of traditional
FL.

IV. CONCLUSION

We have proposed a scheme to improve FL on non-iid data.
We considered weight divergence as a measure of a node’s
contribution. To recognize negative updates from weight di-
vergences values, we proposed an outlier detection mechanism
that does not require a threshold. We employ a Bayesian
model to compute nodes’ selection probability. We have also
proposed a weight merging approach for the server, thus
improving accuracy. The obtained results show that our system
can improve the classification accuracy and significantly accel-
erate the FL convergence for non-iid scenarios. Furthermore,
our system decreased the communication rounds required
for convergence, thus reducing FL latency and computation
resource requirements. Our approach is particularly promising
for applications that collect data generated from different
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(a) 70% of devices are non-iid
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(b) 80% of devices are non-iid
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Fig. 5. The impact of device outliers removal on the classification accuracy; note that the y-axis range in figures (a), (b), (c) is adapted to the respective gains

sensors (such as in healthcare scenarios), or applications that
perform online data collection.
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