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We present the first measurements of the Berry phase in a superconducting Cooper pair pump. A fixed
amount of Berry phase is accumulated to the quantum-mechanical ground state in each adiabatic pumping
cycle, which is determined by measuring the charge passing through the device. The dynamic and
geometric phases are identified and measured quantitatively from their different response when pumping
in opposite directions. Our observations, in particular, the dependencies of the dynamic and geometric
effects on the superconducting phase bias across the pump, agree with the basic theoretical model of
coherent Cooper pair pumping.
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Geometric phases arise from adiabatic cyclic evolution
in classical and quantum physics [1]. In contrast to dy-
namic effects, geometric phases depend only on the ge-
ometry of the cycle traversed by the state of the system. In
parallel transport, for example, a vector is moved along a
path without changing its direction in a local coordinate
system [1]. For a closed path in a flat Euclidean space, the
vector returns exactly to its initial state with respect to a
global coordinate system. In a curved space, however, the
direction of the vector can change as shown in Fig. 1(a),
where the vector moves on a surface of a sphere along a
loop enclosing a solid angle �. In this case, the angle �
between the initial and the final state of the vector equals �
which depends only on the chosen path, and hence is
regarded as a geometric phase. In our universe, geometric
phases have been employed for example to measure the
curvature of space due to gravitation, and hence to test
Einstein’s theory of general relativity [2]. This geodetic
effect is intended to be measured as changes in the rotation
axes of gyroscopes inside a satellite orbiting Earth with the
stringent accuracy of 10�4 in the project Gravity Probe B
[3].

We consider adiabatic and cyclic temporal evolution in
the ground state of a quantum-mechanical system. The
state of any pure quantum system can be described by a
complex valued wave function. Thus the simplest geomet-
ric phase accumulated in a cycle, i.e., the Berry phase [4],
is a phase shift of the complex number multiplying the
wave function. As such, the absolute phase of the wave
function does not have a physical meaning, and hence is
unobservable. Thus the measurements of the Berry phase
typically rely on the interference of two states which have
undergone a different phase shift [1,5]. This technique is
also employed in the proposal to measure the Berry phase
in an asymmetric superconducting quantum interference
device (SQUID) [6]. In phase biased Cooper pair pumps
[7] however, the accumulated Berry phase is related to the
pumped charge [8,9], and hence we have a fundamentally
different way to determine it. Here, we report on the first

experimental realization of phase biased Cooper pair
pumping in a superconducting loop.

Recently, superconducting circuits have proven to be
suitable for coherent manipulations of quantum states
[10,11], in particular, two-level quantum systems. The
natural scalability of electric circuits makes them potential
candidates for qubits, i.e., basic building blocks of the
emerging quantum computer. On the other hand, holono-
mies arising from adiabatic and cyclic evolution in a
degenerate eigenspace [12] are unitary transformations
which in turn, can be compiled to execute quantum algo-
rithms [13] of practical interest. In particular, the holono-
mies related to charge transport in Cooper pair devices
have been studied theoretically [14]. Thus the observation
of the Berry phase in superconducting circuits is an im-
portant step towards the development of holonomic quan-
tum computation [15]. To date, holonomic quantum
computation has only been demonstrated using liquid state
nuclear magnetic resonance [16] (NMR), the scalability of
which is limited to about ten qubits.

Single-charge pumping is based on transporting a con-
trolled number n of carriers with quantized charge e� in a
cycle repeated at frequency f. This principle yields ideally
the pumped charge Qp � ne�, and hence the pumped
current

 Ip � ne�f: (1)

The carrier charge e� is e for single electrons and 2e for
Cooper pairs. In charge pumps described by a phase co-
herent order parameter field, the phase difference of the
field across the device ’ may play a significant role [7]. In
fact for a constant ’, adiabatic charge pumping gives rise
to the Berry phase [8,9]. Interestingly, the accumulated
Berry phase, �B, in a cycle is related to the pumped charge,
Qp, by

 Qp � �e
�@�B=@’: (2)

In an ideal pumping cycle corresponding to Eq. (1), the
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accumulated Berry phase equals �n’. However, this kind
of pumping does not yield definite fingerprints on the
relation between the Berry phase and the pumped charge.
Therefore, it is important to reveal the phase coherent
nature of pumping from its dependence on ’. Allowing a
nonvanishing average persistent current, i.e., leakage,
through the pump during the cycle, the pumped charge
becomes phase dependent. In the regime where charge
states of the pump are approximately the eigenstates of
energy, one obtains in the two-charge-state approximation
for a cycle described in Fig. 2(a) [7,8,17]

 Qp � e�n�1� � cos’�; (3)

where �� 1 is proportional to the leakage of the pump.
Because of its geometric origin, the pumped charge is
independent of the pumping frequency. The charge leaked
through the pump during a cycle, i.e., the dynamic part of
the transferred charge is obtained as

 Qd � TIcmax�� sin’; (4)

where T � 1=f is the period of the pumping cycle, Icmax is
the maximum critical current in the cycle, and � is a
constant specific to the particular pump and to the control
parameter cycle. To justify the validity of the above model
in our measurements, we compare the measured pumped
current Ip � Qpf and the dynamic current Id � Qdf with
Eqs. (3) and (4). Here, Id is the supercurrent in the ground
state of the system averaged over the pumping cycle and
thus it does not depend on f or n, nor on the direction of
traversing the cycle. On the contrary, Ip is proportional to
both f and n in the adiabatic evolution, and its sign changes
on reversing the path. Agreement with the theory allows us
to determine the accumulated Berry phase from Eqs. (2)
and (3) as

 �B � �n�’� � sin’�: (5)

Figures 1(b) and 1(c) show the Cooper pair pump, the
sluice in a 800 �m2 superconducting loop with a detector
junction. In the ideal pumping cycle shown in Fig. 2(a), an
integer number of nmax

g excess electron pairs is first at-
tracted to the island through one SQUID and then repelled
from the island through the other one using the gate voltage
and the tunable critical currents of the SQUIDs in analogy
with a piston pump. Hence the sluice generates ideally an
average pumped current given by Eq. (1) with n � nmax

g

The details of the working principle of the sluice can be
found in Refs. [8,17].

The Josephson junctions denoted by black crosses in the
circuit diagram of Fig. 1(c) consist of AlOx tunnel barriers
fabricated by standard electron beam lithography and two-

FIG. 2 (color online). (a) Ideal pumping cycle (solid line) in
the control parameter space of the sluice. The tunable critical
currents of the SQUIDs in the sluice Ic1 � Ic1��1� and Ic2 �
Ic2��2� are modulated together with the gate charge at the
pumping frequency f � 14 MHz for all the data in this paper.
In this cycle, the two critical currents are analogous to valves of
the charge flow, and the gate charge to a piston. The dashed line
illustrates a pumping cycle with finite Icres � �Icmax=2 introduc-
ing finite dynamic current. (b) Pumped current as a function of
the maximum gate charge nmax

g . The blue line shows the theo-
retical value obtained from Eq. (1) which is expected to be valid
in the case of adiabatic pumping for small pumping amplitudes
nmax
g . There are no fitted parameters since the conversion con-

stant of the gate voltage to gate charge is obtained from dc
measurements.

FIG. 1 (color online). (a) Parallel transport of a vector along a
path (red line) enclosing a solid angle �. The lightest arrow
shows the initial state of the vector and the darkest arrow the
final state. The resulting angle between the initial and the final
vectors � is equal to the solid angle �. (b) Scanning electron
micrograph of the island on the left and of the detector on the
right. (c) Simplified circuit diagram of the measured sample. The
corresponding parts in the circuit diagram and SEM-images are
marked by colors. The independent fluxes �1, �2, and �DC are
controlled by on-chip coils [18] and the gate voltage Vg is related
to the gate charge ng and gate capacitance Cg by ng �
CgVg=�2e�.
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angle evaporation into an all-aluminum device on oxidized
silicon wafer. The sluice part of our sample is identical to
the one used in Ref. [18] except for up to 10% smaller
junction size and stronger oxidation. The charging energy
of the island is difficult to measure in the presence of the
detector junction, and hence it is estimated based on the
sample used in Ref. [18] to be 2 K� kB. Using the
Ambegaokar-Baratoff formula and the IV characteristics
of the sample, the maximum critical currents of the
SQUIDs and the detector were estimated to be 30 nA
each and 70 nA, respectively. Because of the parallel
structure of the junctions in the circuit, there is an uncer-
tainty of up to 20% in the parameter estimation. The
plasma frequency of the detector is roughly 20 GHz.

We install a Josephson junction working as a threshold
current detector in parallel with the sluice forming a super-
conducting loop as proposed in Ref. [8]. Figure 1(c) also
shows our measurement scheme, in which we feed current
pulses through the circuit and monitor voltage across it. A
voltage pulse is observed if the system switches into the
normal state in response to the current pulse. The repetition
rate of the measurement was adjusted low enough for the
switching events to be uncorrelated. Such a detection
method of circulating current was realized, e.g., in the
measurements of the superconducting qubit Quantronium
[11]. To assure feasible operation, the critical current of the
detector is chosen to be much higher than any instanta-
neous critical current of the sluice. The probability for the
system to switch to the normal state depends strongly on
the height of the external current pulse Ipulse. The switching
current I50 of the system is defined to be the point where
the probability is 50%. We define backward pumping as the
direction for which the pumped current adds to the applied
400 �s current pulse, and hence the current through the
detector is given by Idet � Ipulse 	 Ip � Id. For forward
pumping obtained by traversing the pumping cycle in the
opposite direction, the pumped current compensates part of
the external pulse: Idet � Ipulse � Ip � Id. Thus we mea-
sure shifts in I50 which correspond to twice the pumped
current. The average of the two switching currents equals
to the dynamic current plus a constant, namely, Idet at the
switching point. Note that we restrict our studies to take
into account only the dc component of the pumped current
at the detector. The effect of the ac component not filtered
by the circuit is left for future research.

Figure 2(b) displays the measured pumped current as a
function of the gate amplitude for our most ideal pumping
cycle. For low enough gate amplitudes, the data shows a
nearly linear dependence in good correspondence with the
theoretical behavior given in Eq. (1). For high gate ampli-
tudes, the adiabaticity of the pump breaks down and de-
viation from Eq. (1) is observed. These results demonstrate
the first observation of Cooper pair pumping in closed
superconducting circuits [8,19]. However, the data in
Fig. 2(b) does not prove that the current arises from coher-
ent quantum dynamics.

The phase difference ’ of the superconductor order
parameter across the sluice has to be a classical parameter
for Eq. (2) to hold. This is satisfied due to the detector
junction which protects the sluice from voltage fluctua-
tions, and hence phase biases it. For a detector junction
with large enough critical current, the phase difference �d

FIG. 3 (color online). (a) Typical switching currents of the
system averaged over forward and backward pumping directions
as a function of the phase ’ across the sluice for several residuals
of the critical current Icres; see Fig. 2(a). Here, nmax

g � 16.
(b) Same as panel (a) but for the pumped current. To obtain
the amount of accumulated Berry phase, we make a fit to the data
corresponding to Eq. (3) with � and n as fitting parameters, the
result of which is shown in panel (c). (d) The variation amplitude
of the switching current as in panel (a) with respect to the phase
across the sluice as a function of the offset in the rf fluxes
introducing residual critical current for nmax

g � 4 (blue), 10
(green), 16 (red), 22 (cyan), 28 (magenta), 35 (yellow), and 41
(gray). These values of the maximum gate charge are in the
linear adiabatic regime as shown in Fig. 2(b). (e) The variation
amplitude of the pumped current as in panel (b) from the same
data set as in panel (d). (f) Modulation amplitude in the pumped
current divided by the average pumped current (shown in the
inset), �, as a function of the flux offset. The dashed line shows a
linear fit to the data for eight smallest offsets, and hence yields
the linear dependence of the leakage parameter � on the flux
offset. The dashed line in panel (d) shows a corresponding
theoretical line from Eq. (4) using � � 0:0245 and Icmax �
30 nA. The dashed lines in panel (e) show the linear dependence
of � multiplied by the average pumped current (see the inset)
corresponding to the specific gate amplitude and the smallest
flux offset.
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across it is obtained from arcsin�Idet=Ic� at the switching
point where Ipulse � I50. Thus we can control ’ by adjust-
ing magnetic flux �DC through the loop and using the
fundamental phase relation of a superconducting loop ’�
�d � 2��DC=�0, where �0 � h=�2e� � 2:07 fWb is the
flux quantum. Because of proper magnetic shielding, the
flux offset in �DC was negligible.

The evidence of the phase coherence in our measure-
ment is shown in Fig. 3. Figure 3(a) presents the variation
of the switching current of the system with respect to the
phase difference across the sluice controlled by the exter-
nal flux �DC as described above, and Fig. 3(b) displays the
pumped current from the same measurement. Clear sinu-
soidal modulation is observed in both curve sets in agree-
ment with Eqs. (3) and (4), implying that the sluice is
coherent and phase biased. Note that the minimum of the
pumped current corresponds quite accurately to the point
of vanishing phase difference across the sluice and the
dynamic current is phase shifted by almost �=2 radians
as in Eqs. (3) and (4). The pumped number of Cooper pairs
n and the relative modulation amplitude � are determined
from the data and the corresponding curves for the accu-
mulated Berry phases are shown in Fig. 3(c) according to
Eq. (5). For the largest values of �, second order correc-
tions to Eq. (5) may modify the estimated value for the
Berry phase. We note that this way of measuring the Berry
phase is fundamentally different from the conventional
method utilizing interference with excited states.

To further test our scheme, we measured the dependence
of the modulation amplitudes on the gate amplitude and
residual critical current Icres � �Icmax=2, i.e., leakage,
shown in Figs. 3(d) and 3(e). The residual critical current
was introduced by an offset in the control fluxes of the
SQUIDs from the ideal pumping cycle. Figure 3(f) shows
� as a function of the offset. As predicted, the modulation
amplitude of both, the pumped and the dynamic current,
increase with the residual critical current, but only the
pumped current depends on the maximum gate charge.

Our observations pave the way for further experiments
on Cooper pair pumping in closed circuits [19], on the
quantum standard of electric current, for applications of
geometric phases in holonomic quantum computation [15],
and test the fundamental implications of the quantum
theory in an order parameter describing coherent dynamics
of a macroscopic number of condensed Cooper pairs. Our
measurements are in agreement with a theoretical model
neglecting decoherence [20]. On the other hand, the effects
of dephasing and dissipation in superconducting qubits are
harmful in the manipulation of superconducting quantum
systems, see, e.g., Refs. [21]. Thus our results support the
robustness of geometric phases against decoherence and
fluctuations [22].
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Note added.—During the peer review of this work, Leek
et al. reported on the observation of the Berry phase in a
superconducting qubit [23]. See also recent theoretical
work on the Berry phase and Cooper pair pumping [24].
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