Giazotto, F.; Heikkilä, Tero; Taddei, F.; Fazio, Rosario; Pekola, Jukka; Beltram, F.

Tailoring Josephson Coupling through superconductivity-induced nonequilibrium

Published in: Physical Review Letters

DOI: 10.1103/PhysRevLett.92.137001

Published: 29/03/2004

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
https://doi.org/10.1103/PhysRevLett.92.137001
Tailoring Josephson Coupling through Superconductivity-Induced Nonequilibrium

F. Giazotto, T. T. Heikkilä, F. Taddei, Rosario Fazio, J. P. Pekola, and F. Beltram

NEST-INFM & Scuola Normale Superiore, I-56126 Pisa, Italy
Low Temperature Laboratory, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT, Finland

(Received 14 November 2003; published 29 March 2004)

The distinctive quasiparticle distribution existing under nonequilibrium in a superconductor-insulator-normal-metal-insulator-superconductor mesoscopic line is proposed as a novel tool to control the supercurrent intensity in a long Josephson weak link. We present a description of this system in the framework of the diffusive-limit quasiclassical Green-function theory and take into account the effects of inelastic scattering with arbitrary strength. Supercurrent enhancement and suppression, including a marked transition to a π junction, are striking features leading to a fully tunable structure.

Nonequilibrium effects in mesoscopic superconducting circuits have been receiving rekindled attention during the last few years [1]. The art of controlling Josephson coupling in superconductor-normal-metal-superconductor (SNS) weak links is at present in the spotlight: a recent breakthrough in mesoscopic superconductivity is indeed represented by the SNS transistor, where supercurrent suppression as well as its sign reversal (π transition) were demonstrated [2,3]. This was achieved by driving the quasiparticle distribution in the weak link far from equilibrium [4–6] through external voltage terminals, viz., normal reservoirs. Such behavior relies on the two-step shape of the quasiparticle nonequilibrium distribution, typical of diffusive mesoscopic wires and experimentally observed by Pothier and coworkers [7].

The purpose of this Letter is to demonstrate that it is possible to tailor the quasiparticle distribution through superconductivity-induced nonequilibrium in order to implement a unique class of superconducting transistors. This can be achieved when mesoscopic control lines are connected to superconducting reservoirs through tunnel barriers (I), realizing a superconductor-insulator-normal metal-insulator-superconductor (SINIS) channel. The peculiar quasiparticle distribution in the N region, originating from biasing the S terminals, allows one to access several regimes, from supercurrent enhancement with respect to equilibrium to a large amplitude of the π transition passing through a steep supercurrent suppression. These features are accompanied by a large current gain (up to some 10^5 in the region of larger input impedance) and reduced dissipation. The ultimate operating frequencies available open the way to the exploitation of this scheme for the implementation of ultrafast current amplifiers.

The investigated mesoscopic structure (see Fig. 1) consists of a long diffusive weak link of length L_f much larger than the superconducting coherence length (ξ_0) oriented along the x direction. This defines the SNS junction of cross section A_f. The superconducting tunnel junctions labeled to the SNS junction, labeled S_y (3 and 4), are kept at zero potential. The SINIS control line is oriented along the y direction and consists of a normal wire, of length L_C and cross section A_C, connected through identical tunnel junctions of resistance R_T to two superconducting reservoirs S_C (1 and 2), biased at opposite voltages ±V_C/2. The superconducting gaps of S_f and S_C (Δ_f and Δ_C) are in general different.

The supercurrent I_f flowing across the SNS junction is given by [5,6]

\[I_f(V_C) = \frac{\sigma A_f}{e L_f} \int_0^\infty dE [f(-E; V_C) - f(E; V_C)]\text{Im}[j_E]. \]

and depends on the quasiparticle distribution function f(E). In Eq. (1), σ is the normal-state conductivity which determines the normal-state resistance of the junction according to \(R_N = L_f/\sigma A_f \). The distribution function f reduces to the equilibrium Fermi distribution when \(V_C = 0 \). The energy-dependent spectral supercurrent \(\text{Im}[j_E] \), can be calculated by solving the Usadel equations [10]. Following the parametrization of the Green functions given in Ref. [8], these equations in the N region can be written.

FIG. 1 (color). Scheme of the Josephson transistor. The supercurrent I_f (along the white dashed line) is tuned by applying a bias V_C across the SINIS symmetric line connected to the center of the weak link. All normal wires are assumed quasi-one-dimensional.
where D is the diffusion coefficient and E is the energy relative to the chemical potential in S_f. $\theta(x,E)$ and $\chi(x,E)$ are in general complex functions. For perfectly transmissive contacts, the boundary conditions at the S_f/N interfaces reduce to $\theta = \text{arctanh}(\Delta_j/E)$ and $\chi = \pm \phi/2$ in the reservoirs S_j, where ϕ is the phase difference between the superconductors.

As required by Eq. (1), we must determine the actual quasiparticle distribution in the N region of the SINIS structure. This is controlled by voltage (V_C) and temperature and by the amount of inelastic scattering in the control line. In the case of a short control wire with no inelastic interactions, the quasiparticle distribution, according to Ref. [11], is given by

$$f(E, V_C) = \frac{\mathcal{N}_1 \mathcal{F}_1 + \mathcal{N}_2 \mathcal{F}_2}{\mathcal{N}_1 + \mathcal{N}_2},$$

where $\mathcal{N}_{1,2} = \mathcal{N}_{S_f}(E \pm eV_C/2)$ and $\mathcal{F}_{1,2} = \mathcal{F}_0(E \pm eV_C/2)$. The former are the BCS densities of states in the reservoirs S_C (labeled 1 and 2 in Fig. 1), $\mathcal{F}_0(E)$ is the Fermi function at lattice temperature T [12]. In this case Eqs. (1) and (3) yield the dimensionless transistor output characteristics shown in Fig. 2(a). The latter plots the supercurrent I_J vs control bias V_C at different temperatures for a long junction (i.e., $\Delta_j \gg E_{Th}^2$, where $E_{Th} = \hbar D/L_j^2$ is the Thouless energy of the SNS junction, as this is the limit where the supercurrent spectrum varies strongly with energy). We assumed $\phi = \pi/2$, $T_C^* / T_C^{(j)} = 0.2$, where $T_C^{(j)}$ are the critical temperatures of the superconductors $S_{C(j)}$ and L_j such that $\Delta_j/E_{Th} = 300$.

At the lowest temperatures, increasing V_C leads to a large supercurrent enhancement with respect to equilibrium slightly below $V_C = 2\Delta_c(T)/e = V_c^*(T)$ (region I in Fig 2). Further increase of bias leads to a π transition (region II) and finally to a decay for larger voltages [14]. This behavior is explained in Figs. 2(b)–2(d), where the spectral supercurrent (solid line) is plotted together with $f(-E) - f(E)$ (dash-dotted line) for values of V_C and T corresponding to regions I, II, and III, respectively. Hatched areas represent the integrals of their product, i.e., the supercurrent I_J of Eq. (1). In particular, region I corresponds to the cooling regime where hot quasiparticles are extracted from the normal metal [11,15]. The origin of the π transition in region II is illustrated by Fig. 2(c), where the negative contribution to the integral is shown. We remark that the intensity of the supercurrent inversion is very significant. It reaches about 60% of the maximum value of I_J at $V_C \approx V_c^*(T)$ in the whole temperature range, nearly doubling the π-state value of the supercurrent as compared to the case of an all-normal control channel [5,6]. In the high-temperature regime ($T/T_C^* \approx 0.6$), when the equilibrium critical current is vanishing, the supercurrent first undergoes a low-bias π transition (region III in Fig. 2), then enters regions I and II. This recover of the supercurrent from vanishingly small values at equilibrium is again the consequence of the peculiar shape of f [see Fig. 2(d)]. Notably, the supercurrent enhancement around $V_c^*(T)$ remains pronounced even at the highest temperatures, so that I_J attains values largely exceeding 50% of the junction maximum supercurrent. This demonstrates the full tunability of the supercurrent through nonequilibrium effects induced by the superconducting control lines. We remark that this is a unique feature stemming from the superconductivity-induced nonequilibrium population in the weak link.

The length L_C of the SINIS control line can be additionally varied to control the supercurrent by changing the effective strength of inelastic scattering in the N region. For $\mathcal{R}_T \gg R_C = L_C/\sigma A_C$, the distribution function $f(E)$ in the N region is essentially y independent and we have

$$\frac{1}{e^2 \mathcal{R}_T \Omega_C \nu_F} \left\{ \mathcal{N}_1 [\mathcal{F}_1 - f(E)] + \mathcal{N}_2 [\mathcal{F}_2 - f(E)] \right\} + \kappa \int d\omega d\epsilon \omega^a I(\omega, \epsilon, E) = 0.$$
Here ν_F is the normal-metal density of states at the Fermi energy, Ω_C is the volume of the N region, and I is the net collision rate at energy E. At low temperatures, the most relevant scattering mechanism is electron-electron scattering [16] and we can neglect the effect of electron-phonon scattering. Then [7,17],

$$I(\omega, e, E) = I^{\text{in}}(\omega, e, E) - I^{\text{out}}(\omega, e, E),$$

and

$$I^{\text{in}}(\omega, e, E) = \left[1 - f(\varepsilon)\right] \left[1 - f(E)\right] f(\varepsilon - \omega) f(E + \omega).$$

(6)

$$\mathcal{N}_1[f(E) - f_{\text{Th}}] - \mathcal{N}_2[f(E) - f_{\text{Th}}] = \mathcal{K}_{\text{coll}} \int d\varepsilon d\omega \omega^{-3/2} I(\omega, e, E),$$

(8)

where

$\mathcal{K}_{\text{coll}} = \left(\frac{R_T}{R_C}\right) L^2_{\text{Th}} \kappa / D) \sqrt{E_{\text{Th}}} = \sqrt{2(\frac{R_T}{R_K}) \times \sqrt{E_{\text{Th}}}}$, $R_K = h/2e^2$, and $E_{\text{Th}} = h D/L^2_{\text{Th}}$. In the absence of electron-electron interaction ($\mathcal{K}_{\text{coll}} = 0$), Eq. (3) is recovered.

The influence of inelastic scattering on I_f is shown in Fig. 3, which displays the critical current of a long junction at $T = 0.1 T^c$ for several values of $\mathcal{K}_{\text{coll}}$. Here I_f is obtained by numerically solving Eq. (8). The effect of electron-electron interaction is to strongly suppress the π state and to widen the peak around V^c_f. The Δ transition vanishes for $\mathcal{K}_{\text{coll}} \approx 100$, but the I_f enhancement due to quasiparticle cooling still persists in the limit of even larger inelastic scattering [20]. The disappearance of the π state can be understood by looking at the right inset of Fig. 3, which clearly shows how f (calculated at $eV_C = 2.5\Delta_C$) gradually relaxes from nonequilibrium towards a Fermi function upon increasing $\mathcal{K}_{\text{coll}}$. The left inset shows how f (evaluated at $eV_C = 1.5\Delta_C$) sharpens, thus enhancing I_f, by increasing $\mathcal{K}_{\text{coll}}$. This effect follows from the fact that inelastic interactions redistribute the occupation of quasiparticle levels in the N region, thus increasing the occupation at higher energy. As a consequence, higher-energy excitations are more effectively removed by tunneling, even for biases well below and not only around V^c_f (as in the case of $\mathcal{K}_{\text{coll}} = 0$). At the same time, supercurrent recovery at high temperature is gradually weakened upon enhancing $\mathcal{K}_{\text{coll}}$. Notably, these calculations show that a rather large amount of inelastic scattering is necessary to weaken and completely suppress the π state. For example, using Al/AlOx/Cu as materials composing the SINIS line, $\mathcal{K}_{\text{coll}} = 1$ corresponds to use a fairly long control line with $L_C \approx 2.3$ μm [21].

Changing the ratio T^c / T^f shifts the I_f response along the V_C axis, the shape of the characteristics being

From the calculation of the screened Coulomb interaction in the diffusive channel, it follows [18] that $\alpha = -3/2$ for a quasi-one-dimensional wire and $\kappa = (\pi \sqrt{D/2h^3/2})^{-1} [19]$. We note that Δ_C is the most relevant energy scale to describe the distribution function for different voltages V_C. It is thus useful to replace $\omega / \omega / \Delta_C$ and $e \rightarrow e / \Delta_C$ in order to obtain a dimensionless equation. Multiplying Eq. (4) by $e^2 R_T \Omega_C \nu_F$, we obtain

$$I^{\text{out}}(\omega, e, E) = \left[1 - f(\varepsilon - \omega)\right] \left[1 - f(E + \omega)\right] f(\varepsilon) f(E).$$

(7)

Electron-electron interaction is due to direct Coulomb scattering [18,19] or mediated by magnetic impurities [16]. Below, we concentrate on the former but the latter would yield a similar qualitative behavior.
can be expressed as

\[P \sim T_1^2 \left(\frac{T_1}{T_2} \right)^{n_1} \]

obtains values of the order of a few \(\times 10^{-15} \) W for a temperature of some \(10^{-12} \) K and \(S \) of some \(10^{-26} \) Hz. In the cooling regime, while these values are enhanced, respectively, to few tens of \(10^{-12} \) W and \(10^{-26} \) Hz for biases around the \(\pi \) transition.

In light of the possible use of this operational principle for device implementation, let us comment on the available gain and switching times. Input and output voltages are of the order of \(\Delta_C/e \) and \(E_{\text{Th}}/e \), respectively, so that it seems hard to achieve voltage gain. On the other hand, differential current gain \(G_1 \sim \left(E_{\text{Th}}/\Delta_C \right) (R_T/R_N) \), meaning that with realistic ratios \(R_T/R_N \sim 10^3 \), \(G_1 \) can exceed \(10^2 \). The differential gain \(G_1 \) calculated for \(T_1^C/T_1^F = 0.2 \) is plotted in Fig. 4(c) (the inset shows the gain in the \(\pi \)-state region). This calculation reveals that \(G_1 \) can reach huge values, with some \(10^5 \) for \(V_C < V_C^* \) [22] and several \(10^2 \) in the opposite regime. Remarkably, gain is almost unchanged also in the presence of weak inelastic scattering (i.e., \(\gamma_{\text{coll}} = 1 \)). The same holds for \(P \) and \(S \). As far as power gain is concerned, the Josephson junction has to be operated in the dissipative regime in order to get power. An estimate for the differential power gain gives \(G_p = dP/dP \sim \left(E_{\text{Th}}/\Delta_C \right) G_1 \times 10^{-3} \) for \(V_C < V_C^* \) and \(\sim 10 \) for \(V_C > V_C^* \). The highest operating frequency \(\nu \) of the transistor is limited by the smallest energy in the system: \(\nu \leq \frac{1}{2} \left(\Delta_C, \Delta_I, E_{\text{Th}}, h(R_T C)^{-1} \right) \), where \(C \) is the tunnel junction capacitance. For an optimized device, working frequencies of the order of \(10^{11} \) Hz can be experimentally achieved in the high-voltage regime \(V_C > V_C^* \). For \(V_C < V_C^* \), conversely, the response is slower (somewhat below \(10^9 \) Hz), owing to the long discharging time through the junctions.

We thank M. H. Devoret, K. K. Likharev, F. Pierre, L. Roschier, A. M. Savin, and V. Semenov for helpful discussions. This work was supported in part by MIUR under the FIRB Project No. RBNE01FSWY and by the EU (RTN-Nanoscale Dynamics).

*Sponsorship: EU (RTN-Nanoscale Dynamics).

[12] At low control voltages there is a region of energies where \(N_1 \sim N_2 = 0 \). We assume that there are no (otherwise weak) coupling to phonons that makes the distributions at those energies equal to the equilibrium Fermi distribution. A more detailed discussion and another type of coupling are given in [13].
[21] This is straightforward assuming typical parameters \(R_T = 10^3 \) Ω, \(D = 0.02 \) m²/s, and \(\Delta_C = 200 \) μeV.
[22] In this calculation we chose to include depairing by a phenomenological but realistic parameter \(\Gamma = 10^{-3} \) \(\Delta_C \) [13]. Its omission would lead to extremely higher \(G_1 \) values. For \(V_C < V_C^* \) and low temperature, \(\Gamma \) determines the differential resistance \(R = R_T \Delta_C / T \) of the SINIS line. Qualitatively, the large \(G_1 \) stems from the fact \(R \gg R_N \).