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Abstract
Extracting Hamiltonian parameters from available experimental data is a challenge in quantum
materials. In particular, real-space spectroscopy methods such as scanning tunneling spectroscopy
allow probing electronic states with atomic resolution, yet even in those instances extracting the
effective Hamiltonian is an open challenge. Here we show that impurity states in modulated
systems provide a promising approach to extracting non-trivial Hamiltonian parameters of a
quantum material. We show that by combining the real-space spectroscopy of different impurity
locations in a moiré topological superconductor, modulations of exchange and superconducting
parameters can be inferred via machine learning. We demonstrate our strategy with a
physically-inspired harmonic expansion combined with a fully-connected neural network that we
benchmark against a conventional convolutional architecture. We show that while both approaches
allow extracting exchange modulations, only the former approach allows inferring the features of
the superconducting order. Our results demonstrate the potential of machine learning methods to
extract Hamiltonian parameters by real-space impurity spectroscopy as local probes of a
topological state.

1. Introduction

Learning Hamiltonian parameters from experimental data is one of the most critical open problems in order
to bring together experiments with theoretical models [1–8]. Conventionally, phenomenological models to
account for experimental data are developed on a case by case basis. In certain instances, obtaining the
Hamiltonian parameters of the model can be done by fitting specific features of the data [9, 10]. Many-body
Hamiltonians with local interactions can be extracted local observables by exploiting time evolution and
quantum Hamiltonian tomography, a strategy demonstrated theoretically and experimentally [11–16].
However, in some instances, no simple fitting procedure nor time-dependent measurements can be
performed to extract Hamiltonian parameters. Machine learning methods have risen as a powerful approach
to extract subtle features of data, and in particular they have become successful in tackling inverse problems
in quantum materials [17–28].

Van der Waals heterostructures are a paradigmatic system in which, thanks to their tunability, a variety of
quantum Hamiltonians can be emulated [29]. Specifically, the capability of combining two-dimensional
materials with radically different properties allows engineering systems simultaneously hosting antagonist
order [30, 31], with the paradigmatic example of van der Waals heterostructures combining 2D magnets and
superconductors [32–36]. Beyond the different coexisting orders, van der Waals materials bring a unique
feature to heterostructures, the emergence of a moiré pattern [37–41]. The moiré pattern stems from the
structural modulation in real space due to a twist angle between lattices. Most importantly, the moiré
modulation leads to a spatial modulation of all the Hamiltonian parameters. This modulation is the driving
force behind a variety of phenomena, including topological and correlated states in van der Waals
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heterostructures [42–54]. However, extracting the values of these modulations in moiré system is an open
problem, as their effect on the electronic structure is greatly challenging to disentangle. Interestingly, the
coexistence of a moiré pattern and local impurities opens up a new strategy to infer electronic parameters
due to their non-trivial interplay [55–59].

In our manuscript, we put forward a method to extract Hamiltonian parameters of unconventional
moiré superconductors using machine learning and impurity engineering. Specifically, we show that thanks
to the moiré pattern, local impurities give rise to dramatically different electronic excitations depending on
the location of the moiré pattern. This dependency allows us to directly infer moiré modulations via a
machine learning algorithm that takes as input excitations for different impurity locations. We demonstrate
that our algorithm allows extracting modulation strengths of exchange proximity and superconducting
order, two parameters that cannot be directly extracted from a measured local density of states (LDOS). We
further address the robustness of our algorithm to noise, showing that Hamiltonian parameters can be
extracted in an experimentally realistic scenario.

2. Methods

2.1. Model
We consider an artificial two-dimensional superconductor obtained by combining a two-dimensional
ferromagnet and a two-dimensional superconductor [32–34] as shown in figure 1(a). The electronic
structure of the heterostructure is modeled with an atomistic Wannier orbital site forming a triangular
lattice, where the moiré pattern is incorporated in the modulation of the Hamiltonian parameters [60–64].
The full Hamiltonian takes the form

H0 =Hkin +HJ +HR +HSC (1)

withHkin = t
∑

⟨ij⟩,s c
†
i,scj,s +µ

∑
i c

†
i,sci,s with c†n,s(cn,s) the creation (annihilation) fermionic operator with

spin s in site n. The combination of exchange coupling, Rashba spin–orbit coupling and superconducting
proximity gives rise to topological superconducting state when combined on the right footing [32, 65–70].
We focus on the regime giving rise to topological superconducting states C= 1,2,3, which arise when taking
the chemical potential crossing the Γ,K,M points, respectively. The hopping is controlled by t, the chemical

potential by µ and ⟨i, j⟩ runs over nearest neighbors. The termHR = iλR
∑

⟨ij⟩,ss ′ dij ·σs,s
′

c†i,scj,s ′ is the
Rashba spin–orbit coupling arising from mirror symmetry breaking at the interface [71], with σ the spin
Pauli matrices, λR controls the spin–orbit coupling constant and dij = (ri − rj)× ẑ.

We now focus on the main terms that we will extract with our procedure, the modulated exchange and
modulated superconductivity. The exchange coupling is included in a term

HJ =
∑
i,s,s ′

J(r)σs,s ′

z c†i,sci,s ′ (2)

and the superconducting order by

HSC =
∑
i

∆(r) c†i,↑c
†
i,↓ + h.c. (3)

where J(r) and∆(r) parameterize the exchange coupling and induced s-wave superconductivity. The
competition between the exchange field and the superconducting order leads to an induced modulated
superconductivity stemming from the originally modulated exchange [72–74]. We take a modulation
parametrized as f(r) = c0 + c1

∑3
n=1 cos(R

nq · r) where q is the moiré superlattice wave vector, and Rn is the
rotation matrix conserving C3 symmetry. The parameters c0, c1 are defined so that ⟨f(r)⟩= 0. The spatial
profiles J(r) and∆(r) are written in terms of the previous spatial dependence as

J(r) = J0 + δJf(r)

∆(r) = ∆0 + δ∆ (1− f(r)) (4)

J0 and∆0 parametrize the average magnitude of the modulated exchange and superconducting profiles,
whereas δJ and δ∆ control the amplitude of the moiré modulation. For the sake of concreteness we take
J0 = λR and∆0 = λR/2. The relative signs of f(r) in J(r) and∆(r) are taken so that when the
superconducting order is maximum, the exchange is minimum (figures 1(b) and (c)).

2
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Figure 1. Schematic of the moiré system (a), where panel (b) denotes the modulation of the superconducting and (c) the
modulation of the exchange parameters. In the absence of moiré, impurities induced in-gap states in the topological
superconducting state (d), which upon the existence of the moiré pattern gives rise to an interference effect (e). Using the
spectroscopy of impurities in different locations, a machine learning algorithm extracts the exchange and superconducting
profiles (f).

Local non-magnetic impurities are included adding a potential scattering term of the form

Himp =W
∑
s

c†n,scn,s (5)

whereHimp defines the impurity Hamiltonian at site n with an on-site potential w. We focus on the strong
impurity limit in which the site is effectively removed from the low energy manifold takingW= 100t. The
full Hamiltonian of the defective system takes the form

H=H0 +Himp (6)

The impurity gives rise to an in-gap state both in the absence (figure 1(d)) and presence (figure 1(e)) of a
moiré modulation. It is important to note that, due to the presence of the moiré pattern, the impact of an
impurity depends on its location with respect to the moiré modulation. Specifically, as shown in the LDOS of
figure 2, the interference between the impurity state and the moiré potential gives rise to different patterns
depending on the location. This interference fully disappears when δJ and δ∆ are switched off. We will show
that our machine learning algorithm will use the interference between the different locations of impurities to
extract the values of the Hamiltonian modulations.

We finally elaborate on the computational procedure to solve this model in the limit of a single impurity
in an otherwise pristine system. For this purpose, we will use Green’s function embedding method [55, 75,
76]. The embedding method relies on extracting the Green’s function from the Dyson equation of the
defective system

GV (ω) =
[
ω−HV −Σ(ω)+ i0+

]−1
(7)

where GV(ω) is the Green’s function of the defective model, HV the Hamiltonian of the defective unit cell,
and Σ(ω) the selfenergy induced by the pristine system. The selfenergy Σ(ω) can be obtained from the
Dyson equation for the pristine model Σ(ω) = ω−H0 −G0(ω)

−1 + i0+ with H0 the Hamiltonian of the

3
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Figure 2. Local density of states of the in-gap state for a single impurity in a moiré topological superconductor for different
impurity locations (a)–(d). It is observed that depending on the location of the impurity in the moiré, the in-gap states show
different interference patterns with the moiré potential. These different interference patterns reflect the underlying modulations
of the Hamiltonian, and allow us to extract Hamiltonian modulation from real-space spectroscopy. In the absence of the moiré
pattern, all the impurity locations would show the same profile of the in-gap state.

pristine unit cell, where we take the Bloch’s representation of the pristine unit cell Green’s function
G0(ω) =

1
(2π)2

´
[ω−Hk+ i0+]−1d2k where Hk is the Bloch’s Hamiltonian.

The LDOS used as input for our algorithm is obtained as

ρ(r,ω) =− 1

π

∑
s,τ

⟨r, s, τ |Im(GV (ω)) |r, s, τ⟩ (8)

where s and τ are the spin and Nambu indexes. The in-gap state εimp is located using an iterative algorithm in
the energy window of the topological superconducting gap. From an experimental point of view, a finite
noise of the spectroscopy will be present, and thus the robustness of our algorithm will be important with
regards to its experimental implementation. We emulate the impact of noise in the real-space spectroscopy as

ρnoisy (r) = ρ(r)+χ(r) (9)

adding a noise background χ(r) = χ0 ·R(r) to the LDOS ρ(r) where χ0 is the noise magnitude andR(r) is a
random uniform noise distribution defined in the interval (−⟨ρ(r)⟩,⟨ρ(r)⟩) with ⟨ρ(r)⟩ as mean value of the
LDOS.

2.2. Machine learning
The main idea of our real-space impurity tomography is to extract the underlying Hamiltonian by using the
LDOS for different impurity positions as inputs as shown in figure 1(f). The extraction of the
superconducting and exchange modulation is a non-trivial problem without a simple one-to-one
correspondence to a single real-space spectroscopy.

We will use a physics-inspired approach to compress the information contained in the LDOS with a
harmonic expansion (see figures 3(a) and (b)). The coefficients of the power spectrum for each LDOS are
then concatenated and fed into a fully-connected neural network (NN) as depicted in figure 3(b). The radial
expansion works as follows. First, each individual LDOS is centered around the impurity position. Then, the
harmonic expansion for the power spectrum is performed as

4
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Figure 3. Schematic of the machine learning workflows. (a) Classification of the Chern number (C= 1,2,3) with the radial
expansion method and supervised NNs. (b) Hamiltonian learning (regression) of the exchange and superconducting modulation
(δJ and δ∆) with a feed-forward neural network and a radial expansion of the three LDOS. (c) Hamiltonian learning of the
exchange and superconducting modulation (δJ and δ∆) with convolutional neural networks (CNNs).

cln =
∑
α

ρ(rα)e
i lϕαrnαe

−rα/Λ (10)

where cln are the coefficients of the expansion, rα = rα(cosϕα, sinϕα,0) the atomic sites taking as the origin
the impurity site, and Λ is the typical localization length of the state [77]. In particular, we expand each
LDOS into 24 complex cln coefficients, i.e. the input dimension of the NN is 144 after concatenating the real
and imaginary components of the coefficients for three LDOS. We first train a fully-connected NN to
perform classification of the Chern number of a given LDOS image which is compressed again into radial
functions. The workflow is shown in figure 3(a). The NN architecture is shown in table 1. The loss function
for this case is the categorical crossentropy loss and a softmax-activation function is used for the output layer.
The training consists of 100 epochs, with a batch size of 16. The optimization is performed with the Adam
optimizer and a learning rate of 0.001. Afterward, we create a supervised architecture to predict the
Hamiltonian parameter of the exchange and superconducting modulation (δJ, δ∆). For this regression task,
the architecture of the NN is shown in table 2. We trained the NN for 100 epochs with a batch size of 16. For
the optimization of the weights, we are using the stochastic gradient descent algorithm and the Adam
optimizer [78] with a learning rate of 0.001. The loss function is the mean squared error (MSE). For the
training and testing, we created LDOS for 2000 Hamiltonians for each Chern number where we varied the
parameter δJ ∈ [0,2λR] and δ∆ ∈ [0,λR]. This results in 6000 samples which we divided into a training set of
5400 and a test set of 600 examples. Finally, we take as a benchmark of our procedure a convolutional NN
(CNN) [79] architecture. We take an analogous workflow as shown in figure 3(c), where three LDOS with
different impurity positions are fed into the CNN which predicts the modulation of the exchange or
superconductivity as a regression task. The architecture of the CNN is shown in table 3, where three CNN
networks are concatenated into a fully-connected NN and trained simultaneously with three input LDOS.
For the training, we used 50 epochs with a batch size of 16.

It is finally worth noting that our machine learning approach allows us to exploit the spatial resolution of
scanning tunneling microscopy. In the case of unconventional superconductors, the non-trivial interference
between bound states provides information about the underlying electronic state, information that is often
not accessible with other probes. Other approaches to Hamiltonian learning use the energy and
entanglement spectra for Hamiltonian inference [80], or employing time-resolved measurements to extract
Hamiltonian parameters [7]. However, performing those measurements for unconventional
superconductors is greatly challenging, whereas the measurements of the LDOS in our impurity tomography
approach are standard in scanning probe experiments in two-dimensional superconductors.

5
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Figure 4. Extraction of the Chern number. Panels (a) and (b) show the prediction accuracy of C= 1,2,3 when using three
impurity positions as input for the NN for zero noise (a) and the maximum noise amplitude (b). Panels (c) and (d) show the
prediction accuracy of C= 1,2,3 when using one impurity position as input for the NN for zero noise (c) and the maximum
noise amplitude (d).

3. Results and discussion

3.1. Chern number extraction
The first problem we tackle is to determine the Chern number from one or three LDOS with different
impurity locations. The measurement of topological invariants in topological superconductors is a practical
open challenge [81–86], as due to their topological nature, local order parameters cannot be defined for these
states. The appearance of in-gap modes alone is not enough to assess the topological invariant of a
superconductor, as in-gap states can appear in both trivial and topological superconductors [87].
Interestingly, the inclusion of a moiré pattern leads to subtle changes in the spatial distribution of in-gap
states [55]. As we will show below, the fine structure of the in-gap modes allows for extracting the topological
invariant of the underlying state.

In the following, we elaborate on the procedure to extract the topological invariant solely from the
real-space spectroscopy images of single impurities. The input of the algorithm consists of the real-space
spectroscopy for three impurity locations, and its output is the topological invariant. To extract the
topological invariant, we trained a NN to perform the classification into the 3 non-trivial Chern numbers.
The results are shown in figure 4 in the form of confusion matrices for three figures 4(a), (b) and one LDOS
figures 4(c) and (d) as input. For one LDOS as input, we achieve an average accuracy of 96.3% for the test
data with zero noise (c) and 88.7% with the maximum noise amplitude of χ0 = 0.4. The confusion matrix
shows that C= 1 can be predicted with 100% accuracy in both cases, the NN is only confused in the
prediction between C= 2 and C= 3. Taking three real-space spectroscopies with different impurity positions
as input, we obtain a testing accuracy of 100% for zero noise (a) and 99.7% for the maximum noise
amplitude. This highlights that combining three real-space spectroscopies for different impurity locations
substantially increases the accuracy of the topological invariant predictions. These results show, that it is
possible to extract the Chern number by just one LDOS with a random impurity position even in the case of
very noisy data.

3.2. Exchange field extraction
In the following, we show how the real-space impurity tomography allows extracting the values of the moiré
Hamiltonian parameters. We start with the modulation of the exchange coupling, which is intuitively the
parameter that will impact the real-space spectroscopy in the strongest way. This stems from the fact that the
local exchange coupling creates in-gap Yu-Shiba-Rusinov modes inside the original superconducting gap
∆[32, 34, 88–94], and these modes form the low energy electronic structure leading to a topological

6
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Figure 5. Predictions of δJ with a harmonic expansion fully-connected architecture (a), (c), (e) compared to the convolutional
architecture predictions (b), (d), (f) for Chern numbers C= 1 (a), (b), C= 2 (c), (d), and C= 3 (e), (f). It is observed that the
harmonic expansion fully-connected architecture provides slightly more accurate predictions than the convolutional architecture.

superconducting state. As a result, low energy bands reflect the periodicity of the exchange modulation, and
their associated in-gap modes in the presence of impurities inherit the same dependence [34, 55].

We take as input the real-space spectroscopy for three impurity locations, leading as output the
modulation strength of the exchange coupling in the system. We train different architectures for each Chern
number, including CNNs of the full spectroscopy and the harmonic expansion of the impurity states. The
results, shown in figure 5 demonstrate that real-space spectroscopy of the impurities allows extracting the
modulation of the exchange coupling with both procedures. Specifically, it is shown that both convolutional
and harmonic expansion obtain a substantial accuracy in the extraction, specifically leading to a typical error
of E [δJ] = 0.01 for the convolutional algorithm and E [δJ] = 0.0072 for the harmonic expansion. We observe
that the harmonic algorithm becomes slightly more accurate than the convolutional method. Interestingly,
the difference between both methods becomes much more dramatic in the extraction of superconducting
order values and modulations.

3.3. Superconducting order extraction
We now move to consider the extraction of the local superconducting order∆(r) with real-space impurity
tomography. It is interesting to note that the impact of modulation of∆ in the low energy states is expected
to be more subtle than the exchange. While the energy location of a Yu-Shiba-Rusinov strongly depends on J,
the value of the superconducting gap only leads to proportional renormalization of the energy [87].

We show in figure 6 the extraction of the superconducting modulation using the harmonic expansion
with supervised learning (figures 6(a), (c) and (e)) and the CNN architecture (figures 6(b), (d) and (f)), for
C= 1 (figures 6(a) and (b)), C= 2 (figures 6(c) and (d)) and C= 3 (figures 6(e) and (f)). In the case C= 3
(figures 6(e) and (f)), we observe that both architectures are capable of predicting the superconducting
modulation. Interestingly, for C= 1 (figures 6(a) and (b)) and C= 2 (figures 6(c) and (d)), the convolutional
architecture is incapable of predicting correct superconducting modulations, whereas the fully-connected
harmonic expansion successfully predicts it. Typical errors of the NNs are E [δ∆] = 0.30,0.29,0.008 for
C= 1,2,3 for CNN and E [δ∆] = 0.03,0.024,0.008 for C= 1,2,3 for harmonic expansion with the
fully-connected NN. This phenomenology should be contrasted with the exchange modulation, where both
architectures showed similar performance. The success of the fully-connected harmonic expansion and the

7
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Figure 6. Predictions of δ∆ with a harmonic fully-connected architecture (a), (c), (e) compared to a convolutional architecture
(b), (d), (f) for Chern numbers C= 1 (a), (b), C= 2 (c), (d), and C= 3 (e), (f). It is observed that the harmonic fully-connected
architecture provides more accurate predictions than the convolutional architecture, in particular for C= 1,2 where the
convolutional architecture fails.

failure of the CNN architecture demonstrate that the extraction of superconducting modulations represents
a much more challenging problem than the exchange modulation. In particular, our harmonic expansion
shows that such a physically-motivated procedure allows extracting Hamiltonian parameters stemming from
highly subtle changes in the real-space spectroscopy.

3.4. Noisy Hamiltonian extraction
In the following, we address the extraction of the Hamiltonian in the presence of noisy data. For the sake of
concreteness, we focus on the harmonic fully-connected architecture, as the superconducting modulation
can be predicted with that one. We show in figure 7 the evolution of the correlation between predictions and
true values as a function of increasing noise. We define prediction fidelity as

F
(
δpred, δtrue

)
=

|⟨δpredδtrue⟩− ⟨δtrue⟩⟨δpred⟩|√(
⟨(δtrue)2⟩− ⟨δtrue⟩2

)(
⟨(δpred)2⟩− ⟨δpred⟩2

) (11)

is defined in the interval F ∈ [0,1], where F = 1 corresponds to the best prediction accuracy δpred = δtrue

and F = 0 corresponds to no predictive accuracy. Focusing first on the exchange modulation shown in
figure 7, we observe that even substantial noise allows to infer the value of its modulation for the Chern
numbers. The robustness of the exchange modulation extraction is consistent with the fact that the NN
architecture was capable of providing faithful predictions of the parameter. This resilience to noise stems
from the strong dependence of the Yu–Shiba–Rusinov states on the local exchange, which directly impacts
the real-space profile of the spectroscopy. The prediction of the superconducting modulation represents
however a bigger challenge as shown in figure 7. In the cases C= 1,2 (figures 7(a)–(d)), the most challenging
ones, we observe that magnitudes of noise around χ0 = 0.005 break down the predictions. In stark contrast,
systems with C= 3 are resilient to levels of noise magnitudes up to χ0 = 0.2 as shown in figures 7(e) and (f).
The difference in the robustness between C= 1,2 and C= 3 can be rationalized by recalling that the CNN
architecture is not capable of providing predictions for C= 1,2, but it gave reliable predictions for C= 3.
Interestingly, despite the superconducting modulation creating a very subtle impact in the real-space

8



J. Phys. Mater. 7 (2024) 015012 M Khosravian et al

Figure 7. Analysis of the correlation between the predicted and real values of the exchange and superconducting modulation as a
function of the noise level for C= 1 (a), (b), C= 2 (c), (d), and C= 3 (e), (f). Panels (a), (c), (e) correspond to a larger noise
range, whereas (b), (d), (f) correspond to the low noise limit. It is observed that exchange modulations δJ are more resilient to
noise than superconducting modulation predictions δ∆.

Figure 8. Local density of states of the in-gap state for a single impurity in a moiré superlattice with C= 3 for three different
locations for (a)–(c). Panels (d)–(f) show the real-space spectroscopy with χ0 = 0.2 noise amplitude, which is used as input for
the machine learning algorithm. Panels (g)–(i) show the real-space spectroscopy associated to the predicted Hamiltonian by the
neural network.

9



J. Phys. Mater. 7 (2024) 015012 M Khosravian et al

spectroscopy, our algorithm is capable of extracting the modulation amplitude from noisy data for different
Chern numbers. Finally, we show in figure 8(a) comparison between the spectroscopies for the pristine data
(figures 8(a)–(c)), the noisy data provided as input to our algorithm (figures 8(d)–(f)) and the spectroscopy
computed with the parameters predicted by the Hamiltonian extraction (figures 8(g)–(i)). It is observed that
the spectroscopy predictions are nearly indistinguishable from the original ones, showing that our algorithm
is capable of solving the inverse problem of inferring the Hamiltonian from the spectroscopy.

4. Conclusions

To summarize, we have shown that interference effects of in-gap states allow extracting Hamiltonian moiré
parameters and topological invariants in an artificial topological superconductor from real-space
spectroscopy patterns. Our approach is based on a supervised learning procedure that exploits the patterns
obtained in in-gap states for different impurity locations simultaneously. We showed that our technique can
be readily implemented with a convolution NN architecture that combines several impurity locations
simultaneously. Furthermore, we showed that by leveraging an orbital expansion of the impurity modes, a
more robust machine-learning approach can be developed. Specifically, our procedure using a harmonic
expansion is capable of extracting both parameter values and their modulations even in the presence of
noise. We demonstrate that the combination of different locations dramatically increases the accuracy of
Hamiltonian parameter inference, exemplifying how parameter inference benefits from features that our
algorithm extracts from several impurity locations. Our results establish a machine learning methodology
that exploits local impurity engineering to extract non-trivial parameters in artificial topological systems.
Our demonstration exploits data directly accessible in scanning tunneling microscopy experiments and is
robust in the presence of noise, establishing a realistic method to extract Hamiltonian parameters from
readily accessible experimental data in complex quantum materials.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We acknowledge the computational resources provided by the Aalto Science-IT project, and the financial
support from the Academy of Finland Projects Nos. 331342, 336243 and 358088, the Jane and Aatos Erkko
Foundation. We thank P Liljeroth, S Kezilebieke and T Ojanen for useful discussions.

10



J. Phys. Mater. 7 (2024) 015012 M Khosravian et al

Appendix. Network architectures

Table 1. Architecture of the fully-connected NN of the expansion method. Used for the classification of the Chern number.

fully-connected NN (classification)

Layer Output shape

Harmonic expansion Preprocessing
InputLayer (48 · 3) 48 params / LDOS
Dense (200)
Dropout (200)
Dense (100)
Dropout (100)
Dense (20)
Dropout (20)
Dense (3)

Total parameters 51 183

Table 2. Architecture of the fully-connected NN of the expansion method. Used for the regression of the Hamiltonian parameters.

fully-connected NN (regression)

Layer Output shape

Harmonic expansion Preprocessing
InputLayer (48 · 3) 48 params / LDOS
Dense (300)
Dropout (300)
Dense (2)

Total parameters 15 302

Table 3. Architecture of the CNN. Used for the regression of the Hamiltonian parameters.

CNN

Layer Output shape

Combine three CNNs:
InputLayer (55, 55, 1)
Conv2D (55, 55, 32)
MaxPooling2D (27, 27, 32)
Conv2D (27, 27, 64)
MaxPooling2D (13, 13, 64)
Flatten (10 816)
Fully-connected NN
Concatenate (32 448) combine 3 CNNs
Dense (200)
Dense (50)
Dense (1) or (2)

Total parameters 6556 349
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