Bruno, Elena; Mirabella, Salvo; Priolo, Francesco; Kuitunen, Katja; Tuomisto, Filip; Slotte, Jonatan; Giannazzo, Filippo; Bongiorno, Corrado; Raineri, Vito; Napolitani, Enrico

He implantation to control B diffusion in crystalline and preamorphized Si

Published in:
Journal of Vacuum Science and Technology. Part B.

DOI:
10.1116/1.2816927

Published: 01/01/2008

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
He implantation to control B diffusion in crystalline and preamorphized Si

E. Bruno, S. Mirabella, and F. Priolo
K. Kuitunen, F. Tuomisto, and J. Slotte
F. Giannazzo, C. Bongiorno, and V. Raineri
E. Napolitani

Citation: Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 26, 386 (2008); doi: 10.1116/1.2816927
View online: http://dx.doi.org/10.1116/1.2816927
View Table of Contents: http://avs.scitation.org/toc/jvn/26/1
Published by the American Institute of Physics
He implantation to control B diffusion in crystalline and preamorphized Si

E. Bruno,a) S. Mirabella, and F. Priolo
Matis CNR-INFM and Dipartimento di Fisica e Astronomia, Università di Catania, Via S. Sofia, I-95123 Catania, Italy

K. Kuitunen, F. Tuomisto, and J. Slotte
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 TKK Helsinki, Finland

F. Giannazzo, C. Bongiorno, and V. Raineri
CNR-IMM, Sezione di Catania, Stradale Primosole 50, I-95121 Catania, Italy

E. Napolitani
Matis CNR-INFM and Dipartimento di Fisica, Università di Padova, Via Marzolo, 8, I-35131 Padova, Italy

(Received 31 May 2007; accepted 30 October 2007; published 31 January 2008)

We demonstrate that He can be a powerful tool to control B diffusion both in crystalline (c-Si) and preamorphized Si (PA-Si). By means of positron annihilation spectroscopy (PAS), we showed in He-implanted c-Si the formation after annealing of large open-volume defects at the implant projected range \(R_p \) of He (voids) and of smaller vacancy-type defects toward the surface (nanovoids). In particular, these nanovoids locally suppress the amount of self-interstitials (Is) generated by B implantation, as verified by PAS, eventually reducing B diffusion and leading to a boxlike shape of the B-implanted profile. On the other hand, for B implantation in PA-Si, the authors demonstrated that if He-induced voids are formed between the end-of-range (EOR) defects and the surface, they act as a diffusion barrier for Is coming from the EOR defects. Indeed, this barrier strongly reduces diffusion of B placed in proximity of the surface. © 2008 American Vacuum Society. [DOI: 10.1116/1.2816927]

INTRODUCTION

Boron implantation in silicon is the most used method to selectively produce p-doped regions in silicon. It is also well asserted the need to progressively increase the local B concentration in order to obtain higher and higher electrical activation levels, while greatly reducing the junction depth. Many methodologies have been proposed to face this problem by using implantation of B in crystalline (c-Si) or preamorphized (PA-Si) silicon. Both approaches present advantages and disadvantages regarding the impact of the implantation damage on B diffusion and electrical activation. When implanted directly in c-Si, B interacts with self-interstitials Is produced by the implant itself, thus suffering the well-known transient-enhanced diffusion\(^1,2\) and the agglomeration in B–I complexes (BICs) that make it electrically inactive.\(^1,3–5\) B implantation in PA-Si overcomes these effects, because after regrowth [solid-phase epitaxy (SPE)] of the amorphous Si (a-Si) layer, B does not overlap to any interstitial. Furthermore, its activation level reaches values \((3.5 \times 10^{20} \text{ B/cm}^3)\) (Ref. 6) significantly higher than those obtained in c-Si. Nonetheless, the end-of-range (EOR) defects, left at the original amorphous-crystal (a-c) interface after SPE, dissolve under further annealing. This produces a flux of Is toward the surface that interacts with the implanted B and induces its diffusion and deactivation, deteriorating the junction formed.\(^7–9\)

Nonequilibrium B diffusion and BIC formation have been the subject of many studies to control and suppress them. Different approaches have been proposed,\(^10–14\) but a method suitable for both c-Si and PA-Si, that is also easily implemented in industrial Si-based device production, is still lacking.

A possible solution could be He implantation in order to selectively and locally create sinks for Is. In fact, when implanted at high doses in Si, He is able to produce a local supersaturation of vacancies (Vs) that can evolve in empty voids under annealing\(^15,16\) and act as a sink for Is.\(^17\) In detail, a deep void layer forms at the He projected range \(R_p \), while smaller nanovoids form between the surface and the deep void layer itself, as we previously showed.\(^18–20\) In particular, we recently demonstrated that He implantation allows to control and even engineer the implanted B profile.\(^18–20\) In fact, the He-induced damage positively affects implanted B by reducing its diffusion and leading to a boxlike shape of the B profile.\(^18–20\)

In this article, we report a study on He implantation to control B diffusion either in c-Si or in PA-Si, critically reviewing the mechanisms and the possible advantages. For c-Si, by means of positron annihilation spectroscopy (PAS), we definitely demonstrated that the defects near the surface affecting the diffusion of implanted B are vacancy-type defects that appear to be small, but larger than divacancies.
These defects produce the annihilation of the implantation-related damage, thus preventing Is from interacting with B and reducing the above-mentioned detrimental phenomena. On the other hand, for B implantation in PA-Si, we demonstrated that, if He-induced voids are formed between the EOR defects and the surface, they act as a filter for Is coming from the EOR defects, preventing any diffusion of B placed in proximity of the surface.

EXPERIMENT

The study in c-Si was performed partially on a 2-μm-thick crystalline Si film grown by molecular-beam epitaxy (MBE) on a 5 in. (2×1) reconstructed, (100)-oriented n-type Si wafer containing an array of 190-nm-spaced boron delta doping (δ) with a peak concentration of about 2×10¹⁸ B/cm³, and partially on Si (100) czochralski (Cz) wafers, n-type, 1.5–4 Ω cm. Part of the samples were implanted with 80 keV He ions at 3×10¹⁶ or 8×10¹⁶ ions/cm² (R_p ≈ 600 nm). B implantation (12 keV, 5×10¹⁴ ions/cm², R_p ≈ 40 nm) was also performed on part of the Cz samples, some of which coimplanted with He. All implanted samples were first annealed at 800 °C for 10 min to form He-induced voids and nanovoids, and then for 100 min at the same temperature.

The experimental study in PA-Si was carried out on a 0.8-μm-thick epitaxial Si film grown on a 6 in. (2×1) reconstructed, (100)-oriented p⁺-type Si wafer by MBE, containing a boron delta layer (δ) at ~100 nm from the surface, having a peak concentration of about 5×10¹⁵ B/cm³. The sample was then amorphized from the surface to a depth of ~510 nm by implanting Si⁺ ions (3×10¹⁵ ions/cm² at 250 keV, plus 2×10¹⁵ ions/cm² at 40 keV) at the liquid-nitrogen temperature. The amorphized sample was regrown at 550 °C for 100 min. After SPE, part of the samples are implanted with 40 keV He ions at 5×10¹⁶ ions/cm² (R_p ≈ 390 nm). Finally, all samples were annealed at 850 °C for 20 min to either form He-induced voids (between 290 and 410 nm) or let the EOR defects (at about 510 nm) evolve and dissolve by emitting Is. Some pieces of the as-grown crystalline sample were also processed at 850 °C 20 min as a reference.

Thermal annealing up to 20 min were performed with rapid thermal annealing, whereas prolonged annealing was performed in a conventional furnace. All annealings were performed in a controlled N₂ atmosphere. B chemical profiling was obtained by secondary ion mass spectrometry analyses, performed with a CAMECA IMS-4 f instrument (3 keV O⁺ analyzing beam). PAS was performed by using a low-energy positron beam to detect the Doppler shift in the 511 keV annihilation line. The shape of the annihilation peak was described using the conventional shape parameter S corresponding to the fraction of positrons annihilated with the low-momentum (valence) electrons. Thus, an increase in the S parameter from the bulk value is a signal of vacancies in the material. A more thorough explanation of the measurement method can be found in Ref. 21. Because the native oxide at the surface of the samples disturbs the measurement data (see Ref. 22), the samples were etched in HF acid before the measurements. Cross-section transmission electron microscopy (XTEM) images were performed with a 200 kV Jeol JEM 2010 microscope, in such a way to enhance features of the cavities, linear defects such as \{311\} or dislocation loops.

RESULTS AND DISCUSSION

In the present section, we report results on the use of He implantation to produce p-type junctions of B in Si. We first studied the defect distribution created by He implantation through a c-Si sample. Then, we properly used the different regions of this defect distribution to control B diffusion both in c-Si, where B is introduced by implantation, and in PA-Si, where B is introduced by MBE.

Distribution of defects produced by He implantation in Si

Figure 1 shows the B concentration profiles in the presence of a He implant, from which the point-defect distribution can be inferred. In detail, Figs. 1(a) and 1(b) show the
chemical profiles of five B delta layers grown by MBE in He-implanted (80 keV, 3×10^{16} ions/cm2) and He-free samples, respectively. In particular, the as-grown profile (continuous lines) and those after thermal annealing at 800 °C for 10 min (lines plus closed circles) and 100 min (lines plus open circles) are shown in both cases. The XTEM image of the He-implanted sample after 800 °C for 10 min is also reported as a background of Fig. 1(a), showing the presence of a layer of He-induced cavities at ~ 600 nm.

By comparing Figs. 1(a) and 1(b), it is clear that He implantation induces a nonuniform delta broadening, which means a nonuniform distribution of point defects through the sample, as reported in Fig. 1(c). Figure 1(c) shows the enhancement of B diffusivity at the B deltas with respect to the equilibrium diffusivity, where D_{eq} is calculated in the He-free sample. After the shorter annealing, the two delta layers at ~ 750 and ~ 950 nm beyond the deep void layer at the He R_p undergo a greatly enhanced diffusion with respect to equilibrium. On the other hand, the shallower deltas undergo smaller diffusion (though still higher than equilibrium). After the prolonged annealing at 800 °C for 100 min the situation changes. In the case of the He-implanted sample [Fig. 1(a)], the two deeper delta layers continue to strongly broaden, whereas the shallower layers, unlike before, diffuse with a B diffusivity much lower than the equilibrium one. On the other hand, in the He-free sample, all the B delta layers thermally diffuse in the same way, emphasizing that the I distribution is uniform and equal to the equilibrium one throughout all the sample. It is worth noting that in the He-implanted sample, the lowering of the middle B delta layer at ~ 560 nm could be related to the closeness of the void layer at R_p.23

The effect can be explained as described in the following. In the case of the He-free sample, Is responsible for B diffusion are thermally generated because no point-defect source or sink is present in our sample, except the surface. This means that the I concentration is uniform and, as a consequence, the B delta layers must enlarge everywhere due to thermal diffusivity. In the sample implanted with He, the situation is different. In fact, He implanted in Si is able to form He–V complexes that allow vacancies produced by the implant itself to survive under annealing and to aggregate in larger V-clusters.16 In the meantime, Is generated along the He ion tracks annihilate elsewhere, while interacting with B before disappearing. Indeed, the diffusion of the shallower B deltas after 800 °C for 10 min probably occurs at the first stages of annealing or even during the He implant itself, when a moderate amount of Is are still present. For prolonged annealing, once implant-related Is are annihilated in the region between the surface and R_p, a supersaturation of open-volume defects persists that act as a sink for Is, including those thermally produced. As a consequence, B delta layers are prevented from interacting with Is and hence to diffuse. On the other hand, as far as the strong diffusion of the deeper deltas is concerned, it is related to the excess of Is, often aggregated in extended defects that form beyond the void layer at the R_p of He.

Summarizing, a He implant produces an I-rich region beyond its R_p and a vacancy-rich region between R_p and the surface. In particular, the V-rich region can be divided into the area at R_p, where a layer of large cavities forms, and a shallower region toward the surface with much smaller V-type defects eventually organized in more complex V clusters or nanovoids. The above distribution can be properly exploited to control point defects in Si samples and, hence, B diffusion both in c-Si and in PA-Si, as it will be reported in the following sections.

He implantation in c-Si: Shallow nanovoids effects on implanted B

In this section, we study how the V distribution produced by He implantation changes under further shallow implant, and consequently how it can affect the diffusion of implanted B (12 keV, 5×10^{14} B ions/cm2). We previously demonstrated that the He induced damage reduces B diffusion.18 Moreover, the B profile after annealing becomes progressively narrower, steeper, and higher, with a shape more and more similar to a box, as the He-implanted dose increases.19,20

Figure 2 shows the S parameter as a function of positron implantation energy in samples implanted only with 80 keV He with doses of 3×10^{16} (closed circles) and 8×10^{16} (open circles) ions/cm2 and subjected to annealing at 800 °C for 10 min, as before. The S parameter has been normalized to the value in the substrate far from the surface (closed squares, $S_{\text{substrate}}=0.556$), and the mean positron implantation depth has also been included in the figure (top scale). The S parameter in a sample implanted both with He and with B (80 keV He, 3×10^{16} ions/cm2 and 12 keV B, 5×10^{14} B ions/cm2) is also shown (open down triangles).

![Mean positron implantation depth (µm)](image-url)

Fig. 2. The low-momentum parameter S as a function of positron implantation energy in samples implanted only with 80 keV He with doses of 3×10^{16} (closed circles) and 8×10^{16} (open circles) ions/cm2 and subjected to annealing at 800 °C for 10 min, as before. The S parameter has been normalized to the value in the substrate far from the surface (closed squares, $S_{\text{substrate}}=0.556$), and the mean positron implantation depth has also been included in the figure (top scale). The S parameter in a sample implanted both with He and with B (80 keV He, 3×10^{16} ions/cm2 and 12 keV B, 5×10^{14} B ions/cm2) is also shown (open down triangles).
with He and with B (80 keV He, 3×10^{16} ions/cm2, and
12 keV B, 5×10^{14} B ions/cm2) is also shown (open down
triangles). A very high peak is visible at the positron implantation
energies of 8–10 keV for all three He-implanted
samples (with and without B). Moreover, the two B-free
samples implanted with He show a kink in the S parameter
curve and a slight plateau at about 3–5 keV. Indeed, the
He-implanted sample further implanted with B shows a S
signal at 8–10 keV lower than the two B-free samples,
whereas for lower positron energies (below 4 keV), S closely
follows the curve measured from the substrate.

PAS is a very suitable tool for detecting defects containing
open volume. In particular, the increase in the S parameter
in the implanted samples is a clear signal of vacancies in the
material. The highest peaks, at the positron implantation
energies of 8–10 keV, are due to the deep voids formed at the
R_p of He implantation. However, the kink in the S parameter
curve and the hint of a plateau at about 3–5 keV
between the surface and R_p in the two samples without B
implantation (open and closed circles) indicate that there
exists a layer containing open-volume defects that differ from
the voids at R_p. However, the value of the S parameter at the
kink indicates that these defects have a smaller open volume
than the voids at R_p, but are larger than a divacancy. On the
other hand, the superimposition of S in the sample coimplanted
with B and He (open down triangles) and the sub
strate (closed squares) for energies lower than 4 keV indicates
that nanovoids are absent in this region because the
fraction of positrons trapped by the voids is greatly reduced.

Also, the height of the peak at 8–10 keV is clearly lower
from the value measured from the sample without B
implantation, as previously observed. This could mean either
that the concentration of defects trapping positrons in correspondence
of the void layer at the He R_p is reduced or that
the defects size is smaller. However, we cannot exclude that
the S signal at the deep void layer is modified by an interaction
between positrons and shallow charged B ions.

Our previous XTEM analyses and Cu gettering experiments suggested
that the region between the surface and the R_p of He ions was rich in vacancies, possibly organized in clusters or nanovoids. Moreover, these V clusters were assumed to be responsible for modifying the diffusion, leading to a boxlike shape of the implanted B due to the consequent nonuniform I distribution present in the sample, and also for improving B electrical activation.

In this section, we definitively demonstrated by PAS that He
produces small V clusters larger than divacancies toward
the surface. The distribution of these V clusters is then modified by B implantation. B implantation-related damage inhibits
the formation of these V-related defects in the B-implanted region. Indeed, in the shallower region, V clusters
that eventually formed disappear because of the B
implant-related damage; thus, the I supersaturation is high
and B is characterized by high diffusivity. On the other hand,
at deeper depths, where nanovoids are still present, B diffusivity is very low because the I concentration is the equilib-
see that the EOR defects are very different in the two cases, although the process steps (amorphization implant, SPE, and further annealing at 850 °C) were exactly the same, except for the He implantation. In the He-free sample, XTEM analyses clearly reveal the presence of a band of dislocation loops just below the original a-c interface, as shown by the presence of the coffee-bean contrast typical of these I-type defects. When the sample is implanted with He, the EOR defect morphology changes. Most of the EOR defects consist of linear defects, several hundreds of nanometers long, whereas almost no dislocation loops are present.

These results demonstrate that He-related damage can greatly affect the number of interstitial also in PA-Si. He produces a layer of voids at its \(R_p \) that act as a sink for Is present beyond the near a-c interface. As a consequence, EOR defects cannot coarse into large and stable dislocation loops, but only aggregate in elongated I clusters, such as \{311\}. Moreover, the void layer at \(R_p \), in addition to inhibiting the loop formation, acts as an efficient barrier for those Is moving toward the surface that are emitted by the EOR band.

This phenomenon could be applied to the preamorphization methodology used to produce B junctions in Si by ion implantation. Once the amorphous layer has been regrown, the I flux coming from the EOR band under further annealing can be stopped by a void layer interposed between EOR defects and the surface, preventing the implanted B to interact with Is and diffuse.

CONCLUSIONS

We studied the effect of He implantation on B diffusion either in c-Si or in PA-Si, showing the role of nanovoids extending from \(R_p \) up to the surface or of the deep void layer, respectively.

In detail, B diffusion in c-Si can be properly modified by means of He implantation. Indeed, surface small open-volume defects induced by He efficiently trap Is produced by B implantation, whereas they disappear by I annihilation. This leads to a peculiar B boxlike shape of the implanted B profile. On the other hand, when applied in PA-Si, He implantation can be used to prevent B placed near the surface to diffuse. In fact, the deep void layer, if properly formed between the original a-c interface and the surface, can stop the I flux emitted by the EOR defects, acting as a diffusion barrier for Is. Thus, we can state that He is a very attractive instrument for controlling the point-defect distribution both in c-Si and PA-Si. The described mechanism should be taken into account if He implantation is proposed as a versatile and advantageous technique to control B diffusion in practical applications in Si-based microelectronics.

ACKNOWLEDGMENTS

The authors wish to thank C. Percolla and S. Tati (MATIS CNR-INFM Catania, Italy), A. Marino (IMM-CNR Catania, Italy), and R. Storti (University of Padova, Italy) for their contributions.