
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Mohammadnia Qaraei, Mohammadreza; Babbar, Rohit
Meta-classifier free negative sampling for extreme multilabel classification

Published in:
Machine Learning

DOI:
10.1007/s10994-023-06468-w

Published: 01/02/2024

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Mohammadnia Qaraei, M., & Babbar, R. (2024). Meta-classifier free negative sampling for extreme multilabel
classification. Machine Learning, 113(2), 675-697. https://doi.org/10.1007/s10994-023-06468-w

https://doi.org/10.1007/s10994-023-06468-w
https://doi.org/10.1007/s10994-023-06468-w

Vol.:(0123456789)

Machine Learning (2024) 113:675–697
https://doi.org/10.1007/s10994-023-06468-w

1 3

Meta‑classifier free negative sampling for extreme multilabel
classification

Mohammadreza Qaraei1  · Rohit Babbar1,2

Received: 14 February 2023 / Revised: 15 June 2023 / Accepted: 17 October 2023 /
Published online: 20 November 2023
© The Author(s) 2023

Abstract
Negative sampling is a common approach for making the training of deep models in clas-
sification problems with very large output spaces, known as extreme multilabel classifica-
tion (XMC) problems, tractable. Negative sampling methods aim to find per instance nega-
tive labels with higher scores, known as hard negatives, and limit the computations of the
negative part of the loss to these labels. Two well-known methods for negative sampling
in XMC models are meta-classifier-based and Maximum Inner product Search (MIPS)-
based adaptive methods. Owing to their good prediction performance, methods which
employ a meta classifier are more common in contemporary XMC research. On the flip
side, they need to train and store the meta classifier (apart from the extreme classifier),
which can involve millions of additional parameters. In this paper, we focus on the MIPS-
based methods for negative sampling. We highlight two issues which may prevent deep
models trained by these methods to undergo stable training. First, we argue that using hard
negatives excessively from the beginning of training leads to unstable gradient. Second, we
show that when all the negative labels in a MIPS-based method are restricted to only those
determined by MIPS, training is sensitive to the length of intervals for pre-processing the
weights in the MIPS method. To mitigate the aforementioned issues, we propose to limit
the labels selected by MIPS to only a few and sample the rest of the needed labels from a
uniform distribution. We show that our proposed MIPS-based negative sampling can reach
the performance of LightXML, a transformer-based model trained by a meta classifier,
while there is no need to train and store any additional classifier. The code for our experi-
ments is available at https://​github.​com/​xmc-​aalto/​mips-​negat​ive-​sampl​ing.

Keywords  Extreme classification · Negative sampling · Hard negative mining · Maximum
inner product search · Deep neural networks

Editors: Fabio Vitale, Tania Cerquitelli, Marcello Restelli, Charalampos Tsourakakis.

 *	 Mohammadreza Qaraei
	 mohammadreza.mohammadniaqaraei@aalto.fi

1	 Aalto University, Helsinki, Finland
2	 University of Bath, Bath, UK

http://orcid.org/0000-0003-3840-4724
https://github.com/xmc-aalto/mips-negative-sampling
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-023-06468-w&domain=pdf

676	 Machine Learning (2024) 113:675–697

1 3

1  Introduction

Machine learning problems with large output spaces are common in a variety of domains
such as face recognition (Schroff et al., 2015), open-domain question answering (Lee et al.,
2019), and language models (Bengio & Senécal, 2008). For multilabel classification prob-
lems, consisting of hundreds of thousand or even millions of labels, this is referred to as
Extreme Multilabel Classification (XMC) (Bhatia et al., 2016). Beyond automatic tagging
of web-scale corpora, such as Wikipedia (Partalas et al., 2015), the framework of XMC can
be leveraged to address search, recommendation and web-advertising (Dahiya et al., 2021a;
Jain et al., 2019).

The main challenge in XMC is the enormous computation needed for training a model
due to the large label space. In early approaches for XMC, to partially mitigate this issue,
the training of binary linear classifiers was done in parallel by exploiting the fact that under
a one-vs-rest setting, learning a binary classifier for every label is independent of the rest
of the labels (Babbar & Schölkopf, 2017, 2019; Schultheis & Babbar, 2022). Furthermore,
several methods employed label trees to achieve computational complexity which is loga-
rithmic in the number of labels (Khandagale et al., 2020; Prabhu et al., 2018).

For training using deep neural networks, computing the loss and its gradient over a
mini-batch requires a pass over all the labels meaning that the computations grow linearly
with the number of labels at each iteration of the training algorithm. A common approach
to make training feasible in deep XMC models is to employ negative sampling methods,
discussed next, to approximate the loss and its gradient.

1.1 � Negative sampling in XMC

Negative sampling methods use the fact that there are only a few positive labels for each
training point, while the rest of them, also called the negative labels, is extremely large.
Therefore, if only a small fraction of negative labels along with all the positive labels are
involved in computing the loss, the computational complexity of training the model will
decrease significantly. There are three main approaches for negative sampling: static, meta-
classifier-based, and adaptive methods.

In static negative sampling, the negative labels are drawn from a fixed distribution inde-
pendent of the model (Mikolov et al., 2013). While static methods are fast, their approxi-
mation of the full loss is known to be biased (Blanc & Rendle, 2018; Rawat et al., 2021),
and hence the resulting models perform poorly unless the number of sampled labels is
large.

Meta-classifier-based methods have recently become popular for training deep XMC
models. These methods train an additional classifier, known as meta classifier, in addi-
tion to the extreme classifier, which is responsible for suggesting confusing negative labels
to the extreme classifier (Dahiya et al., 2021b; Jiang et al., 2021; Kharbanda et al., 2021,
2022; You et al., 2019; Zhang et al., 2021).

While meta-classifier-based methods can lead to high accuracy, this is achieved at the
cost of training and storing a meta classifier which can be as large as the extreme classifier.
Also, no matter how accurate the meta classifier is, the suggested negative labels may not
be the most confusing ones for the extreme classifier since the meta classifier is usually
fully (You et al., 2019; Zhang et al., 2021) or partially (Jiang et al., 2021; Kharbanda et al.,
2021) independent of the extreme classifier.

677Machine Learning (2024) 113:675–697	

1 3

Adaptive negative sampling methods leverage the fact that sampling from a distribution
proportional to the scores of the labels leads to an unbiased estimate of the full loss (Blanc
& Rendle, 2018; Rawat et al., 2019). In models where the scores of the labels are computed
by an inner product operation such as neural networks, a close approach to this is to use a
Maximum Inner Product Search (MIPS) for finding the labels with the highest scores and
restricting the negative part of the loss to these labels.

However, an exact MIPS needs an exhaustive search over all the labels, which is expen-
sive. An alternative way is to employ approximate MIPS methods, which are initially
designed to accelerate inference in machine learning models. They involve building an
index over the weights of the classifier as a pre-processing step, and during inference, the
index is utilized to approximately identify the labels with high scores (Auvolat et al., 2015;
Johnson et al., 2019; Shrivastava & Li 2014).

For training, on the other hand, applying approximate MIPS for negative sampling dur-
ing training classifiers is not straightforward due to its high computational complexity. This
is mainly because, unlike inference where a fixed index is used, the weights of the classifier
are changing constantly during training so the index built by the MIPS module needs to be
updated frequently. To mitigate this issue, a common practice is to perform pre-processing
only a few times during training. Furthermore, two studies aimed to speed up approximate
MIPS methods during query time when employed for negative sampling (Daghaghi et al.,
2021; Yen et al., 2018). In Daghaghi et al. (2021), this is achieved by utilizing local sensi-
tivity hashing (LSH) as a sampling mechanism instead of the top-k search, and Yen et al.
(2018) proposed to replace the high dimensional MIPS with several lower dimensional
ones.

In contrast to meta-classifier-based methods, adaptive negative sampling methods do
not need to train and store any extra model. However, to the best of our knowledge, the
existing adaptive methods are inferior to meta-classifier-based methods in terms of predic-
tion accuracy and their performance in deep neural networks, like transformer-based mod-
els, has remained under-explored.

1.2 � Meta classifier free negative sampling

In this paper, we highlight difficulties in training deep XMC models using MIPS-based
adaptive negative sampling methods when the negative part of the loss is restricted to only
the labels suggested by the MIPS module. We hypothesise two reasons for this.

First, when negative labels are restricted to the hardest ones from the beginning of train-
ing, the gradient with respect to the embedding vector is dominated by the term related to
the negative labels, which prevents the embeddings from becoming similar enough to the
weights corresponding to the positive labels. To mitigate this issue, one can incorporate a
warm-up phase into training by using only random negative labels for a few iterations and
switching to the labels found by the MIPS module for the rest of the training (Yen et al.,
2018).

Second, we show that MIPS-based adaptive negative sampling methods are highly sen-
sitive to the length of the intervals between the successive (weights) pre-processing steps.
If these intervals are large, the weights related to a few negative labels frequently suggested
by the MIPS module will be penalized over and over. This turns those negative labels from
hard negatives to easy negatives, while these continue to be among the labels suggested by
the MIPS module until the next pre-processing step.

678	 Machine Learning (2024) 113:675–697

1 3

To avoid the aforementioned issues in training deep models using MIPS-based
methods, in this paper, we propose to combine top candidate labels found by MIPS
with several labels drawn from a static distribution. Specifically, to build the set of
negative labels for an instance, we pick approximately #positives labels through the
MIPS module and select the rest ( ≈ 0.01 × L ) from a uniform distribution, where
#positives indicates the average number of positive labels per sample and L is the num-
ber of labels in our dataset. Such a combination not only stabilizes the gradient in the
initial steps of the training but also mitigates the problem of having only easy nega-
tives even when the intervals for pre-processing the weights in the MIPS module are
less frequent. In the experimental section, we compare the proposed method with a
MIPS-based negative sampling method in which all the negative labels used in approx-
imating the loss are those predicted by the MIPS module. The results on three extreme
text classification datasets show that the proposed method achieves significantly higher
precision, particularly in the presence of large pre-processing intervals.

Finally, we apply the proposed method to a transformer-based model, demonstrat-
ing that the architecture of this model, which utilizes a clustering-based MIPS module,
is very similar to LightXML (Jiang et al., 2021), a negative sampling approach based
on meta classifiers. Specifically, in our method, the MIPS module can be seen as the
counterpart to LightXML’s meta classifier. However, since the MIPS module works
directly on the weights of the extreme classifier, it does not require extra training and
does not add additional parameters to the model.

The results on two extreme classification datasets show that the proposed negative
sampling method is similar to LightXML in terms of prediction performance, while
being up to 33% smaller in terms of model size. This suggests that if the negative
labels are engineered well in adaptive negative sampling methods, these methods can
reach meta-classifier-based ones in terms of prediction performance, while they have
smaller model sizes and can lead to lower training time as there is no need to train and
store any meta classifier.

1.3 � Contributions

To summarize, our key contributions are as follows:

•	 We highlight difficulties in training deep models using MIPS-based negative sam-
pling methods. We show that when the negative labels are restricted to only hard
negatives from the beginning of training the deep model fails to train properly.
Also, when the intervals for pre-processing the weights are large, the labels used
for approximating the loss may not consist informative negative labels.

•	 We propose to pick only a few labels from the MIPS and select the rest of the labels
from a uniform distribution, which mitigates the aforementioned issues in training
deep models using MIPS-based negative sampling.

•	 We compare the proposed method with LightXML, a meta-classifier-based negative
sampling approach, on a very similar architecture. The results show that our pro-
posed MIPS-based negative sampling can achieve accuracy similar to LightXML,
while there is no need to train and store a relatively large meta classifier.

679Machine Learning (2024) 113:675–697	

1 3

2 � Negative sampling

Assume a training set {xi, yi}Ni=1 is given, where xi ∈ ℝ
D are the features of the i-th sample

and yi ∈ {1, 0}L are the labels. We denote the embedded features for sample x by Ex ∈ ℝ
d .

In extreme multilabel classification, the goal is to learn a score function f ∶ ℝ
d
→ ℝ

L over
embeddings Exi

 such that for a pair (x, y) , fj(Ex) has a high value when yj = 1 . The score
function f(.) is usually a linear function, which can be formulated as follows:

where W ∈ ℝ
d×L are the parameters of the score function that are learned during training

and Ex is produced by an encoder, which can be for instance a deep neural network.
In XMC, most of the loss functions are the sum of binary losses such as BCE or hinge

loss, and are computed as follows:

where l+, l− ∶ ℝ → ℝ+ are the positive and negative parts of the binary loss.
In extreme classification problems, computing the negative part of the loss in Eq. (2)

becomes intractable as the set N = {j|yj = 0} is extremely large. To overcome this prob-
lem, negative sampling methods compute the negative part of the loss over a subset of all
possible negative labels, N̂ ⊂ N  , where |N̂| ≪ |N| ≈ L . This leads to the following for-
mulation for the loss function:

Negative sampling methods are different in terms of the choice of N̂  . In order to minimize
|l − l̂| as much as possible, several works suggested choosing N̂ in a way that it contains
hard negatives meaning that fj(Ex) is higher than a specific threshold for all j ∈ N̂  . One
way to efficiently find these hard negatives during training is to use an approximate Maxi-
mum Inner Product Search (MIPS). However, this may lead to difficulties in training deep
models, which are discussed in the next section.

3 � Difficulties in training by MIPS‑based negative sampling methods

In this section we hypothesise two reasons which can lead to poor results in ordinary
MIPS-based negative sampling methods. All the experiments conducted in this section are
on Eurlex, a document classification dataset with ≈ 4000 labels (Bhatia et al., 2016), using
either a linear classifier or a neural network with one hidden layer.

3.1 � Exact hard negative mining from scratch

Figure 1 illustrates a comparison of a linear model and a neural network when the negatives
are restricted to be the top-100 labels returned by an exact MIPS method. The results show

(1)f (Ex) = WTEx

(2)l(f (Ex), y) =
∑

j∶yj=1

l+(fj(Ex)) +
∑

j∶yj=0

l−(fj(Ex))

(3)l̂(f (Ex), y) =
∑

j∶yj=1

l+(fj(Ex)) +
∑

j∈N̂

l−(fj(Ex))

680	 Machine Learning (2024) 113:675–697

1 3

that, with these as the negatives comprising the set N̂  , the linear model (Linear-top) can be
trained properly, while the output of the neural network (NN-top) is not better than a random
guess.

We hypothesise that the reason for stable training in linear models is the independence
of the parameters learned for each label. Specifically, the only learnable parameters in the
linear model are the weights of the classifier, and no matter what other negative labels are
included in computing the loss, the gradient will be the same for the weights connected to
a particular label. However, when the embeddings are learned during training, such as in
neural networks, the gradient with respect to an embedding will be affected by the nega-
tive labels used in computing the loss. In this case, the negative sampling method has a big
impact on learning the embeddings.

More specifically, without loss of generality, assume the loss in Eq. 2 is the BCE loss:

Then, the gradient of the loss with respect to Ex is as follows:

where oj ∶= �(fj(Ex) ) and wj is the parameter vector of the extreme classifier correspond-
ing to label j. Then a single step of the stochastic gradient descent algorithm for updating
the embedding will be as follows:

where �+ and �− are the learning rates and typically �+ = �− . This equation suggests that
the optimal embedding for a sample should be similar to the weights of the extreme classi-
fier for the positive labels and be dissimilar to those for the negative labels. However, if the
summation over the negative weights is restricted to only a few hardest negatives (those
with the highest oj ), then this term will have a high magnitude and the total gradient will be

l+(fi(Ex)) = − log(�(fi(Ex))),

l−(fi(Ex)) = − log(1 − �(fi(Ex)))

(4)∇Ex
l =

∑

j∶yj=1

(oj − 1)wj +
∑

j∈N

ojwj

(5)Ex ← Ex + �+
∑

j∶yj=1

(1 − oj)wj − �−
∑

j∈N

ojwj

Fig. 1   A comparison of preci-
sion at 5 ( P@5 ) in a linear
classifier and a neural network
trained using hard negatives on
the Eurlex dataset. The figure
shows the linear classifier can be
trained properly using the hardest
negatives, while the output of the
neural network (NN-top) is just
a random guess. Using higher
learning rates for the positive
part of the loss (NN-top-re) or
picking a few hard negatives and
combining them with randomly
sampled labels (NN-top-uniform)
can fix the issue

681Machine Learning (2024) 113:675–697	

1 3

only determined by this term. This will prevent the embedding to become close enough to
the weights corresponding to the positive labels while it may also not become dissimilar to
the other negative weights which are not included in computing the loss. To mitigate this
problem, one can force the optimizer to take a larger step towards the positive weights by
choosing 𝜂+ > 𝜂− . Figure 1 shows that in case �

+

�−
= 50 , the model will be able to train

properly when all the negative labels are the hardest ones. However, the optimal ratio of �+
and �− will add a hyperparameter to the model.

Another possible way to stabilize training when hard negatives are used, which has been
employed by Xiong et al. (2020) and Yenet al. (2018), is to do negative sampling from a
static distribution for a few iterations and then switch to using hard negatives for the rest of
training. The initial steps of negative sampling from a static distribution allow the embed-
dings to become similar to the positive weights of the extreme classifier.

In this paper, to have the benefits of using hard negatives while avoiding an unstable
gradient, we propose to combine only a few hard negatives with several negative labels
sampled from a static distribution. Using randomly sampled negative labels mitigates the
problem of taking large steps towards the direction that is suggested by taking the hard
negatives.

3.2 � Impact of the length of pre‑processing intervals

Most of the adaptive negative sampling methods using MIPS perform pre-processing of the
weights within specific intervals during training since the ideal case, which is pre-process-
ing the weights at every iteration, is highly time-consuming. Assuming that we are using
an exact MIPS method, this is equivalent to storing the weights of the classifier at specific
checkpoints and using them for querying until the next checkpoint.

In this subsection, we investigate the effect of having relatively large intervals for pre-
processing the weights on training a neural network. Figure 2a shows precision at 5 (P@5)
for a neural network trained by 100 negative labels for approximating the loss when the

Fig. 2   a A comparison of P@5 for different numbers of negative labels selected by MIPS (#MIPS) as well
as different numbers of checkpoints for pre-processing the weights per epoch (PPE). For the case that all
the selected negative labels are determined by MIPS and pre-processing intervals are large (#MIPS=100,
PPE=1), P@5 has an unstable behaviour, while restricting the negative labels from MIPS to 15 and sam-
pling the rest from a uniform distribution (#MIPS=15, PPE=1) mitigate the problem. b Distribution of the
hardest negative labels after switching to hard negative mining from uniform negative sampling

682	 Machine Learning (2024) 113:675–697

1 3

pre-processing is done only once versus doing it 8 times per epoch. For mitigating issues
related to using hard negatives from scratch mentioned in the previous subsection, we train
the models only by uniform negative sampling for one initial epoch. The figure shows that
for the case that there is only one pre-processing checkpoint per epoch, P@5 has an unsta-
ble behaviour especially in the few first epochs after switching to hard negative mining.
However, P@5 looks more stable by restricting the negative labels suggested by MIPS to
15 and sampling the rest from a uniform distribution.

To answer the question of why the performance declines after switching to hard nega-
tive mining when the pre-processing intervals are large and all the negative label are
selected through MIPS, we investigate the negative labels retrieved by the MIPS. Figure 2b
shows that, after training the model with uniform negative sampling for one epoch, for a
mini-batch of size 50 randomly drawn from the training set, the negative labels retrieved
by the MIPS have an imbalanced distribution. Since the weights in the MIPS module are
fixed until the next checkpoint for pre-processing, if the embeddings do not change much
during training, most of the labels suggested by the MIPS module will be the same for all
the training samples, and the weights corresponding to these labels will be penalized fre-
quently within that epoch of training.

Figure 3 illustrates the true rank of the negative labels used for approximating the loss
when only one pre-processing is done per epoch for the case that all the labels are selected
by the MIPS method (MIPS-a) as well as the case that the labels from the MIPS method
are restricted to 15 and the rest are sampled uniformly (MIPS-s). The histograms were
computed three times after switching to using the MIPS method: right after the checkpoint
for pre-processing the weights, in the middle, and also right before the next checkpoint for
pre-processing. Figure 3c shows that for the case that all the negative labels are selected
by the MIPS method, in the last iteration before the next checkpoint, contrary to what is
expected, the labels retrieved by the MIPS method are only easy negatives and therefore do
not contribute much in training the model. However, for the MIPS-s method, the negative
labels approach a uniform distribution.

4 � Proposed method

Our proposed method for performing hard negative mining while avoiding unstable train-
ing in deep models is to find and select a few labels with high scores and sample the rest
of the needed labels from a static distribution. To find the labels with high scores in a
reasonable time during training, we use a clustering-based approximate MIPS (Auvolat
et al., 2015; Johnson et al., 2019). More precisely, as the pre-processing step, we cluster
the weights of the extreme classifier using spherical K-means, which partitions the weights
according to their directions, at specific checkpoints. Then, for each training sample, to
approximate the labels with high scores at the query time, we search a few clusters whose
centroids maximize the inner product with the embedded features obtained by the encoder
for that sample. The details of the pre-processing and querying steps of the approximate
MIPS used in our method are described in the following.

Pre-processing The pre-processing is done by clustering the weights of the extreme
classifier using spherical K-means (Auvolat et al., 2015; Zhong, 2005). More precisely, we
randomly select K unit-length vectors, C = {c1, ..., cK} , and repeat the following two steps
until meeting the convergence criteria (Auvolat et al., 2015):

683Machine Learning (2024) 113:675–697	

1 3

1.	 For each weight vector wj , we compute the index of the cluster to which this weight
vector belongs by aj = argmax i∈{1,...,K}w

T
j
ci.

2.	 For each cluster i, we estimate its centroid by ci =
∑

j�aj=i
wj

‖
∑

j�aj=i
wj‖

Since the pre-processing step is time-consuming, we perform it only at specific checkpoints
during training.

Querying Let the weights of the extreme classifier at checkpoint h be Wh
d×L

 , and
Ch = {ch

1
, ..., ch

K
} be the set of centroids obtained by clustering these weights. Also, let Ij

be the label ids of the weights inside the j-th cluster. As the first step of querying, a search
over the centroids is done to find � centroids which maximize the inner product with the
encoded sample Ex:

(6)C∗ = �-argmax
c∈Ch

ET
x
c

Fig. 3   Frequency of the true ranks (based on the model’s predictions) of the negative labels used for
approximating the loss for the case that all the 100 negative labels are selected by the MIPS method (MIPS-
a) as well as restricting the labels from the MIPS method to 15 and sampling the rest from a uniform distri-
bution. Histograms were computed in the first iteration after pre-processing the weights (a), in the middle
iteration (b), and in the last iteration before the next checkpoint for pre-processing the weights (c). The his-
tograms show that for the case that the distance from the pre-processing checkpoint is large, there are only
labels with high ranks (easy negatives) among the labels of MIPS-a, while the negative labels of MIPS-s
show a uniform distribution

684	 Machine Learning (2024) 113:675–697

1 3

where � is a hyperparameter which indicates how many clusters to be searched. Let
I∗ =

⋃
i∈C∗ Ii , the next step is to search the weights suggested by I∗ as follows:

where wh
i
 is the i-th column of Wh and k is the number of labels retrieved by the approxi-

mate MIPS. The last step for using the labels suggested by MIPS as negative labels is to
exclude positive labels from LM:

Finally, we combine the hard negatives suggested by the MIPS with several labels drawn
from a static distribution. The static distribution should be model-independent and fixed
during training to be possible to easily sample from it, for which we use a uniform distribu-
tion in our experiments. Assume q is a uniform distribution defined over the set of negative
labels, and the set LS denotes the labels drawn from q. The negative part of the loss in Eq. 2
is computed only over the union of LM and LS:

The proposed negative sampling method is summarized in Algorithm 1 as well as

Fig. 4.
(Dis)similarities with meta-classifier-based methods Looking at Fig. 4, one may notice

similarities between the proposed method and meta-classifier-based methods such as
LightXML (Jiang et al., 2021) and AttentionXML (You et al., 2019). Both approaches use
clustering to find hard negatives for the extreme classifier. More precisely, first, the clusters

(7)LM = k-argmax
i∈I∗

ET
x
wh

i

(8)LM ← LM ⧵ {j|yj = 1}

(9)l̂(f (Ex), y) =
∑

j∶yj=1

l+(fj(Ex)) +
∑

j∈LM∪LS

l−(fj(Ex))

Encoder

Returning label indices

Selecting = 3 centroids
(clusters) with maximum inner
product with

Selecting k = 4 weights
(labels) with maximum
inner product with

A Static distribution
over labels

Negative
labels

Loss functionExtreme
classifier

Updating the extreme classifier and the encoder

Selected

Clustering-based MIPS

Fig. 4   A forward pass and the loss computation in our proposed negative sampling method which restricts
the negative part of the loss to hard negatives suggested by a clustering-based MIPS as well as negative
labels sampled from a static distribution

685Machine Learning (2024) 113:675–697	

1 3

are scored based on their similarities with the encoded samples. Then, the union of the
labels in the clusters with the highest scores are used as negative labels for the extreme
classifier. The module which is responsible for finding hard negatives is called a meta clas-
sifier in meta-classifier-based methods, while it is denoted as clustering-based MIPS in our
method in Fig. 4.

Despite similarities between the forward pass of the two approaches, there are three
main differences between our method and meta-classifier-based methods. (I) In meta-
classifier-based methods, the representations of the labels1 for clustering are independ-
ent of the extreme classifier, which means that no matter how accurate the meta clas-
sifier is, the labels suggested by the meta classifier may not be the hardest ones for the
extreme classifier. However, in our method, the representations of the labels are com-
pletely aligned with the extreme classifier as they are the columns of the weight matrix
Wh . (II) As pointed out in Kharbanda et al. (2021), since the meta and extreme classifiers

Algorithm 1   Proposed negative sampling method

1  In most of meta-classifier-based XMC models, each label is simply represented by aggregating the TF-
IDF representations of the relevant instances for that label.

686	 Machine Learning (2024) 113:675–697

1 3

operate on different resolutions, it may be difficult to learn data representations which
are simultaneously suitable for both tasks in the meta-classifier-based methods. On the
other hand, our scheme only requires intermittent re-clustering of the weight vectors.
(III) Also, in meta-classifier-based methods, the meta classifier needs to be trained and
stored in addition to the extreme classifier, which can add millions of more parameters
to the overall model. While in our method, no extra space, other than the extreme clas-
sifier, is required.

Complexity and hyperparameters: There are three hyperparameters involved in the
MIPS part of our method: K, � , k, which are the total number of clusters, the number of
clusters to be searched, and the number of labels retrieved by the MIPS, respectively.
Among these hyperparameters, K and � have a significant role in the number of computa-
tions. Assuming the clusters are balanced, a large K will lead to centroids which are better
representatives of the parameters, but it also increases the computations for comparing the
embeddings with the centroids. Using a small K decreases those computations but will lead
to having large cluster sizes which will again lead to high computations when the clusters
need to be searched. As stated in Zhang et al. (2021), K =

√
L is a good choice, which is

also used in all the experiments in our work. In this case, with the assumption that the clus-
ters are balanced, the computational complexity of querying the MIPS will be O(�

√
Ld) .

If � =
√
L , which is equal to the number of clusters, then the computational complexity of

the MIPS will be the same as an exhaustive search, while the lowest computational com-
plexity is for the case � = 1 . The rest of the computations in the forward pass will be only
drawing labels from the predefined distribution and computing the loss over them, which is
the same as static negative sampling methods.

Since the preprocessing step of the MIPS is done only within large intervals, the
computational complexity of this step is negligible compared to the whole training time.

In the backward pass, the number of parameters needed to be updated is exactly pro-
portional to the number of negative labels used in computing the loss. This is contrary
to meta-classifier-based methods, like LightXML, in which, in addition to the extreme
classifier, all the parameters of a large meta classifier should be updated at each iteration
of the training algorithm.

5 � Experiments

In this section, we evaluate the proposed negative sampling method of Sect. 4, which
combines a few negative labels suggested by a clustering-based MIPS with several labels
sampled from a uniform distribution. The purpose of the experiments is twofold: firstly,
to compare the proposed method with the case that all the negative labels are selected by
MIPS, and secondly, to compare it with meta-classifier-based negative sampling methods,
for which we use the LightXML framework of Jiang et al. (2021), and see if the proposed
adaptive negative sampling can reach the performance of meta-classifier-based methods.

The results show that the proposed method achieves significantly higher precision
compared to the case that all the negative labels are selected by MIPS or the case that
the labels are sampled only from a uniform distribution. Moreover, the proposed method
consistently achieves high precision even in the presence of large intervals for pre-pro-
cessing the weights, while in this setup, it is difficult to train the model using only the
negative labels suggested by the MIPS module. Compared to LightXML, while both the

687Machine Learning (2024) 113:675–697	

1 3

proposed method and LightXML have very similar architectures, the proposed method
can achieve precision near to that of LightXML with significantly smaller model size
and less training time.

5.1 � Setup

Architectures and hyperparameters: We use two architectures as the encoders for the pro-
posed method (and the corresponding baselines): a shallow neural network with a single
hidden layer and a BERT model.

In the case of a shallow neural network as the encoder, a dropout with p = 0.2 is used
over the input features, the number of neurons in the hidden layer is set to 128, ReLU is
the activation function of the neurons in the hidden layer, the optimizer is Adam and the
learning rate is chosen according to a validation set split from the training data. Also, the
number of negative labels for approximating the loss is around 1% of the total number of
labels.2 In the MIPS-based negative sampling methods, we perform pre-processing of the
weights only once per epoch.

For the BERT model as the encoder, all the hyperparameters, including the number of
negative labels for approximating the loss in the extreme classifier and the learning rate,
are the same as those used by Jiang et al. (2021). In MIPS-based negative sampling meth-
ods for training the BERT model, we preform pre-processing of the weights after each
1000 iterations.

For both the shallow neural network and the BERT model, the number of negative labels
retrieved by the MIPS procedure in the MIPS-based methods is 5, which is approximately
equal to the average number of positive labels per data point in the datasets we used in our
experiments (Table 1). Also, for both models, the loss function is the BCE loss that is used.

We use the GPU-implemented MIPS of Johnson et al. (2019) for performing maximum
inner product search in the MIPS-based negative sampling methods. Two hyperparameters
related to the MIPS are K, which is the number of clusters, and � , which is the number of
clusters to be searched during querying. In our experiments, K is always set to the square
root of the number of labels, as discussed in Sect. 4, and � is set to 64.

For evaluating the BERT models trained by MIPS-based methods, to avoid perform-
ing an exhaustive search over all the labels, we approximate the labels with the highest
scores using an approximate MIPS. Contrary to the training phase, for evaluation, the pre-
processing of weights needs to be done only once as the weights are fixed. Similar to the

Table 1   The statistics of three
datasets used in our experiments
(Bhatia et al., 2016)

APpL indicates the average points per label and ALpP is the average
labels per point

Dataset #Training #Test #Labels APpL ALpP

Amazon-670K 490,449 153,025 670,091 3.99 5.45
WikiLSHTC-325K 1,778,351 587,084 325,056 17.46 3.19
Wikipedia-500K 1,813,391 783,743 501,070 24.75 4.77

2  The number of negative labels in negative sampling methods is determined based on time and space con-
straints. In our experiments with shallow neural networks, we set it to 1% of the total number of labels,
which is close to those employed in LightXML.

688	 Machine Learning (2024) 113:675–697

1 3

training phase, for evaluation using MIPS, K is set to the square root of the number of
labels and � is chosen in a way that the evaluation time be the same as that of LightXML.

Baselines: We compare the proposed method with some other strategies for negative
sampling. These methods are as follows:

•	 Uniform: This method samples negative labels uniformly from the set of all possible
negative labels.

•	 MIPS-s: This method refers to the proposed method, in which only a few negative
labels are selected by the clustering-based MIPS and the rest are sampled uniformly.

•	 MIPS-a: In this method, after training by only uniform negative sampling for a couple
of iterations, all the needed negative labels selected by MIPS.

•	 LightXML: This method refers to the meta-classifier-based negative sampling pro-
posed by Jiang et al. (2021).

Datasets: We use three textual multilabel datasets from the extreme classification reposi-
tory (Bhatia et al., 2016). The statistics of these datasets are given in Table 1. For the shal-
low neural network, we use the TF-IDF representations of the data, while for the BERT
model, the raw texts are used. Since the raw text is not available for WikiLSHTC-325K, the
experiments using BERT were only done on the two other datasets.

 Evaluation metrics: In the multilabel setting of our experiments, the goal is to predict
the correct labels among the top-k labels. Therefore, we evaluate the models using preci-
sion at k (P@k) and its unbiased counterpart, propensity scored precision at k (PSP@k).
Formally, these two metrics are as follows:

where topk(ŷ) is the set of top-k labels predicted by the model, and pl is the propensity
score of label l, which indicates the probability that label l is present (Jain et al., 2016). The
propensity scores for each dataset are set according to Jain et al. (2016).

5.2 � Results on the shallow neural network as the encoder

In this subsection, we compare the proposed method with the baselines using the shallow
neural network. The results are given in Table 2. As the results show, all the metrics for
MIPS-s are significantly higher than those of MIPS-a and Uniform, which shows that
using only a few labels suggested by MIPS combined with randomly sampled labels can
boost the performance significantly compared to using only labels from MIPS or only uni-
formly sampled labels.

Also, we should note that the results for the MIPS-a method without the initial training
by uniform negative sampling are not higher than a random guess even with very high val-
ues for � and very short intervals for preprocessing the weights, which makes it close to the
setting discussed in Sect. 3.1.

(10)P@k(y, ŷ) ∶=
1

k

∑

l∈topk(ŷ)

yl

(11)PSP@k(y, ŷ) ∶=
1

k

∑

l∈topk(ŷ)

yl

pl

689Machine Learning (2024) 113:675–697	

1 3

5.3 � Results on BERT as the encoder

Table 3 compares different negative sampling methods for training BERT on Amazon-
670K and Wikipedia-500K. As the results show, the MIPS-s method outperforms Uni-
form on both datasets. Compared to MIPS-a, the MIPS-s method achieves superior
performance across the majority of the metrics on Wikipedia-500K. While on Amazon-
670K both methods exhibit similar efficacy, in the next subsection, we show sensitivity of
the MISP-a method to the pre-processing intervals of the MIPS module. Specifically, we
show MIPS-a fails to train properly in the presence of larg intervals for pre-processing the
weights, highlighting the limitations of this approach.

Compared to LightXML, precision and ps-precision achieved by MIPS-s are within
1% of that obtained by LightXML. Unfortunately, given the large scale of out datasets, it
is difficult to verify the statistical significance of the results. However, we ran MIPS-s and
LightXML on Amazon-670K using four different sets of initial weights, the detail of which

Table 2   A comparison of the proposed method (MIPS-s) with uniform negative sampling (Uniform) and
the case that all the needed negative labels are defined by MIPS (MIPS-a) for training a neural network
with one hidden layer on three extreme classification datasets

The results show that in all the cases, the proposed method surpasses the aforementioned baselines

Dataset Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Amazon-670K Uniform 35.0 31.2 28.3 20.2 22.8 25.1
MIPS-a 37.1 33.2 30.3 23.3 25.9 28.1
MIPS-s 40.2 35.8 32.6 26.2 29.0 31.3

WikiLSHTC-325K Uniform 52.5 33.9 25.5 20.6 24.4 27.8
MIPS-a 54.5 34.6 25.5 23.2 25.9 28.4
MIPS-s 59.4 37.5 27.3 26.6 30.0 32.7

Wikipedia-500K Uniform 50.0 33.6 26.2 16.8 19.3 21.8
MIPS-a 53.8 35.6 27.7 19.6 21.8 24.3
MIPS-s 62.3 41.2 31.1 24.7 27.5 29.5

Table 3   A comparison of the proposed method (MIPS-s) with uniform negative sampling (Uniform), the
case that all the needed negative labels are defined by the MIPS (MIPS-a), and LightXML for training a
BERT model on two extreme text classification datasets

The results show that, similar to the results using the shallow neural network, the proposed method sur-
passes Uniform and MIPS-a. Also, the proposed method achieves precision near to that of LightXML

Dataset Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Amazon-670K Uniform 39.2 35.4 32.5 19.4 23.5 27.1
MIPS-a 45.9 41.0 37.0 25.0 29.6 33.4
MIPS-s 46.1 41.0 37.2 26.3 30.5 34.1
LightXML 46.8 41.7 37.6 27.0 31.2 34.6

Wikipedia-500K Uniform 48.8 35.5 28.7 16.8 20.5 23.9
MIPS-a 72.5 54.4 42.2 27.2 33.7 37.8
MIPS-s 75.5 55.7 42.5 31.9 38.2 41.2
LightXML 74.9 56.0 43.1 28.7 35.6 39.4

690	 Machine Learning (2024) 113:675–697

1 3

are given in Table 5 in Appendix A. The results show the standard deviation of all the met-
rics for both MIPS-s and LightXML are less than 0.07% and 0.08%, respectively, which
indicates that the performance of these models shows minimal variance on the Amazon-
670K dataset, suggesting a consistent performance.

We should note that similar to the experiments on the shallow neural network, when
the negative labels are restricted to the hardest ones from the beginning of training in the
BERT model, the output is not better than a random guess.

The main difference between the architecture of LightXML and the proposed method
is that there is no need to train and store any meta classifier in the latter one. Table 4 com-
pares the model size of MIPS-s with LightXML as well as the training time. The results
show by excluding the meta classifier in LightXML, we can save up to 34% space on the
hard disk and train the model a few hours faster.

5.4 � Hyperparameters analysis

In this subsection, we investigate the effects of three hyperparameters, namely the number
of negative labels taken from the MIPS module, the number of clusters to be searched ( � ),
and pre-processing intervals of the MIPS module. All the experiments are done using Bert

Table 4   A comparison of the
model size and training time
of MIPS-s with those of
LightXML on Amazon-670K
and Wikipedia-500K

The results show the MIPS-smethod can save almost 33% space for
storing the model and leads to lower training time

Dataset Method Model size
(GB)

Training time (h)

Amazon-670K LightXML 1.6 34.2
MIPS-s 1.2 29.5

Wikipedia-500K LightXML 1.5 45.0
MIPS-s 1.0 43.7

Fig. 5   The effect of the number of negative labels retrieved by the MIPS in MIPS-s on P@5. In both data-
sets, P@5 peaks when the number of negative labels retrieved by the MIPS is almost 10. Furthermore, the
figures show that the MIPS-s method at it’s peak can achieve P@5 near to that of LightXML. Also, there
is a large gap between MIPS-s and Uniform even when only 1 negative label is taken from the MIPS

691Machine Learning (2024) 113:675–697	

1 3

as the encoder. Other hyperparameters than the ones which are being analysed are the same
as Sect. 5.3.

Number of negatives taken from the MIPS: Fig. 5 compares P@5 in the MIPS-s
method when the number of negative labels retrieved by the MIPS is different. The
results show that P@5 reaches its peak when the number of negative labels obtained
by the MIPS module is around 10. Also, it can be seen in the figure that the maximum
P@5 achieved by MIPS-s is very close to LightXML. Moreover, even using one label
found by the MIPS can boost the performance significantly when the results are com-
pared with Uniform.

We should note that since the number of labels taken from the MIPS module has
minimal impact on the training time in MIPS-s, the training times of all the experi-
ments with MIPS-s in Fig. 5 are approximately the same as that mentioned for MIPS-
s in Table 4.

The number of clusters to be searched ( �): Fig. 6 demonstrates P@5 and training
time with different values for � during training MIPS-s. Smaller values for � indicate
a smaller search space and, therefore, faster training, while larger values approach an
exact search, which is computationally costly. However the figure shows that even with
small values for � , MIPS-s can achieve high P@5, with the difference of only around
1% compared to LightXML, while increasing � only marginally improves P@5.

Fig. 6   The effect of � (the number of clusters to be searched in the MIPS method during training) on P@5
(top row) and training time (bottom row) in the MIPS-s method. Even small values for � can achieve high
P@5. Increasing � will increase the training time, while there is no significant gain in P@5

692	 Machine Learning (2024) 113:675–697

1 3

Pre-processing intervals: Fig. 7 shows the effect of the length of pre-processing
intervals of the weights in the MIPS module in MIPS-based methods on P@5 and train-
ing time. Consistent with the analysis of Sect. 3.2, while MIPS-s achieves high P@5
even with large pre-processing intervals (more than 30K on Amazon-670K and 50K on
Wikipedia-500K), the MIPS-a method can be trained properly only in the high training
time region with short intervals for pre-processing.

In addition to the above hyperparameters, we also investigated the effect of using
the conventional K-means equipped with Euclidean distance instead of spherical
K-means on our proposed method. The results presented in Table 6 in Appendix A show
that both clustering methods achieve similar performance highlighting the robustness of
our approach to the clustering method.

Fig. 7   The effect of pre-processing intervals of the MIPS module in MIPS-based methods on P@5 (top
row) and training time (bottom row). Since both MIPS-based methods have approximately similar training
times, only the training time of MIPS-s is reported. Both MIPS-s and MIPS-a methods achieve high
P@5 when the intervals for pre-processing are short and therefore the training time is high. However, the
MIPS-a method fails to train properly when the pre-processing intervals are large, while MIPS-s consist-
ently achieves high P@5

693Machine Learning (2024) 113:675–697	

1 3

6 � Other related work

In this section, we review some related work on adaptive and meta-classifier-based nega-
tive sampling methods as well as the work on the drawbacks of hard negative mining.

MIPS-based adaptive negative sampling—In MIPS-based extreme classification, to find
hard negative labels, maximum inner product search methods are utilized to approximate
the labels which maximize the inner product between an embedding and the labels’ weights
(Chen et al., 2020; Daghaghi et al., 2021; Vijayanarasimhan et al., 2014; Yen et al., 2018).
Among these works, Daghaghi et al. (2021) proposed to use Local Sensitive Hashing (LSH)
for performing the maximum inner product search. Yen et al. (2018), to reduce the compu-
tational complexity, replaced the MIPS over the high dimensional embeddings with several
lower dimensional ones by decoupling the dimensions using dual decomposition. Chen et al.
(2020) proposed to approximate the neurons with high responses in every layer of neural net-
works using an approximate MIPS and backpropagate the error only through those neurons.

Meta-classifier-based negative sampling—In meta-classifier-based methods, a meta clas-
sifier is trained in addition to the extreme classifier to suggest the confusing labels to the
extreme classifier. In the recent state-of-the-art meta-classifier-based methods, first, the labels
are categorized into a bunch of clusters based on their similarities. Then, a meta classifier is
trained in which for any sample, any cluster containing at least one positive label is considered
positive and the rest negative labels. Finally, the meta classifier is queried for each sample and
the union of the labels in a few clusters with the highest scores are used as the negative labels
for approximating the loss of the extreme classifier.

Among these works, You et al. (2019) and Zhang et al. (2021) use hierarchical architec-
tures where one model is trained at each level which acts as the meta classifier for the model
at the next level. In these methods, the models are trained sequentially, which means the hard
negatives retrieved by their meta-classifier are fixed during training. To make the process of
the learning the embeddings in the meta classifier more aligned to the extreme task, Khar-
banda et al. (2021) propose to increase the number of clusters for the meta-classfier.

Two-stage negative sampling—Two-stage negative sampling methods have recently
become the state-of-the-art in short-text extreme classification (Dahiya et al., 2021a, 2021b,
2022; Mittal et al., 2021). In most of these methods, in the first stage, a model is trained to
learn representations for the documents and the labels. Then in the second stage, by using
an approximate nearest neighbor search over the learned embeddings, labels with small dis-
tances to each instance are determined and be used as hard negatives for training the extreme
classifier.

Two-stage negative sampling methods are at the intersection of adaptive methods and
meta-classifier-based ones since they are partially dependent on the model and also they use
the model in the first stage as a means for finding confusing labels for the extreme classifier.

Issues in training using hard negatives—A few works have discussed issues in train-
ing using hard negative labels (Schroff et al., 2015; Wu et al., 2017). Specifically, in deep
embedding learning using triplet losses, (Schroff et al., 2015) argued that selecting the
hardest negative, which is the sample in the mini-batch with the closest distance to the
anchor, will lead to a bad local minimum in the early stages of training. Wu et al. (2017)
showed that in these methods, the gradient with respect to hard negatives have high vari-
ance and therefore susceptible to the noise in the training data. To this end, they proposed a
distance weighted sampling, in which the probability of selecting a hard sample is equal to
a constant and for the rest of the labels it is proportional to the inverse of the distance to the
anchor. Our work is on the same line as the aforementioned works to investigate the issues

694	 Machine Learning (2024) 113:675–697

1 3

related to using negative labels in MIPS-based adaptive methods to train feedforward neu-
ral networks.

7 � Conclusion

In this paper, we highlighted two difficulties in training deep neural networks using MIPS-
based adaptive negative sampling methods. We argued that when only hard negatives
are employed from the beginning of training, the gradients of the loss with respect to the
embeddings are unstable. Also, we showed that when the labels needed for approximating
the loss are only determined by MIPS, training is sensitive to the pre-processing intervals
of the weights in the MIPS method.

To overcome these problems, we proposed to only pick a few labels from those found
by MIPS and select the rest from a uniform distribution. The results show that the pro-
posed method leads to significantly higher precision in a shallow and a deep neural net-
work. Furthermore, we highlighted the similarities of the architecture of our method with
LightXML, a meta-classifier-based negative sampling. We showed that our approach,
which only requires re-clustering the weights a few times during training, can reach the
performance of LightXML on a BERT model, while there is no need to train and store any
additional classifier. We hope that our work will spur further research in exploring meta-
classifier free negative sampling methods in extreme multi-label classification.

Appendix A: Supplementary experiments

See Tables 5 and 6.

Table 5   Results of MIPS-s and LightXML on Amazon-670K using four different initial weights

The results show that the standard deviation of all the metrics for both MIPS-s and LightXML are less than
0.07% and 0.08%, respectively, suggesting a consistent performance

Method P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

MIPS-s 46.2 41.1 37.2 26.4 30.6 34.1
46.1 41.1 37.2 26.3 30.6 34.1
46.1 41.0 37.2 26.3 30.5 34.1
46.0 41.1 37.2 26.3 30.6 34.1

Mean ± SD 46.1 ± 0.07 41.0 ± 0.04 37.2 ± 0.00 26.3 ± 0.04 30.6 ± 0.04 34.1 ± 0.00
LightXML 46.7 41.7 37.7 26.9 31.3 34.7

46.7 41.6 37.5 26.9 31.1 34.5
46.8 41.7 37.6 27.0 31.3 34.7
46.8 41.6 37.6 27.0 31.2 34.6

Mean ± SD 46.8 ± 0.05 41.7 ± 0.05 37.6 ± 0.07 27.0 ± 0.05 31.2 ± 0.08 34.6 ± 0.08

695Machine Learning (2024) 113:675–697	

1 3

Author contributions  MQ and RB proposed the idea. MQ did the literature review, designed and imple-
mented the methods, ran the experiments, and wrote the first draft. RB supervised the project with continu-
ous discussions and contributed towards writing and reviewing the manuscript.

Funding  Open Access funding provided by Aalto University. Open Access funding provided by Aalto Uni-
versity. The authors would like to acknowledge research funding from the Academy of Finland projects
(347707 and 348215).

Availability of data and materials  The datasets used in our experiments are publicly available in the extreme
classification repository http://​manik​varma.​org/​downl​oads/​XC/​XMLRe​posit​ory.​html.

Code availability  Our code for the experiments is available at https://​github.​com/​xmc-​aalto/​mips-​negat​ive-​
sampl​ing.

Declarations 

Conflict of interest  The authors declare no conflict of interest to disclose associated with this article.

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  The authors give consent for the publication of identifiable details in this paper,
including figures, tables, and the results, in other projects by mentioning the reference.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Auvolat, A., Chandar, S., Vincent, P., Larochelle, H., & Bengio, Y. (2015). Clustering is efficient for approx-
imate maximum inner product search. arXiv preprint arXiv:​1507.​05910 .

Babbar, R., & Schölkopf, B. (2017). Dismec: Distributed sparse machines for extreme multi-label classifica-
tion. In Proceedings of the Tenth ACM international conference on web search and data mining, (pp.
721–729).

Babbar, R., & Schölkopf, B. (2019). Data scarcity, robustness and extreme multi-label classification.
Machine Learning, 108(8), 1329–1351.

Table 6   A comparison of standard K-means based on Euclidean distance and spherical K-means for pre-
processing the weights in MIPS-s 

The results demonstrate the comparable performance of spherical K-means over the standard one

Dataset K-means variant P@1 P@3 P@5 PSP@1 PSP@3 PSP@5

Amazon-670K Standard 46.0 40.9 37.0 26.3 30.4 33.9
Spherical 46.1 41.0 37.2 26.3 30.5 34.1

Wikipedia-500K Standard 75.3 55.6 42.4 32.2 38.3 41.3
Spherical 75.5 55.7 42.5 31.9 38.2 41.2

http://manikvarma.org/downloads/XC/XMLRepository.html
https://github.com/xmc-aalto/mips-negative-sampling
https://github.com/xmc-aalto/mips-negative-sampling
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1507.05910

696	 Machine Learning (2024) 113:675–697

1 3

Bengio, Y., & Senécal, J. S. (2008). Adaptive importance sampling to accelerate training of a neural proba-
bilistic language model. IEEE Transactions on Neural Networks, 19(4), 713–722.

Bhatia, K., Dahiya, K., Jain, H., Kar, P., Mittal, A., Prabhu Y., & Varma, M. (2016). The extreme classifica-
tion repository: Multi-label datasets and code.

Blanc, G., & Rendle, S. (2018). Adaptive sampled softmax with kernel based sampling. In International
conference on machine learning, (pp. 590–599). PMLR.

Chen, B., Medini, T., Farwell, J., Tai, C., Shrivastava, A., et al. (2020). Slide: In defense of smart algorithms
over hardware acceleration for large-scale deep learning systems. Proceedings of Machine Learning
and Systems, 2, 291–306.

Daghaghi, S., Medini, T., Meisburger, N., Chen, B., Zhao, M., & Shrivastava, A. (2021). A tale of two effi-
cient and informative negative sampling distributions. In International conference on machine learn-
ing, (pp. 2319–2329). PMLR.

Dahiya, K., Agarwal, A., Saini, D., Gururaj, K., Jiao, J., Singh, A., Agarwal, S., Kar, P., Varma, M. (2021a).
Siamesexml: Siamese networks meet extreme classifiers with 100m labels. In International conference
on machine learning, (pp. 2330–2340). PMLR.

Dahiya, K., Gupta, N., Saini, D., Soni, A., Wang, Y., Dave, K., & Varma, M. (2022). Ngame: Negative
mining-aware mini-batching for extreme classification. arXiv preprint arXiv:​2207.​04452 .

Dahiya, K., Saini, D., Mittal, A., Shaw, A., Dave, K., Soni, A., & Varma, M. (2021b). Deepxml: A deep
extreme multi-label learning framework applied to short text documents. In Proceedings of the 14th
ACM international conference on web search and data mining, (pp. 31–39).

Jain, H., Balasubramanian, V., Chunduri, B., & Varma, M. (2019). Slice: Scalable linear extreme classifiers
trained on 100 million labels for related searches. In Proceedings of the twelfth ACM international
conference on web search and data mining, (pp. 528–536).

Jain, H., Prabhu, Y., Varma, M. (2016). August. Extreme multi-label loss functions for recommendation,
tagging, ranking and other missing label applications. In KDD.

Jiang, T., Wang, D., Sun, L., Yang, H., Zhao, Z., & Zhuang, F. (2021). Lightxml: Transformer with dynamic
negative sampling for high-performance extreme multi-label text classification. Proceedings of the
AAAI Conference on Artificial Intelligence, 35, 7987–7994.

Johnson, J., Douze, M., & Jégou, H. (2019). Billion-scale similarity search with GPUS. IEEE Transactions
on Big Data, 7(3), 535–547.

Khandagale, S., Xiao, H., & Babbar, R. (2020). Bonsai: Diverse and shallow trees for extreme multi-label
classification. Machine Learning, 109, 1–21.

Kharbanda, S., Banerjee, A., Gupta, D., Palrecha, A., & Babbar, R. (2023). Inceptionxml: A lightweight
framework with synchronized negative sampling for short text extreme classification. In Proceed-
ings of the 46th International ACM SIGIR Conference on Research and Development in Information
Retrieval (pp. 760–769).

Kharbanda, S., Banerjee, A., Schultheis, E., Babbar, R. (2022). Cascadexml: Rethinking transformers for
end-to-end multi-resolution training in extreme multi-label classification. In Advances in neural infor-
mation processing systems.

Lee, K., Chang, M. W., & Toutanova, K. (2019). Latent retrieval for weakly supervised open domain ques-
tion answering. arXiv preprint arXiv:​1906.​00300 .

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words
and phrases and their compositionality. Advances in neural information processing systems, 26.

Mittal, A., Dahiya, K., Agrawal, S., Saini, D., Agarwal, S., Kar, P., & Varma, M. (2021). Decaf: Deep
extreme classification with label features. In Proceedings of the 14th ACM international conference on
web search and data mining, (pp. 49–57).

Partalas, I., Kosmopoulos, A., Baskiotis, N., Artieres, T., Paliouras, G., Gaussier, E., Androutsopoulos, I.,
Amini, M. R., & Galinari, P. (2015). Lshtc: A benchmark for large-scale text classification. arXiv pre-
print arXiv:​1503.​08581.

Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., Varma, M. (2018). Parabel: Partitioned label trees for extreme
classification with application to dynamic search advertising. In Proceedings of the 2018 World Wide
Web Conference, (pp. 993–1002).

Rawat, A. S., Menon, A.K., Jitkrittum, W., Jayasumana, S., Yu, F., Reddi, S., & Kumar, S. (2021). Disen-
tangling sampling and labeling bias for learning in large-output spaces. In International conference on
machine learning, (pp. 8890–8901). PMLR.

Rawat, A. S., Chen, J., Yu, F. X. X., Suresh, A. T., & Kumar, S. (2019). Sampled softmax with random fou-
rier features. Advances in Neural Information Processing Systems, 32, 13857–13867.

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). Facenet: A unified embedding for face recognition and
clustering. In Proceedings of the IEEE conference on computer vision and pattern recognition, (pp.
815–823).

http://arxiv.org/abs/2207.04452
http://arxiv.org/abs/1906.00300
http://arxiv.org/abs/1503.08581

697Machine Learning (2024) 113:675–697	

1 3

Schultheis, E., & Babbar, R. (2022). Speeding-up one-versus-all training for extreme classification via
mean-separating initialization. Machine Learning, 111, 1–24.

Shrivastava, A., & Li, P. (2014). Asymmetric lsh (alsh) for sublinear time maximum inner product search
(mips). Advances in neural information processing systems, 27.

Vijayanarasimhan, S., Shlens, J., Monga, R., Yagnik, J. (2014). Deep networks with large output spaces.
arXiv preprint arXiv:​1412.​7479.

Wu, C. Y., Manmatha, R., Smola, A. J., & Krahenbuhl, P. (2017). Sampling matters in deep embedding
learning. In Proceedings of the IEEE international conference on computer vision, (pp. 2840–2848).

Xiong, L., Xiong, C., Li, Y., Tang, K.F., Liu, J., Bennett, P., Ahmed, J., & Overwijk, A., (2020). Approxi-
mate nearest neighbor negative contrastive learning for dense text retrieval. ICLR .

Yen, I. E. H., Kale, S., Yu, F., Holtmann-Rice, D., Kumar, S., & Ravikumar, P., (2018). Loss decomposi-
tion for fast learning in large output spaces. In International Conference on Machine Learning, (pp.
5640–5649). PMLR.

You, R., Zhang, Z., Wang, Z., Dai, S., Mamitsuka, H., & Zhu, S. (2019). Attentionxml: Label tree-based
attention-aware deep model for high-performance extreme multi-label text classification. In NeurIPS,
(pp. 5812–5822).

Zhang, J., Chang, W. C., Yu, H. F., & Dhillon, I. (2021). Fast multi-resolution transformer fine-tuning
for extreme multi-label text classification. Advances in Neural Information Processing Systems, 34,
7267–7280.

Zhong, S. (2005). Efficient online spherical k-means clustering. Proceedings 2005 IEEE International Joint
Conference on Neural Networks, 5, 3180–3185.

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1412.7479

