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Abstract
This paper proposes a simple grid-voltage sensorless alternative to the conventional PLL synchronization
for a grid-connected converter equipped with an LCL filter. The grid-voltage magnitude and angle are
estimated based only on the converter current and DC-voltage measurements. Reduced number of sensors
decreases costs and amount of sensor wiring. The analytically derived design is validated experimentally.

1. Introduction
Three-phase grid converters equipped with an AC-side LCL filter are increasingly used to connect various
renewable and distributed energy sources as well as motor drives to the electric grid. Interest for using
LCL filters has increased, because they afford better grid-current quality, lower cost, and smaller physical
size in comparison with the L filter. The control scheme of these converters is usually implemented in
the grid-voltage or grid-flux synchronous reference frame (dq), in the natural reference frame (abc), or in
the stationary reference frame (αβ). Regardless of the reference frame, synchronization with the grid is
needed for instantaneous active and reactive power control. Conventionally, synchronization is achieved
using some variant of the phase-locked loop (PLL) to detect the angle of the measured grid voltage. If
the grid voltage is not measured, the synchronization can be based on: 1) control error of the converter
current [1]; 2) DC-link power balance [2]; 3) instantaneous power theory [3]; 4) duality between the
grid-connected converter and the PWM inverter-fed electric motor [4, 5]; 5) direct estimation [6, 7]; or
6) adaptive model-based estimation [8]. The above-mentioned methods have been developed for a grid-
connected converter using the conventional L filter, but in the case of the resonant LCL filter, only a
few [9–13] grid-voltage sensorless synchronization methods exist.

For the grid-voltage sensorless synchronization in the case of the LCL filter, the Kalman filter has been
used to directly detect the grid voltage together with LCL filter states [9]. Instead of direct estimation,
in [10], the grid voltage has been adapted using the grid-current estimation error of the Kalman filter.
However, the process noise parameters for the Kalman filter, which determine the dynamics of the ob-
server, have to be determined by trial and error [9]. In [11], power-theory-based grid-voltage estimation
has been proposed for the converter with an LCL filter, but instead of the grid voltage, the capacitor
voltage of the LCL filter has been estimated. In the case of the grid converter equipped with an LC filter,
a neural-network grid-voltage estimator has been presented in [14], and a steepest-descent adaptation
algorithm has been used for the grid-voltage estimation. Moreover, the series resistance and inductance
have been identified in parallel with the grid-voltage estimator in [14]. The parallel estimators provide the



self-tuning feature, but high expertise of modern control theory is needed when designing and analyzing
the neural-network estimator. Similar algorithms have been used without neural networks [12], where-
upon the additional value of neural networks with these relatively simple models can be challenged.
Furthermore, in the case of LCL filters, the steepest-descent algorithm has been used with the adaptive
observers [12, 13] to directly estimate the grid voltage from the converter current estimation error of
the Kalman filter [12], or to give an estimate of the aggregated uncertainties, which include information
about the grid voltage [13].

In this paper, an estimation method for the grid-voltage magnitude and angle is proposed. The proposed
method is based on the full-order observer [15], which is augmented with adaptation loops for the grid
voltage magnitude and angle. Only the AC-side converter currents and the DC-side voltage are measured.
In the adaptation loops, grid-voltage estimation is based on regulating the error between the measured
and estimated converter currents to zero using proportional-integral (PI) controllers. Grid-voltage and
state estimation reduce the number of sensors, which provides cost advantages and decreases the amount
of sensor wiring. Analytical design rules, enabling automatic tuning of the estimation method, are also
proposed. First, the system model and the observer are defined. Then, adaptation loops are formulated and
their dynamics are analyzed by means of small-signal linearization. The expressions for the observer and
adaptation gains are given as functions of system parameters and desired dynamics. Finally, simulation
and experimental results are presented.

2. Model
The equivalent circuit model of the LCL filter model, between converter and grid, is presented in Fig. 1.
The grid voltage in the stationary reference frame is

us
g = ejϑgug, (1)

where ϑg = ∫ ωgdt is the angle, ωg is the angular frequency, and ug is the amplitude of the grid voltage.
When the converter-side current ic, the capacitor voltage uf , and the grid-side current ig of the LCL
filter are selected as state variables, the LCL filter dynamics in a reference frame rotating at the angular
frequency of ω̂g are
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where uc and ug are the converter and grid voltages, respectively, and Lfc, Cf , and Lfg are the LCL
filter parameters. The losses of the filter are neglected, which represents the worst-case situation for the
resonance of the LCL filter. Switching-cycle-averaged complex-valued space vectors are used (e.g., the
converter current ic = icd + jicq). Complex, matrix, and vector quantities are marked with boldface
symbols.
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Fig. 1: The grid-connected LCL filter. The superscript s refers to the stationary reference frame, which is used for
the sake of simplicity.
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Fig. 2: Block diagram of the control system.

3. Adaptive Observer
The block diagram of the control system is shown in Fig. 2. The power balance is regulated with a
DC-voltage controller together with an inner state-space current controller [15]. The full-order observer
estimates the state variables x = [ic uf ig]

T for the state-space controller. The observer gain vector
L = [l1 l2 l3]

T can be expressed by desired dynamic behavior and system parameters, as in [15], contrary
to the Kalman filter whereby the knowledge of the noise covariances is needed [9, 12]. The synchronous
reference frame of the control system is tied to the estimated grid voltage, i.e., ûg = ûg + j0, and it is
rotating at estimated grid-voltage angular frequency of ω̂g. The magnitude and angle of the grid voltage
are estimated using an adaptation loop, explained later.

In the selected reference frame, the full-order observer is

˙̂x = Âx̂+ B̂cuc + B̂gûg + L(ic − îc), îc = Ccx̂, (3)

where the estimated quantities are marked with ,̂ and Â, B̂c and B̂g consist of nominal (estimated)
system parameters L̂fc, Ĉf , and L̂fg. If accurate circuit parameters are assumed, i.e., B̂c = Bc, B̂g = Bg,
and Â = A, the dynamics of the estimation error e = x− x̂ are obtained from (2) and (3) as

ė = (A− LCc)e+Bg(e
j(ϑg−ϑ̂g)ug − ûg), (4)

where ϑ̂g is estimated angle of the grid voltage. As can be seen from the equation, the estimation error
dynamics are nonlinear and are affected by the angle difference ϑg − ϑ̂g between the reference frames
of the grid voltage and the observer and the difference ug − ûg between the grid-voltage magnitude and
its estimate. In the following, the error dynamics are linearized in order to examine these relationships
more closely.

3.1. Linearization
The nonlinear dynamics of (4) can be linearized using small-signal approach. The operation point quan-
tities are marked by subscript 0 and small-signal deviations by ,̃ e.g. ω̂g = ω̂g0 + ˜̂ωg. Accurate circuit
parameter estimates and grid-voltage estimation are assumed. Hence, e0 = 0, ωg0 = ω̂g0, ϑg0 = ϑ̂g0,
and ûg0 = ug0 hold in the operation point. Then, the linearized estimation error dynamics are

dẽ

dt
= (A0 − L0Cc)ẽ+Bg[ ej(ϑ̃g− ˜̂

ϑg)︸ ︷︷ ︸
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= (A0 − L0Cc)ẽ+Bg[ũg − ˜̂ug + j(ϑ̃g − ˜̂
ϑg)ug0].

(5)



Further, if the grid voltage, the angular speed, and the angle errors are denoted by ũ = ũg − ˜̂ug, ω̃ =

ω̃g − ˜̂ωg, and ϑ̃ = ϑ̃g − ˜̂
ϑg, respectively, the estimation error dynamics are
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ẽ

ϑ̃

]
+

[
Bg

0

]
︸ ︷︷ ︸
Bu

ũ+
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The converter current is the only measured state variable. Therefore, let us examine the effect of the
estimation errors of the grid voltage and angular speed on the estimation error of the converter current
ĩ = ĩc − ˜̂ic. From (6), the transfer function from the grid-voltage error to the current error is

ĩ(s)

ũ(s)
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−1Bu = − 1

P (s)
(7)

where C̃c = [Cc 0], and
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(8)

Similarly, the transfer function from the angular-speed error to the current error is

ĩ(s)

ω̃(s)
= C̃c(sI−AL)

−1Bω = − jug0
s · P (s)

(9)

and the transfer function from the angle error to the current error is obtained from (9) using the relation-
ship ϑg = ∫ ωgdt, leading to ϑ̃ = ω̃/s. It is to be noted that the observer gains (l1, l2, and l3) strongly
affect the characteristic polynomial of the transfer functions. Further, this is seen in the orientation of the
current error ĩ in the complex plane.

3.2. Selection of the Full-Order Observer Gains
The direct pole placement is a straightforward method for the selection of the full-order observer gains.
This can be done assuming first the perfect grid-voltage orientation and known or measured grid voltage.
Then, the characteristic polynomial of the estimation error dynamics (4) is set to correspond the third-
order dynamics as follows

det(sI−A+ LCc) = (s+ αo1)(s
2 + 2ζo2ωo2s+ ω2

o2), (10)

where αo1 determines the first-order pole and ζo2 and ωo2 the second-order pole pair of the estimation
error dynamics. This gives the gains

l1 = αo1 + 2ζo2ωo2 − 3jωg0 (11a)

l2 = −Lfc

(
2αo1ζo2ωo2 + ω2

o2 + 3ω2
g0 −

Lfc + Lfg

LfcLfgCf
− 2jωg0l1

)
(11b)

l3 = αo1ω
2
o2CfLfc + jωg0

(
ω2
g0CfLfc −

Lfc

Lfg
− 1
)
+
(
ω2
g0CfLfc −

Lfc

Lfg

)
l1 + jωg0Cfl2. (11c)

The observer gains are functions of the system parameters, the grid angular frequency at the operating
point and the desired poles of the estimation error dynamics. The poles can be seen as tuning parameters
and their selection can be based on the open-loop system, as described in [15]. A rule of thumb for
selecting the observer poles is to set them at least twice as fast as the current controller dynamics. Then, if
the state estimate x̂ is used in the feedback, the dynamic response of the converter current is dominated by
the current controller. For example, the real pole αo1 is set twice as fast as the current control bandwidth
and the complex pair of poles are set to a higher frequency (near the resonance frequency ωp) with a
sufficient damping.



3.3. Adaptation Laws
Since the grid voltage is not measured, the observer in (3) is supplemented with the adaptation of the
magnitude and angle of the grid voltage. Here, quasi-steady-state analysis is used to design the adapta-
tion loops. The estimation error dynamics of the full-order observer in (6) are considered to be much
faster than the adaptation mechanisms of the grid voltage and its angle. The different time scales enable
considering the current estimation error ĩ = ĩc − ˜̂ic being in steady state from the viewpoint of the
adaptation. If the gains (11) are inserted in (7), the transfer function reduces to

Giu(s) =
ĩ(s)

ũ(s)
= − 1

CfLfcLfg(s+ αo1)(s2 + 2ζo2ωo2s+ ω2
o2)

(12)

Similarly, if the gains (11) are inserted in (9), the transfer function becomes

Giω(s) =
ĩ(s)

ω̃(s)
= − jug0

s · CfLfcLfg(s+ αo1)(s2 + 2ζo2ωo2s+ ω2
o2)

(13)

Assuming these transfer functions to be in steady state (i.e., s = 0) leads to

ĩ = − 1

CfLfcLfgαo1ω2
o2

ũ− j
ug0

CfLfcLfgαo1ω2
o2

ϑ̃. (14)

This equation shows that the d component ĩd of the estimation error is affected by the grid-voltage
estimation error ũ and the q component ĩq is affected by the angle error (ϑ̃ = ω̃/s). These observations
point out that the estimation of the grid voltage and its angular speed can be based on regulating the error
between the converter current and estimated current to be zero. Hence, the adaptation laws for the grid
voltage and its angular speed can be constructed as follows

ûg = kpuĩd + kiu

∫
ĩddt, ω̂g = kpω ĩq + kiω

∫
ĩqdt (15)

where kpu, kiu, kpω, and kiω are the gains of the adaptation-loop controllers.

It is worth noting that the selection of the observer gains has significant effect on the formulation of
the adaptation laws. If zero observer gains are inserted in (7) and (9), the current components for the
adaptation loops should be selected opposite. This can be easily shown with a similar quasi-steady-state
analysis, which gives

ĩ = − ug0
ωg0(Lfc + Lfg − ω2

g0CfLfcLfg)
ϑ̃+ j

1

ωg0(Lfc + Lfg − ω2
g0CfLfcLfg)

ũ (16)

in the case of zero observer gains. The d component ĩd of the converter current error is affected by the
angle error ϑ̃ and the q component ĩq by the voltage error, which is opposite to (14).

3.4. Adaptation-Loop Gains
Figs. 3(a) and 3(b) show the linearized adaptation loops of the grid voltage and its angular speed. The
gains of the adaptation-loop controllers can be selected to give the approximate bandwidth of αu for
the estimation dynamics of the amplitude of the grid voltage and the natural frequency of ωω for the
estimation dynamics of the angular frequency of the grid voltage. Considering the estimation error of the
converter current in steady state as in (14) and selecting

kpu = 0 and kiu = −αu · CfLfcLfgαo1ω
2
o2, (17)

in (15), the closed-loop transfer function of the linearized grid-voltage adaptation loop is

Gu(s) =
˜̂ug(s)

ũg(s)
=

αu

s+ αu
(18)



with the bandwidth of αu. Similarly, using the steady-state approximation (14), the gains for the adapta-
tion law of the angular speed in (15) can be selected as

kpω = −2ζωωω · CfLfcLfgαo1ω
2
o2/ug0 and kiω = −ω2

ω · CfLfcLfgαo1ω
2
o2/ug0. (19)

Then, the closed-loop transfer function of the approximated and linearized adaptation loop of the angular
speed is

Gω(s) =
˜̂ωg(s)

ω̃g(s)
=

2ζωωωs+ ω2
ω

s2 + 2ζωωωs+ ω2
ω

(20)

with the natural frequency of ωω and damping of ζω.

3.5. Small-Signal Stability
The quasi-steady-state approximations can be used to give simple tuning for adaptation loops. However,
if the bandwidths of the adaptation loops are increased close to the bandwidth of the full-order observer,
the quasi-steady-state assumption is not valid anymore and the stability of the loops can be lost. In the
following, the small-signal stability of the adaptation loops is analyzed.

With the selected tuning, the closed-loop transfer function of the adaptation loop of the grid voltage
magnitude is

Gu(s) =
Re{Giu(s)}

(
kpu +

kiu
s

)
1 + Re{Giu(s)}

(
kpu +

kiu
s

) =
kiu
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=
αu · αo1ω

2
o2

s4 + (αo1 + 2ζo2ωo2)s3 + (2αo1ζo2ωo2 + ω2
o2)s

2 + αo1ω2
o2s+ αu · αo1ω2

o2

.

(21)

Since the degree of characteristic polynomial is four, analytical calculation of the poles becomes difficult.
However, the stability can be tested using the Routh-Hurwitz stability criterion [16]. This gives necessary
and sufficient conditions for the stability of the system. As an example, the polynomial P (s) = a4s

4 +
a3s

3+ a2s
2+ a1s+ a0, has the roots with negative real parts and is thus stable (Hurwitz polynomial), if

the following conditions are fulfilled: ai > 0 for all i = 0 . . . 4, a2a3 > a1a4, and a1a2a3 > a0a
2
3+a

2
1a4.

According to polynomial of the example, the stability criterion for the magnitude adaptation is: all the
tuning parameters αo1, ωo2, ζo2, and αu (i.e., desired poles of the observer and the adaptation loop) must
be positive and it is necessary that

αu < (a2a3 − a1)/a23, (22)
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Fig. 3: (a) Block diagram of the linearized adaptation loop of grid voltage estimation; (b) Block diagram of the
linearized adaptation loop of the grid angle estimation. The transfer functions Giu(s) and Giω(s) are obtained
from (6).; (c) Region of the stable operation of the angle adaptation loop when the tuning of the full-order observer
is: αo1 = 2π · 1000 rad/s, ωo2 = 2π · 1420 rad/s, and ζo2 = 0.5. With the selected tuning, the stable area is limited
by the boundary condition of (25).



where a3 = αo1 + 2ζo2ωo2, a2 = 2αo1ζo2ωo2 + ω2
o2 and a1 = αo1ω

2
o2. The equation determines the

upper limit for the tuning parameter αu, which is the approximate bandwidth for the estimation of the
grid-voltage magnitude. As an example, if αo1 = 2π · 1000 rad/s, ωo2 = 2π · 1420 rad/s and ζo2 = 0.5
are selected, the condition αu < 2π · 1075 rad/s must hold.

When the selected tuning is used, the closed-loop transfer function of the angle adaptation loop is

Gω(s) =
Im{Giω(s)}

(
kpω + kiω

s

)
1 + Im{Giω(s)}

(
kpω + kiω

s

)
=

2ζωωω · αo1ω
2
o2s+ ω2

ω · αo1ω
2
o2

s2 · (s+ αo1)(s2 + 2ζo2ωo2s+ ω2
o2) + 2ζωωω · αo1ω2

o2s+ ω2
ω · αo1ω2

o2

(23)

The Routh-Hurwitz stability criterion for this system is: all the tuning parameters αo1, ωo2, ζo2, ωω, and
ζω must be positive and it is necessary that

ω2
ω − 2e · ζωωω +

f

e
> 0 (24)

and

−ω3
ω + 4e · ζωω2

ω − ωω

(
f2

αo1ω2
o2 · e

+ 4ζ2ω · e2 +
f

e

)
+ 2ζω · f > 0, (25)

where e = αo1 + 2ζo2ωo2 and f = 2ζo2ωo2(ω
2
o2 + α2

o1 + 2αo1ζo2ωo2). The boundary condition of the
equation (25) is illustrated in Fig. 3(c). It is to be noted that the derived stability conditions determine the
local stability of the nonlinear estimation error dynamics in ideal conditions. In the true system, errors
due to the discretization and parameter uncertainties naturally shrink the stable operation area. However,
the presented conditions can be seen as uppermost limits for the design and they can be used to perceive
the limitations of the tuning.

4. Control System
The block diagram of the control system comprising cascaded DC-voltage and current control loops is
shown in Fig. 2. State-space current control [15] is implemented in the estimated grid-voltage reference
frame. The current controller and the observer are discretized using Tustin’s method. The PI regulators
of the adaptation loops and DC-voltage control are discretized using the forward Euler method. The
components of the current reference ic,ref = icd,ref + jicq,ref are calculated in the steady state. From (2),
the grid current is ig = (ic − jω̂gCfug)/(1 − ω̂2

gCfLfg). The complex power at the point of common
coupling is sg = 3/2 · ugi

∗
g = pg + jqg. Assuming ic = ic,ref , the current references become

icd,ref =
2

3

1− ω̂2
gCfLfg

ûg
pref , icq,ref = −

2

3

1− ω̂2
gCfLfg

ûg
qref + ω̂gCf ûg, (26)

where the peak-value scaling of the space vectors is used, and pref and qref are the references for the
active and reactive power, respectively. The active power reference is the output of DC-voltage control,
which is implemented indirectly by means of DC-capacitor energy control [17,18]. A pure PI-controller
is used for the capacitor energy control, as in [17], but the tuning is based on the parameters of the system,
as in [18]. The space-vector pulse-width modulation (SVPWM) is used and a simple current feedforward
dead-time compensation is added [19]. The effect of the delay on the synchronous-to-stationary reference
frame transformation is compensated for by modifying the transformation ejϑ̂g → ej(ϑ̂g+ϑd), where
ϑd = (3/2) · ω̂gTs as described in [20].

It is worth noticing that the tuning of the control system can be automated, if the equivalent circuit pa-
rameters of the system are known or estimated. All the observer gains (11), (17), and (19) are functions



Table I: System parameters.

Parameter Value Parameter Value
ug

√
2/3 · 400 V (1 p.u.) ωg 2π · 50 rad/s

iN
√
2 · 18 A (1 p.u.) Cf 10 µF (0.040 p.u.)

Lfc 2.94 mH (0.072 p.u.) Lfg 1.96 mH (0.048 p.u.)
fsw 6 kHz Ts 1/(2fsw)

of the equivalent circuit parameters and desired dynamic performance specifications. Either nominal or
estimated values could be used for the operation-point grid voltage in the gain expressions (nominal
values are used in this paper). As the input values for the tuning, the dynamic performance specifica-
tions must be determined: 1) desired bandwidth and the resonance damping of the LCL filter for the
state-space controller, 2) convergence dynamics of the estimation error for the full-order observer, 3)
approximate bandwidths for the controllers in the adaptation loops. The robustness of the control sys-
tem depends on the selected performance specifications. The more robust system is desired, the slower
dynamic performance should be specified.

In this paper, the following performance specifications are used. The current controller is tuned to give an
approximate bandwidth of 2π · 500 rad/s as in [15]. The dominant dynamics of the observer is set twice
as fast as the current control, i.e, αo1 = 2π · 1000 rad/s and the second-order pole of the observer ωo2 is
set to correspond to the resonance frequency ωs

p = 2π · 1470 rad/s of the LCL filter in the synchronous
reference frame, i.e., ωo2 = ωs

p − ωg. The damping of this pole pair is set to ζo2 = 0.5. The tuning of
the adaptation loops is set, with a good damping, approximately one decade below the theoretical limits
obtained from (22), (24) and (25). Thus, the tuning parameters for the adaptation loops are: αu = 2π ·100
rad/s, ωω = 2π · 50 rad/s and ζω = 0.9. The DC-voltage regulator bandwidth [18] is set approximately
one decade below the current controller bandwidth. The system parameters are given in Table I.

5. Experimental Results
The proposed grid-voltage sensorless scheme was experimentally tested using a 12.5-kVA, 400-V, grid-
connected converter equipped with an LCL filter. The control of the converter was implemented on
dSPACE DS1006, DS2201, and DS5202 boards. The switching frequency of the converter was fsw = 6
kHz, and synchronous sampling, twice per carrier, was used. The DC-link voltage was regulated to 650
V and the converter under test was loaded with another back-to-back connected converter (12.5 kVA, 400
V) with an LCL filter. An isolation transformer was used in the grid connection of the loading converter.

Fig. 4(a) illustrates the operation of the converter when a step disturbance of −60◦ was applied into the
estimated grid-voltage angle ϑ̂g inside the control system. The converter was supplying a power of 5 kW
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Fig. 4: Experimental results when a step disturbance in the angle estimate of the grid voltage is applied: (a) esti-
mated and measured angles, ϑ̂g and ϑg, respectively; (b) simulated and measured angle errors.
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Fig. 5: Experimental results when a step disturbance in the amplitude estimate of the grid voltage is applied: (a)
estimated and measured amplitudes of the grid voltage; (b) simulated and measured amplitude errors.
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Fig. 6: Experimental results: (a) Operation with both power directions. Phase currents and the power pg are mea-
sured from the grid-side of the LCL filter; (b) Waveforms of the active power pg and reactive power qg injected
to the grid at the grid-side of the LCL filter, when a step of 5 kvar (0.4 p.u.) is applied into the reactive power
reference qg,ref . A 20-ms period is shown; (c) Waveforms of the active power pg and reactive power qg, when a
step of −5 kW (−0.4 p.u.) is applied into the active power reference pg,ref .

(0.4 p.u.) to the grid. Fig. 4(b) compares the measured and simulated waveforms of the estimated grid-
voltage angle error during the disturbance. In the simulation, an angular speed impulse corresponding a
step of −60◦ in the angle estimate was applied in ω̃g in the small-signal model shown in Fig. 3(b). As
can be seen from the Fig. 4(b), the agreement with the small-signal simulation and the measurement is
good.

Measured dynamic behavior of the estimation of the grid voltage amplitude is shown in Fig. 5(a), when
a step disturbance of −300 V was applied in the amplitude estimate. The converter was supplying the
power of 5 kW. Experimental results are compared with the small-signal simulations in Fig. 5(b). In the
simulations, step of 300 V was applied in the signal ũg in the small-signal model shown in Fig. 3(a). The
results of Fig. 5(b) indicate good agreement with the small-signal simulation and the measurement.

Fig. 6(a) demonstrates the ability to operate with both power directions. The loading condition of the
converter under test was changed from −10 kW to 10 kW by changing the direction of the active power
of the load connected to the DC bus. Further, dynamic performance of the current control is illustrated in
Fig. 6(b), when a step of 5 kvar was applied into the reference of the reactive power qg. At the same time,



the converter was supplying the active power of pg ≈ 5 kW. As Fig. 6(b) shows, the resonance of the LCL
filter is effectively damped and the reactive power rapidly follows its reference according to the designed
dynamics of the current control. Moreover, Fig. 6(c) shows an active power step of −5 kW, when the
reference for the reactive power is zero and the DC-link voltage is regulated by the loading converter (the
converter under test is in power control mode). As the figure shows, the dynamic performance correspond
to that in Fig. 6(b) and the powers are well decoupled.

6. Conclusions
This paper presents an adaptive full-order observer for the grid-voltage sensorless control of a grid-
connected converter equipped with an LCL filter. Converter-side currents of the LCL filter and DC volt-
age are only measured variables, and the full-order observer is used for state estimation. Further, the
magnitude and angle of the grid voltage are estimated using the converter current estimation error as an
input for adaptation loops. Presented analytical design of the adaptation loops gives simple expressions
for the observer and adaptation gains, which enables automatic tuning. Experimental results indicate fast
tracking of the magnitude and angle of the grid voltage. The proposed estimation scheme is a sensorless
alternative to conventional PLLs and it could be applied, e.g., in the grid-connected converter of a motor
drive. Reduced number of sensors provides cost advantages and decreases amount of sensor wiring.
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[10] S. Mariéthoz and M. Morari, “Explicit model-predictive control of a PWM inverter with an LCL filter,” IEEE
Trans. Ind. Electron., vol. 56, no. 2, pp. 389–399, Feb. 2009.

[11] M. Malinowski and S. Bernet, “A simple voltage sensorless active damping scheme for three-phase PWM
converters with an LCL filter,” IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1876–1880, Apr. 2008.

[12] K. H. Ahmed, A. M. Massoud, S. J. Finney, and B. W. Williams, “Sensorless current control of three-phase
inverter-based distributed generation,” IEEE Trans. Power Del., vol. 24, no. 2, pp. 919–929, Apr. 2009.

[13] Y. A.-R. I. Mohamed, M. A-Rahman, and R. Seethapathy, “Robust line-voltage sensorless control and syn-
chronization of LCL-filtered distributed generation inverters for high power quality grid connection,” IEEE
Trans. Power Electron., vol. 27, no. 1, pp. 87–98, Jan. 2012.



[14] Y. A.-R. I. Mohamed and E. F. El-Saadany, “Adaptive discrete-time grid-voltage sensorless interfacing
scheme for grid-connected DG-inverters based on neural-network identification and deadbeat current reg-
ulation,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 308–321, Jan. 2008.

[15] J. Kukkola and M. Hinkkanen, “Observer-based state-space current control for a three-phase grid-connected
converter equipped with an LCL filter,” IEEE Trans. Ind. Appl., vol. 50, no. 4, Jul./Aug. 2014.

[16] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems. New Jersey:
Prentice-Hall, 2002.

[17] N. Hur, J. Jung, and K. Nam, “A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter
system,” IEEE Trans. Ind. Electron., vol. 48, no. 4, pp. 794–803, Aug. 2001.

[18] R. Ottersten, “On control of back-to-back converters and sensorless induction machine drives,” Ph.D. disser-
tation, Dept. Elect. Power Eng., Chalmers Univ. of Technol., Göteborg, Sweden, 2003.
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