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Abstract
This paper extends the horseshoe prior to Bayesian quantile regression and provides a fast sampling algorithm 
for computation in high dimensions. Compared to alternative shrinkage priors, our method yields better 
performance in coefficient bias and forecast error, especially in sparse designs and in estimating extreme 
quantiles. In a high-dimensional growth-at-risk forecasting application, we forecast tail risks and complete 
forecast densities using a database covering over 200 macroeconomic variables. Quantile specific and 
density calibration score functions show that our method provides competitive performance compared to 
competing Bayesian quantile regression priors, especially at short- and medium-run horizons.
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1 Introduction
Quantile regression has been an important tool in the econometricians’ toolkit when estimating 
heterogeneous effects across the conditional response distribution, since the seminal work of 
Koenker and Bassett (1978). In contrast to least squares methods, it estimates quantiles of the de
pendent variables’ conditional distribution directly, which allows for richer inference than solely 
focusing on the conditional mean. While highly influential in the risk management and finance lit
erature in calculating risk measures such as value-at-risk (VaR) (i.e. the loss a portfolios value in
curs at a specified probability level), it has experienced a recent surge in use especially in the 
macroeconomic literature to quantify downside risks of the aggregate economy to financial con
ditions (Adams et al., 2021; Adrian et al., 2019; Carriero et al., 2020; Figueres & Jarociński, 2020; 
Hasenzagl et al., 2020; Korobilis, 2017; Mazzi & Mitchell, 2019; Prasad et al., 2019).

A challenge for these purposes is that sources of risk can be numerous such that simple quantile 
regression is often rendered imprecise or infeasible in high dimensions. While a variety of regular
isation and dimension reduction techniques have been proposed for macroeconomic forecasting, 
Stock and Watson (2002, 2012), Kim and Swanson (2014), Bai and Ng (2008), and De Mol et al. 
(2008), extensions of high-dimensional methods, in particular Bayesian methods, applied to quan
tile regression, remain relatively scant.

The Bayesian quantile regression (BQR) approach, as popularised by Yu and Moyeed (2001), is 
based on the asymmetric Laplace likelihood (ALL), which has a special connection to the frequent
ist quantile regression solution, in that its maximum likelihood estimates are equivalent to trad
itional quantile regression with a check-loss function (Koenker, 2005). A hurdle in the Bayesian 
literature has been that ALL-based methods result in improper posteriors with any but non- 
informative or exponential Laplace priors, where the latter results in the popular Bayesian 
Lasso quantile regression (Alhamzawi & Yu, 2013; Alhamzawi et al., 2012; Chen et al., 2013; 
Li et al., 2010). The broader Bayesian shrinkage literature has shown, however, that global–local 
shrinkage priors such as the horseshoe (Carvalho et al., 2010) and Dirichlet–Laplace prior 
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(Bhattacharya et al., 2016) offer asymptotic as well as computational advantages over the former 
methods (Bhadra et al., 2019). These methods have not yet been considered for the BQR. The aim 
of this paper is to bridge this gap and extend the global–local prior to quantile regression.

This paper’s primary contribution is twofold. First, we derive the horseshoe prior of Carvalho 
et al. (2010) for the BQR framework of Yu and Moyeed (2001). Second, we develop an efficient 
posterior sampler for the quantile specific regression coefficients based on data augmentation akin 
to Bhattacharya et al. (2016) which speeds up computation significantly for high-dimensional 
quantile problems.

To showcase the performance of the horseshoe BQR (HS-BQR), we provide a large-scale 
Monte Carlo study as well as a high-dimensional VaR application to US GDP (often called 
growth-at-risk, GaR, in the literature). In the Monte Carlo study, we show that the proposed 
estimator provides more stable and at worst, similar performance compared to a variety of 
Bayesian Lasso quantile regression methods in terms of coefficient bias and forecast accuracy. 
We find that, particularly, tails of the distributions are consistently better estimated by the 
HS-BQR which echos findings from the Bayesian VaR literature (Chen et al., 2012). In the 
GaR application, we show that the HS-BQR produces better calibrated forecast densities 
compared to the Bayesian alternatives and importantly provides the best performance for 
lower and upper tails which makes it a powerful tool for recession probability monitoring. 
The framework provided in this paper has the additional advantage that the derived 
algorithms can be directly applied to other global–local priors that can be expressed as scale 
mixture of normals.1

In what follows, we first present the methodological framework of the proposed model and sam
pling algorithm. Following this, we will provide evidence from Monte Carlo simulations2 and an 
empirical application of the favourable performance of the HS-BQR compared to alternative 
methods. We conclude with further generalisations of the algorithms provided and a discussion 
of our results. Estimation and replication code is publicly available at https://github.com/ 
davkoh/Horseshoe-Bayesian-Quantile-Regression.

2 Methodology
2.1 Bayesian quantile regression
Assuming a linear model such as

yt = x′tβ + ϵt, t = 1, 2, . . . , T, (1)

where {yt}
T
t=1 is a scalar response variable and {xt}

T
t=1 a K × 1 known covariate vector, the objective 

function of quantile regression can be expressed as the minimised sum of weighted residuals which 
are zero in expectation for the given quantile p ∈ (0, 1):

β̂p = min
β

􏽘n

t=1

ρp(yt − x′tβ), (2)

whose solution β̂p, is a K × 1 quantile specific coefficient vector. Note that the expected quantile 

Q̂p(Y |X) = Xβ̂p is a consistent estimator of Qp(Y |X), independent of any parametric assumption 

about residuals {ϵ}T
t=1 (Koenker, 2005). We will maintain the assumption throughout the paper 

that the design X is known. The loss function ρp(·) is often expressed as a tick loss function of 
the form ρp(y) = [p − I(y < 0)]y, where I(·) is an indicator function taking on a value of 0 or 1 de
pending on whether the condition is satisfied. As noted by Koenker et al. (2017), this loss function 
is proportional to the negative log-density of the asymmetric Laplace distribution. This connection 
has been used to recast quantile regression as a maximum likelihood solution of model (1) with an 
asymmetric Laplace distribution, denoted as ALD(p, ϱ, σ), where ϱ is the location parameter set to 

1 For an overview of global–local priors, see Polson and Scott (2010).
2 We thank two anonymous referees for suggesting robustness and computational efficiency analyses for the pro

posed methods. The paper has benefited greatly by this extension.
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0 and σ denotes the scale of the ALD. Assuming an ALD error distribution, the working likelihood 
f (Y |X, βp, σ) becomes:

f (Y | β, σ) =
pT(1 − p)T

σT

􏽙T

t=1

􏽨
e−ρp(yt−x′tβp)/σ

􏽩
. (3)

As posterior moments with conventional priors are not analytically available with an ALDwork
ing likelihood, it has become standard practice in the literature to use a mixture representation, 
proposed by Kozumi and Kobayashi (2011), in which the ALD error process can be recovered 
as a mixture between an exponentially distributed variable zt with mean σ, zt ∼ exp (σ), and a 
standard normal variable, ut, ut ∼ N(0, 1):

ϵt = ξzt + τ
����
σzt
√

ut,

ξ =
1 − 2p

p(1 − p)
,

τ2 =
2

p(1 − p)
,

(4)

where ξ and τ are deterministic quantile specific parameters. The conditional likelihood stacked 
over all observations thus becomes:

f (Y |X, βp, Z, σ) ∝ det(Σ)
1
2 exp −

1
2

􏽨
(y − Xβp − ξZ)′Σ(y − Xβp − ξZ)

􏽩􏼚 􏼛

, (5)

where Y = (y1, . . . , yT)′, X = (x′1, . . . , x′T)′, Z = (z1, . . . , zT)′, and Σ = diag(1/(τ2z1σ), . . . , 
1/(τ2zTσ)). Hence, the mixture representation results in a normal kernel for the likelihood which 
enables analytical solutions for conditional posteriors as shown below.

Throughout the paper, we consider priors on βp that take the following form:

βp ∼ N(0K, Λ∗), (6)

with a prior mean of zero, the prior variance parameters, Λ∗ control the amount of shrinkage to
wards sparsity.

By applying independent priors p(βp, σ, Z) = p(βp)p(σ)p(Z | σ), the conditional posterior for βp is 
normal:

p(βp | · ) ∼ N(βp, Λ−1
∗ ),

βp = Λ−1
∗ (X′Σ(Y − ξZ)),

Λ∗ = (X′ΣX + Λ−1
∗ ).

(7)

The conditional posterior of the scale parameter is

p(σ | · ) ∼ IG(a, b),

a = a +
3T
2

,

b = b +
􏽘T

t=1

(yt − x′tβp − ξzt)
2

2ztτ2 +
􏽘T

t=1

zt,

(8)
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where IG stands for the inverse-Gamma distribution with density p(x) = β
Γ(α) (1/x)α+1 exp ( − β/x) 

and a and b are priors’ guesses for shape and rate (both set to relatively uninformative values of 
0.1). Finally, the conditional posterior for zt is

p(zt | · ) ∼ 1/iG(ct, dt)

ct =
����������
ξ2 + 2τ2

􏽰

| yt − x′tβp|

dt =
ξ2 + 2τ2

στ2 ,

(9)

where iG stands for the inverse-Gaussian density with pdf p(x) =
����

dt
2πx3

􏽱

exp ( − dt(x−ct)
2

2c2
t x

) with loca

tion (ct) and shape (dt) parameters.
The posteriors (7)–(9) allow for efficient Gibbs sampling algorithms which for the independent 

prior set-up have been shown to be geometrically ergodic by Khare and Hobert (2012), independ
ent of any assumptions on X. Hence, X could include more variables than observations.

2.2 Shrinkage priors
In order to efficiently estimate the posterior of a large-dimensional coefficient vector in small sam
ples, informative priors are needed. Ideally, these priors are able to separate noise variables from 
signals such that the noise is shrunk towards zero and signals attain their unrestricted parameter 
values. The global–local prior framework, initially formalised in Polson and Scott (2010), follows 
a particularly suitable hierarchy for such estimation problems, in which global scales dictate the 
overall level of sparsity, while local scales, specific to each covariate, allow to reduce or tighten 
the pull towards zero depending on the signal:

βp,j | λ
2
j , ν2 ∼ N(0, λ2

j ν2), j ∈ (1, . . . , K),

λj ∼ π(λj), j ∈ (1, . . . , K),

ν ∼ π(ν).

(10)

The horseshoe prior of Carvalho et al. (2010), in particular, employs two Half-Cauchy distribu
tions for λ and ν, with density p(x) = 1

π
1

1+x2 , x > 0:

λj ∼ C+(0, 1),

ν ∼ C+(0, 1),
(11)

such that Λ∗ = ν2diag(λ2
1, . . . , λK). Notice that in our application of the horseshoe prior to the 

BQR, we have formulated the prior hierarchy independent of σ, while the global–local literature 
often uses a dependent prior. It is easily verified that the assumption of prior independence is 
needed so that the conditional posterior distributions are analytically available as derived above. 
Additionally, Moran et al. (2018) have shown that in high-dimensional settings, the independence 
assumption aids inference of the error variance. This is due to the fact that conjugate priors act 
mathematically as additional observations which artificially bias the error variances downwards 
when K ≫ T.

Due to the fact that Half-Cauchy distributions have high mass on 0 with fat tails, they are well 
suited for regularisation and variable selection tasks as they encapsulate the idea that only a few 
covariates are of importance. One way to analyse this behaviour is via shrinkage coefficients, κp,j, 
which dictate how much the posterior means of βp | · are pulled towards the prior mean of zero. 
We establish their implied probability density functions with the two following propositions:
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Proposition 1 Assume that we can approximate X′X ≈ diag(
􏽐T

t=1 x2
1,t, . . . ,

􏽐T
t=1 x2

K,t), 
then the posterior mean (7), βp, may be decomposed as

βp,j = (1 − κp,j)β̂p,j, (12)

where κp,j = 1
1+ν2λ2

j sj
∈ (0, 1), sj =

􏽐T
t=1

x2
j,t

τ2σzt
, β̂p = (X′ΣX)−1X′Σ(Y − ζZ), 

and β̂p,j is the jth entry in β̂p.

Equation (12) gives an intuitive understanding of the impact of the scales {λj, ν} on κp,j. In par
ticular, β̂p,j may be regarded as a conditional maximum likelihood estimate and κp,j → 0 as λj →∞ or 
ν→∞.

Proposition 2 For the horseshoe prior in equations (10) and (11), by change of variables, 
we establish the density κp,j | σ, ν, {zt}t∈T is given by

p(κp,j | σ, ν, {zt}t∈T) =
1
π

aj

(a2
j − 1)κp,j + 1

1
����κp,j
√ ���������

1 − κp,j
􏽰 , (13)

where aj = ν ��sj
√ .

Notice that if aj = 1, then this distribution reduces to a Beta(0.5,0.5) which is typical for the 
horseshoe prior when applied to generalised linear models (Piironen & Vehtari, 2017) and favours 
either shrinkage towards zero or leaving the posterior relatively un-regularised. Double 
exponential-based priors, on other hand, such as the Lasso prior of Park and Casella (2008) ex
tended by Li et al. (2010) to the BQR model do not, as shown in Figure 1.

With κp,j favoured close to 0 or 1, the summation over all coefficients can thus be seen as model- 
based approximate measure of sparsity, which we denote as the effective model size meff:

meff =
􏽘K

j=1

(1 − κp,j). (14)

At this point, however, we note that although equation (14) may constitute a measure of active coef
ficients, it does not directly inform on model selection akin to spike-and-slab priors, post-processing 
techniques, or further simplifying assumptions to the posterior as seen in Alhamzawi and Yu (2013), 
Piironen et al. (2020), Bondell and Reich (2012), and Li and Pati (2017).3 We view it as a tool to diag
nose detection of sparsity and the effect of changing distributions for the global scale ν and the quan
tile index as will be further elaborated in the Monte Carlo simulation (Section 3).

Figure 1. Distribution of κp,j , the shrinkage coefficient implied by the horseshoe prior and the Lasso prior, setting 
aj = 1 and T = 100.

3 Model sizes are often better identified than the inclusion of specific variables, particularly when the data are highly 
correlated, which aids the interpretation of meff as an approximate measure of sparsity.
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2.3 Gibbs sampler
With the conditional posteriors at hand, we utilise a standard Gibbs sampler. The dynamics of the 
Markov chain {(βm, σm, λ2

m, ν2
m, zm)}∞

m=0 are implicitly defined through the following steps: 

1. Draw Z ∼ π( · | β, σ, λ2, ν2, θ, τ, X, Y) from 1/iG(ct, dt) for all t and call the T × 1 vector zn+1.
2. Draw σn+1 ∼ π( · | β, λ2, ν2, θ, τ, X, Y, zn+1) from IG(a, b).
3. Draw βn+1 ∼ π( · | σn+1, λ2, ν2, θ, τ, X, Y, zn+1) from N(β, V).
4. Simulate λ2

n+1 and ν2
n+1 through slice sampling given in Appendix A.

5. Iterate (1–4) until convergence is achieved.

In step 4, we make use of the fact that due to the assumption of independence on the scales (λ, ν), 
the posteriors also follow independent Half-Cauchy distributions. Since the Cauchy has no defined 
moments which would enable sampling, the literature has proposed Gibbs samplers which rely ei
ther on slice sampling (Polson et al., 2014) or mixture representations (Makalic & Schmidt, 2015). 
Because slice sampling does not involve rejections and or extra mixing variables, we follow Polson 
et al. (2014) by formulating a block slice sampling algorithm for λ = (λ1, . . . , λK)′ given in 
Appendix A.

Khare and Hobert (2012) show that the Markov chain of this sampler is geometrically ergodic 
and also valid in K ≫ T settings which gives theoretical justification to apply this sampler to high- 
dimensional settings. However, a computational bottleneck is present in very high dimensions in 
evaluating the K × K-dimensional inverse for the conditional posterior of β. Cholesky 
decomposition-based methods will generally be of order O(K3). Taking into consideration that 
in quantile settings, one is usually interested in obtaining more than one expected quantile, this 
can result in prohibitively long computation times. We therefore provide a more efficient sampling 
algorithm for β which leverages data augmentation similar to the algorithm developed by 
Bhattacharya et al. (2016) which is of order O(T2K) and especially beneficial in high-dimensional 
settings.

Suppose, we want to sample from NK(μ, Θ), where

Θ = (Φ′Φ + D−1)−1, μ = ΘΦ′(α − ξZ). (15)

Assume D ∈ RK×K is a positive definitive matrix and diagonal for simplicity, ϕ ∈ RT×K, and 
α ∈ RT×1. Then equation (7) is is recovered when setting Φ = U1/2X, D = Λ∗, and α = U1/2y. An 
exact algorithm to sample from equation (7) is thus given by

Suppose θ is obtained through Algorithm 1. Then θ ∼ N(μ, Θ). A full proof which closely fol
lows Bhattacharya et al. (2016) is given in Appendix A.

3 Simulation set-up
In order to verify the theoretical advantages of the HS-BQR over the exponential-based quantile 
regression priors laid out above, we conduct a variety of high-dimensional Monte Carlo simula
tions that test the priors’ ability to adapt to different degrees of sparsity and error distributions 
in the data generating processes. We consider three variants of the original Lasso prior which 
have been adapted to the BQR:

Algorithm 1 Fast HS-BQR sampler

1. Sample independently u ∼ N(0, D) and δ ∼ N(0, IT)

2. Set ζ = Φu + δ
3. Solve (ΦDΦ′ + IT)w = (α − ζ − ξZ)

4. Set θ = u + DΦ′w
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1. Bayesian Lasso QR (LBQR): The Lasso prior is derived by noticing that the ℓ1-norm penalised 
check-loss function

min
β

􏽘T

t=1

ρp(yt − x′iβp) + λ
􏽘K

j=1

|βp,j|, (16)

where λ is a penalisation coefficient, can be obtained as the maximum a posteriori (MAP) 
estimate of the ALL with a Laplace prior on the regression coefficients, 
π(βp | σ, λ) = (σλ/2)Kexp( − σλ

􏽐K
j=1 |βp,j|). The posterior takes the following form:

βp | y, X, σ, λ ∝ exp −σ
􏽘T

t=1

ρp(yt − x′tβp) − σλ
􏽘K

j=1

|βp,j|

􏼠 􏼡

. (17)

To estimate equation (17), we use the Gibbs sampler of Li et al. (2010) with their recom
mended hyper-priors. Due to the shrinkage coefficient profile discussed above, we expect 
the LBQR to do well in sparse designs with well-identified signal and noise.

2. Bayesian elastic net QR (BQRENET): The elastic net estimator quantile regression differs 
from the Lasso in that it adds an ℓ2-norm of the regression coefficients to the minimisation 
problem. This is the ridge component which allows to shrink coefficients in a less aggressive 
manner than the ℓ1-norm. This makes it useful when dealing with correlated or dense designs. 
Assuming the elastic net estimator for the quantile regression, as

min
βp

􏽘T

t=1

ρp(yt − x′iβp) + λ1

􏽘K

j=1

|βp,j| + λ2

􏽘K

k=1

β2
p,j (18)

the prior can, similarly to above, be formulated as an exponential prior, 
π(βk,p | λ1, λ2, σ) ∝ σλ1

2 exp( − σλ1|βp,j| − σλ2β2
p,j). The posterior is then

βp | y, X, σ, λ ∝ exp −σ
􏽘T

t=1

ρp(yt − x′tβp) − σλ1

􏽘K

j=1

|βp,j| − σλ2

􏽘K

j=1

β2
p,j

􏼠 􏼡

. (19)

We use the same hyper-priors as recommended by Li et al. (2010)
3. Bayesian adaptive Lasso QR (BALQR): The adaptive Lasso as proposed by Alhamzawi et al. 

(2012) uses the same set-up as the LBQR, but allows for the shrinkage coefficient to 
vary with each covariate. The prior can then be formulated as follows: π(βp | σ, λj)= 
(σλj/2)Kexp({ − σ

􏽐K
j=1 λj|βp,j|}). Since this estimator allows for coefficient specific shrinkage, 

we expect it to outperform the LBQR.

Three sample sizes are considered: T1,2 = {200, 500}.4 In total, 100 Monte Carlo data sets were 
generated5 for which the last 100 observations are constructed to be the same for each Ti in order 
to make forecast errors comparable. The remainder of the observations are used as training sam
ples to retrieve the mean posterior β̂p vector to calculate bias.6

4 For the HS-BQR, we also consider a third sample size of T3 = 1,000. This was done to get a better understanding 
whether the estimator can identify quantile varying parameters in the block design.

5 Except for T = 500 block case where only 20 Monte Carlo experiments were done due to the time it takes to run the 
estimator on such large dimensions.

6 Alternatively, one could also use the MAP estimate of the regression posterior as the point estimate. This might 
seem more natural when comparing BQR methods to frequentist quantile estimators due to their equivalence as discussed 
in Kozumi and Kobayashi (2011). We found that since the conditional posteriors are normal, there is no practical differ
ence between the posterior mean and MAP.
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We consider 12 designs in total which vary along two different dimensions: the degree of spars
ity and the error generating process. We test the following sparsity patterns: 

• Sparse with β = (1, 1, 1
2 , 1

3 , 1
4 , 1

5 , 01×2T1 ),
• Dense with β = (1, 0.851×T1 ),
• Block structure with β = (1, 0.851×T1 , 01×T1 , 0.851×T1 ).

Notice that for T1 there are always more coefficients than observations.
Consider a linear model as in equation (1). To retrieve the true quantile regression coefficients, 

βp, we make use of Koenker’s (2005) alternative representation of the quantile regression:

yt = x′tβ + (x′tϑ)ut, (20)

where ut is assumed to be i.i.d. having some Cumulative Distribution Function (CDF), F. The di
mensionality of ϑ is K×1 and determines which covariates have non-constant quantile functions. 
This can be seen from the solution for βp to equation (20):

βp = β + ϑF−1(p). (21)

Hence, the true βp profile of a quantile regression model has a random coefficient model interpret
ation, where the vector of coefficients can be decomposed into a fixed plus a random component. 
In particular, the random component depends on the inverse CDF of the error, F−1(p). One can 
therefore think of ϑ as determining which variable is correlated with the error, where by default 
the first entry, ϑ0, is set to 1. This entails that location effects will always be present.7

From a frequentist’ perspective equation (21) is our oracle estimator for βp for a given quantile 
p, which, given that the ALL approximation in equation (5) holds, can be compared to the mean of 
the posterior of equation (7) (Kozumi & Kobayashi, 2011). With this in mind, it is trivial to cal
culate the true βp’s for the error generating processes considered.

The second dimension along which the Data Generating Processes (DGP) differ is in their error 
process. The proposed DGPs can be grouped into two broad cases: (1) i.i.d. errors (y1 and y2) and 
(2) heteroskedastic errors (y3 and y4). In y1, we assume that the error distribution follows a stand
ard normal distribution and in y2 the error has Student’s t distributed errors with 3 degrees of free
dom. For the other cases, we assume simple heteroskedasticity caused by correlation between the 
second covariate (whose coefficient we denote as βp,1) and ϵ. Lastly, y4 can be thought of as con
taining a mixture between a uniform and a standard normal error distribution. In all simulations, 
the design matrix is simulated using a multivariate normal distribution with mean 0 and a covari
ance matrix with its (i, j)th element defined as 0.5|i−j|.

Relating the assumed error processes to the random coefficient representation (21), it is clear 
that, under i.i.d. errors, only the constant has a non-constant quantile function caused by F−1 

(hereinafter called location shifters). Under the heteroskedastic designs, apart from the constant, 
βp,1 will have a non-constant quantile function as well. Hence, βp,1 in y3 is determined by F−1

N(0,1) 
across p, and βp,1 in y4 follows F−1

U(0,2), i.e. increases linearly with p. The simulation designs (and 
the true quantile functions) are summarised in Table 1.

We evaluate the performance of the estimators in terms of bias in the coefficients, forecast error, im
plied degree of sparsity, and sampling diagnostics. Using the true quantile profile in βp in equation (21), 
we calculate root mean coefficient bias (RMCB) and root mean squared forecast error (RMSFE) as 

1. Root mean coefficient bias = 
�����������������

1
iter ‖β̂p − βp‖

2
2

􏽱
,

2. Root mean squared forecast error = 
���������������������

1
iter ‖Xβ̂p − Xβp‖

2
2

􏽱
,

7 While it is possible for ϑ to take on any value, for simplicity we assume that the elements of ϑ only to take on the 
values {0, 1}.
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where iter is the number of Monte Carlo experiments. For most cases, iter = 100, except for Block 
T2, where it is set to 20.8 Since the root mean squared forecast errors show the same tendencies as 
the root mean coefficient bias. The table summarising the forecast results can be found in the 
online supplementary material.

Finally, we conduct three sets of robustness checks. To gauge the influence of the hyper-prior 
choices on the approximate posterior degree of sparsity, we calculate the average posterior effect
ive model sizes (14)9 as

􏽤meff =
1

iter

􏽘iter

i=1

1
S

􏽘S

s=1

􏽘K

j=1

(1 − κ(s)
p,j), (22)

where S are the number of Markov Chain Monte Carlo (MCMC) draws after burn-in. Piironen 
and Vehtari (2017) point out that 􏽤meff may also be used to diagnose the informativeness of the 
scale on the prior for ν. Namely, when the likelihood only weakly identifies the degree of sparsity, 
a standard Half-Cauchy distribution for ν causes the implied level of sparsity to diverge to K.

In normal observation models with very low sample sizes, Polson and Scott (2010) additionally 
show that using our prior ν ∼ C+(0, 1) may induce multi-modality in the posterior of the regression 
coefficients. Although multi-modality is often a feature of aggressive shrinkage by construction 
(Piironen et al., 2020), our second robustness statistic, R̂ (Gelman & Rubin, 1992), checks whether 
any difficult geometries in the posteriors cause issues for convergence in the posteriors of βp (due to 
multi-modality or otherwise). We compute R̂ based on 4 chains with 5,000 samples each after burn-in:

R̂ =

��������������

􏽣var+(βp,j |Y)

W

􏽳

, (23)

where 􏽣var+(βp,j |Y) = N+1
N W + 1

N B is an estimator for the within (W) and between (B) chain sample 
variances.10 Under diffuse starting points for the parameters, Gelman and Rubin (1992) recommend 
to choose R̂ = 1.1 as an upper bound for convergent chains, although Vehtari et al. (2021) recommend 
an upper bound of 1.05 and even 1.01 for high-dimensional vectors.

Finally, we compute the number of effective independent samples from our and competing sam
ples to gauge overall sampling efficiency:

􏽤Neff = 1 −
W −

1

M

􏽐M
m=1 ρl,m

􏽣var+(βp,j)
, (24)

where ρl,m is the auto-correlation at lag l from chain m ∈ (1, . . . , M).11

Table 1. Summary of simulation set-ups

Data generating process Error distributions Quantile functions

y1 = Xβ + ϵ ϵ ∼ N(0, 1) βp,0 = β0 + F−1
N(0,1)(p)

y2 = Xβ + ϵ ϵ ∼ T(3) βp,0 = β0 + F−1
T(3)(p)

y3 = Xβ + (1 + X2)ϵ ϵ ∼ N(0, 1) βp,0 = β0 + F−1
N(0,1)(p)

βp,1 = β1 + F−1
N(0,1)(p)

y4 = Xβ + ϵ1 + X2ϵ2 ϵ1 ∼ N(0, 1) βp,0 = β0 + F−1
N(0,1)(p)

ϵ2 ∼ U(0, 2) βp,1 = β1 + F−1
U(0,2)(p)

8 The only estimator where there is a deviation from this is the BALQR where the variance–covariance matrix of the pos
terior coefficients was not invertible for some of the cases. This is indicative that the BALQR prior did not shrink enough

9 Since 􏽤meff and all other diagnostic test statistics were computed based on multiple parallel MCMC chains, we have 
found that averaging over 20 simulations was sufficient.

10 See Gelman and Rubin (1992) for the estimators of W and B.
11 The measures 􏽤Neff and R̂ are further broken down to zero and non-zero coefficients to get a better picture of the 

estimators performance. For further details, see the online supplementary material.
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3.1 I.i.d. distributed random error simulation results
The bias results for the three designs (sparse, dense, block) across a selection of quantiles are pre
sented in Table 2 and the results of the forecast performance can be found in the online 
supplementary material. Here and in the following tables relating to coefficient bias in this section, 
the best performers are highlighted in bold for readability. To shed light on whether the estimators 
capture the variable’s quantile function appropriately, we additionally show plots for variables 
with non-constant quantile curves for each quantile. The HS-BQR’s plots are presented in 
Figure 4. The line in the plots shows the average, while the shaded region highlights the 95% 
coverage of βp values across the Monte Carlo runs.

Table 2 shows that the HS-BQR performs competitively compared to the considered estimators 
in all i.i.d designs regardless of what type of sparsity structure is considered. In particular, for the 
sparse case, the HS-BQR provides the lowest coefficient bias for both y1 and y2 for all quantiles. 
The forecast results corroborate these findings with the HS-BQR providing the lowest root mean 
squared forecast errors among the estimators considered.

Table 2. Root mean coefficient bias: homoskedastic designs

p y1 y2

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

T = 100

Sparse

HS-BQR 0.045 0.036 0.034 0.038 0.050 0.061 0.047 0.044 0.048 0.069

LBQR 0.051 0.044 0.050 0.074 0.146 0.073 0.052 0.063 0.090 0.170

BQRENET 0.046 0.042 0.053 0.080 0.113 0.067 0.048 0.055 0.083 0.136

BALQR 0.075 0.049 0.043 0.052 0.080 0.161 0.144 0.145 0.144 0.164

Dense

HS-BQR 0.711 0.710 0.709 0.716 0.722 0.721 0.722 0.721 0.727 0.738

LBQR 0.780 0.731 0.728 0.773 0.816 0.782 0.741 0.721 0.773 0.849

BQRENET 0.739 0.676 0.679 0.716 0.781 0.746 0.700 0.694 0.735 0.790

BALQR 1.271 1.233 1.250 1.246 1.265 1.276 1.245 1.240 1.267 1.286

Block

HS-BQR 0.747 0.752 0.754 0.760 0.766 0.752 0.754 0.760 0.762 0.769

LBQR 0.821 0.737 0.716 0.783 0.870 0.831 0.743 0.704 0.773 0.879

BQRENET 0.776 0.690 0.696 0.730 0.835 0.790 0.706 0.689 0.739 0.847

BALQR 0.682 0.669 0.671 0.670 0.687 0.680 0.668 0.666 0.670 0.686

T = 400

Dense

HS-BQR 0.136 0.116 0.112 0.115 0.133 0.216 0.158 0.151 0.158 0.219

LBQR 0.118 0.105 0.100 0.103 0.118 0.184 0.143 0.132 0.143 0.184

BQRENET 0.106 0.100 0.096 0.100 0.110 0.177 0.140 0.129 0.139 0.179

BALQR 0.111 0.100 0.096 0.100 0.110 0.195 0.151 0.138 0.150 0.196

Block

HS-BQR 0.487 0.486 0.486 0.490 0.490 0.498 0.498 0.498 0.501 0.504

LBQR 0.560 0.536 0.544 0.549 0.554 0.558 0.543 0.536 0.549 0.570

BQRENET 0.513 0.504 0.507 0.518 0.514 0.527 0.526 0.506 0.519 0.534

BALQR 0.837 0.847 0.830 0.846 0.846 0.845 0.850 0.828 0.852 0.832

Note. HS-BQR = horseshoe Bayesian quantile regression; LBQR = Bayesian Lasso QR; BQRENET = Bayesian elastic net 
QR; BALQR = Bayesian adaptive Lasso QR.
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The HS-BQR’s performance is competitive for the dense and block cases as well, as can be seen 
in Table 2, however falls slightly short for the central quantiles to the BQRENET in the dense and 
to the BALQR in the block cases for T1. Forecast errors confirm these results. This coheres with the 
theoretical properties of the priors. The ridge component in the BQRENET provides better infer
ence for dense designs, while the BALQR benefits in block structures from adaptive shrinkage 
without having to identify a global shrinkage parameter.

Figures 2 and 3 show the performance of the estimators at different parts of the block design for 
T1 and T2, respectively. It reveals how the HS-BQR does extremely well in the sparse regions of the 
data for y1 and y2, while not being able to replicate this performance in the dense regions of 
the data for T1. This is not to say that it performs poorly: while the HS-BQR yields higher average 
bias than the competing estimators, this is not statistically different from the bias of the other 
estimators. When more data are introduced in T2, the difference in bias for the dense parts become 

Figure 2. Average coefficient bias in the different parts of the block design (T = 100).

Figure 3. Average coefficient bias in the different parts of the block design (T = 400).
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even smaller among the different priors, while the sparse parts are estimated with considerably 
more accuracy for the HS-BQR.

Generally, as more data are introduced, the performance across the estimators converge to simi
lar bias and forecast results, which confirms asymptotic validity of the priors and their samplers. 
An exception is presented by the BALQR which seems to fare worse with more data for the block 
design.

Both the normally distributed y1 and t-distributed y2 showcase a situation where the extreme 
quantiles (0.1 and 0.9) have higher bias than the central quantile (0.5) for all the estimators con
sidered. This is a common finding in quantile regressions which is on account of more extreme 
quantiles being ‘data sparse’ as a few observations get large weights. While it is expected that there 
is a U-shape in the coefficient bias as we move across the quantiles, the slope of this shape is not 
uniform across the estimators. In particular, it can be seen in Table 2 that the HS-BQR’s bias does 
not increase as much as the other estimators.12 Similarly, extreme quantiles generally tend to have 
higher forecast errors for all estimators, but the HS-BQR’s extreme quantiles do not suffer as much 
as its competitors, as shown in online supplementary Table A1. This property cannot be over
stated, as quantile regression is often employed for extreme quantiles. The only case where the 
HS-BQR’s extreme quantiles performance are less accurate is for the dense design of T2, where 
the BQRENET’s performance does not suffer as much as the HS-BQR’s when considering the ex
treme quantiles.

Figure 4 underpins the findings of the tables: the HS-BQR captures the normal inverse CDF 
shape for y1 and inverse t-distribution for y2 very well in the sparse design for all Ti, however 
in the dense design, it only identifies location shifts for the more extreme quantiles for T1. 
Nevertheless, this property is fixed when more data is available. The figure also highlights how 
the HS-BQR struggles the most with block designs: It only captures the quantile profiles correctly 
for T3. This finding underpins, that in designs with unmodelled block structures and, hence, badly 
identified global shrinkage, quantile effects might be shrunk away. Implementation of group-level 
shrinkage along with prior information about the sparsity pattern in the data might be able to al
leviate this problem, which we leave for future research.

3.2 Heteroskedastic error simulation results
As with the homoskedastic DGPs, we see that for all estimators, the error rate increases when mov
ing away from the central quantiles and that coefficient bias as well as forecast accuracy worsens 

Figure 4. β0 profiles for y1 and y2 across quantiles for the different sparsity settings.

12 Apart from the HS-BQR in the block design of T1, where the estimators have lower coefficient bias and forecast 
error for its extreme low quantiles than its central quantiles.

204                                                                                                                                    Kohns and Szendrei
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/1/193/7336940 by Aalto U
niversity user on 31 January 2024

http://academic.oup.com/JRSSSC/article-lookup/doi/10.1093/jrsssc/qlad091#supplementary-data


for dense and block designs compared to the sparse design. Further, the bias results in Table 3
show that the HS-BQR provides competitive performance to the alternative estimators, where it 
consistently outperforms the other priors for y4 in sparse designs.13 Similar to the previous discus
sion, the HS-BQR stands out in that it provides consistently more stable inference of extreme 
quantiles independent of the sparsity structure, with the exception of T2 dense.

In dense designs, as for the homoskedastic simulation results, the BQRENET aided by the ridge 
component in the prior provides lower coefficient bias and forecast error than the HS-BQR, 
whereas in block DGPs, the BALQR outperforms the HS-BQR for y3 in T1 but not in T2. A dif
ferent picture emerges for y4. Here, the HS-BQR’s performance in coefficient bias is only rivaled by 
the BQRENET for both T1 and T2 for both dense and block cases.

Consulting Figures 2 and 3 for y3 and y4 shows how the HS-BQR performs particularly well in 
the sparse regions of the data, as was the case for y1 and y2. Just like in the homoskedastic designs, 

Table 3. Root mean coefficient bias: heteroskedastic designs

p y3 y4

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

T=100

Sparse

HS-BQR 0.061 0.069 0.084 0.101 0.132 0.043 0.043 0.059 0.082 0.119

LBQR 4.795 2.909 7.457 3.713 2.640 4.899 2.843 7.609 3.813 2.626

BQRENET 0.053 0.046 0.074 0.130 0.186 0.053 0.060 0.084 0.114 0.176

BALQR 0.515 0.513 0.525 0.512 0.584 0.281 0.301 0.275 0.300 0.320

Dense

HS-BQR 0.767 0.763 0.764 0.771 0.773 0.764 0.766 0.774 0.780 0.786

LBQR 0.811 0.759 0.753 0.807 0.871 0.764 0.726 0.742 0.778 0.838

BQRENET 0.752 0.714 0.684 0.772 0.815 0.733 0.683 0.678 0.703 0.791

BALQR 1.307 1.287 1.283 1.287 1.309 1.268 1.260 1.254 1.264 1.287

Block

HS-BQR 0.760 0.756 0.764 0.757 0.773 0.668 0.665 0.666 0.670 0.677

LBQR 0.803 0.717 0.708 0.750 0.858 0.766 0.713 0.708 0.799 0.863

BQRENET 0.700 0.693 0.692 0.742 0.845 0.749 0.706 0.699 0.744 0.818

BALQR 0.687 0.677 0.679 0.678 0.699 0.687 0.679 0.682 0.682 0.703

T=400

Dense

HS-BQR 0.409 0.328 0.313 0.332 0.406 0.136 0.122 0.132 0.154 0.188

LBQR 0.313 0.267 0.255 0.267 0.316 0.180 0.161 0.156 0.161 0.182

BQRENET 0.289 0.245 0.231 0.243 0.291 0.168 0.150 0.144 0.150 0.171

BALQR 0.355 0.290 0.272 0.291 0.359 0.185 0.163 0.156 0.163 0.188

Block

HS-BQR 0.537 0.540 0.541 0.542 0.541 0.498 0.497 0.498 0.498 0.502

LBQR 0.567 0.566 0.533 0.574 0.576 0.532 0.557 0.543 0.559 0.558

BQRENET 0.534 0.558 0.537 0.527 0.547 0.505 0.497 0.497 0.509 0.526

BALQR 0.878 0.866 0.857 0.863 0.863 0.857 0.843 0.841 0.832 0.844

Note. HS-BQR = horseshoe Bayesian quantile regression; LBQR = Bayesian Lasso QR; BQRENET = Bayesian elastic net 
QR; BALQR = Bayesian adaptive Lasso QR.

13 The LBQR does surprisingly poorly in the sparse T1 heteroskedastic cases. This is on account of the estimator com
pletely missing the quantile profiles for both y3 and y4 (see respective figures in the online supplementary material).
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the HS-BQR is not able to replicate its performance in the dense regions of the data for T1, but it 
does not do much worse than the competing estimators. Similarly, the HS-BQR’s bias for sparse 
parts of the block DGP’s are far smaller, while for the dense parts, it is on par with the other 
estimators.

The plots in Figure 6 provide another explanation as to why the HS-BQR’s forecast perform
ance is much better for the block case of y4, which is that it captures some aspects of the quantile 
function for βp,0, even for the smallest data setting T1. The plots in Figures 5 and 6 also highlight 
why the estimators have lacklustre performance for y3 and y4 for T1 even for the sparse designs: 
The estimators have difficulties identifying the quantile profiles of βp,0 and βp,1 simultaneously. 
This deficiency is amended with more data as shown by the plots for T2 and T3: The HS-BQR cap
tures the quantile profiles for both the sparse and dense DGPs; however, its performance on the 
block design only gets better for T3. This shows the scale at which the methods require data to 
identify the correct quantile profiles of the variables when the DGP contains mixed sparsity struc
tures. This shows the scale at which the methods require data to identify the correct quantile pro
files of the variables when the DGP contains mixed sparsity structures.

Figure 5. β0 and β1 profiles for y3 across quantiles for the different sparsity settings.

Figure 6. β0 and β1 profiles for y4 across quantiles for the different sparsity settings.
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The simulations have shown that the HS-BQR provides competitive results but also that all 
quantile methods under consideration have difficulty simultaneously identifying the true regres
sors and partialling out the location (βp,0) and scale (βp,1) effects in high-dimensional setting espe
cially when data are not abundant.

3.3 Robustness measures
The diagnostic check measures are presented in Table 4 for y1 which is shown here as representa
tive for the other simulations given in the online supplementary material.

First, the posterior estimates for 􏽤meff clearly show that the horseshoe prior approximates indi
cates the degree of sparsity of the DGPs well for all simulations designs. In accordance with the 
trends observed for in Sections 3.1 and 3.2, we see that that HS-BQR provides the most accurate 
􏽤meff estimates for the sparse designs and is close to the best performers for the other designs. The 
effective model size estimates for Lasso type shrinkage priors, however, need to be interpreted with 
caution as the prior densities for κp,j do not favour mass on 0 or 1.14

Second, we do not observe any difficulties in convergence of the MCMC chains for the HS prior, 
R̂ is well below even 1.01 for all quantiles and sparsity settings. Indeed, the proposed sampling 
scheme for the horseshoe prior (Section 2.3) is the only one that clears the benchmark thresholds 
for convergence in every simulation.

Lastly, 􏽤Neff results highlight that the proposed sampler is very efficient compared to the other 
samplers, particularly for sparse designs.

3.4 Computation time
In this section, we compare computational efficiency to publicly available implementations of the 
competing priors.15 The main computational burden in sampling the posterior of the BQR, is in
verting the variance–covariance matrix Λ∗, whose computational complexity can be reduced with 
the fast HS-BQR sampler (Section 2.3) to O(T2K) from O(K3). As such, we expect our algorithm 
to scale well with the dimension of the covariates.

As an exercise, we report in Figure 7 the time it takes to iterate once through the entire Gibbs 
sampler sequentially for 19 equally spaced quantiles for increasing dimensions, K. For simplicity, 
we consider Monte Carlo simulation design y1, sparse and take the average time from 100 Gibbs 
loops.16 These experiments were conducted on an AMD Ryzen 9 4900HS@3 GHz and 16 GB of 
RAM. To account for speed differences across programming languages, we will present results for 
HS-BQR executed in MATLAB as well as in R to ensure that the choice of the coding language 
does not have an undue influence on the results. The results in MATLAB are denoted as 
HS-BQRM, while the results in R are represented as HS-BQRR. Further computation time experi
ments can be found in the online supplementary material. Note that for readability, we take the 
log10 of the run times.

As expected, the figure reveals that the proposed sampling algorithm scales much better with the 
number of covariates, independent of the implementation in R of MATLAB. Hence, not only is the 
proposed sampler and prior combination statistical efficient, but also computationally efficient as 
the covariate dimension increases.

4 GaR application
We now compare the HS-BQR to the same set of competing estimators as above in estimating fore
cast densities of US quarterly GDP growth as well as its down- and upside risks, commonly re
ferred to as GaR. The need for GaR was highlighted by the global financial crisis which showed 
how downside risks, so the lower quantiles of the density of GDP growth, evolve with the state 
of credit and financial market (Adrian et al., 2019; Prasad et al., 2019). Quantifying this vulner
ability is of key interest of policymakers, as it is well known that recessions caused by financial 
crises are often more severe than ordinary recessions (Jordà et al., 2015).

14 See Kohns and Szendrei (2021), who show how to obtain actual model sizes for (Bayesian) quantile regression with 
any continuous prior, using a decision theoretic approach.

15 See Alhamzawi and Ali (2020) for an R package implementing the adaptive Lasso, and see https://sites.wustl.edu/ 
nanlin/publications/ for codes implementing the priors of Li et al. (2010).

16 Computation time per iteration does not change significantly as more iterations were are run with our CPU.
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Unlike much of the previous GaR literature which focuses on GDP growth density forecasts 
based on only one indicator of financial distress, we apply the HS-BQR to forecasting the entire 
conditional GDP density using the McCracken database, a large macroeconomic data set. 
The ability to produce well-calibrated density forecasts in the face of large data contexts is 
important for nowcasting applications, in which the information flow is necessarily high- 
dimensional, or variable selection of large amount of competing uncertainty indexes. The lat
ter purpose has been suggested by Adams et al. (2021) and Figueres and Jarociński (2020) who 
have argued that is not a priori clear which index of market frictions impacts GDP growth the 
most.

The McCracken and Ng (2020) database17 consists of 248 variables (including GDP) from 1959 
Q1 at a quarterly frequency and is updated monthly. We take the quarter-on-quarter growth rate 
of annualised real GDP as our dependent variable and all others as independent covariates. These 
variables include a wide variety of macroeconomic effects which cover real, financial as well as na
tional accounts data. Since not all variables start at 1959 Q1, for the GaR application, only var
iables that are available from 1970 Q1 were considered which gives 229 explanatory variables.

To obtain the forecasts, we use the general linear model:

yt+h = x′tβp + ϵt+h (25)

for t = 1, . . . , T − h, where h refers to the forecast horizon. We consider one- to four-quarter 
ahead forecast horizons (h = 1, . . . , 4). Using the quantile set-up, forecasts from each quantile 
are denoted as yp

T+h |T. Note that these h-step-ahead forecasts are equivalent to the h-step-ahead 
pth VaR. Forecasts are computed on a rolling basis where the initial in-sample period uses the first 
50 observations of the sample, which makes for 149-h rolling forecast windows. We estimate a 
grid of 19 equidistant quantiles to construct the predictive density p(ŷT+h |T) via a normal kernel.18

Forecast densities are evaluated along Kolmogorov–Smirnov (KS) statistics based on (unsorted) 
probability integral transforms (PIT) and average log-scores.19 The PIT is often used when evalu
ating density forecasts and provides a measure of calibration which is independent of the 

Figure 7. Computation time as a function of variable numbers. Seconds per Gibbs iteration are averages over 100 
cycles. T = 100.

17 https://research.stlouisfed.org/econ/mccracken/fred-databases/
18 Alternatively, one could follow the popular density construction approach by Adrian et al. (2019) who fit their 

quantiles to a skewed t-distribution. We argue when discussing the results that this approach is less flexible than the pro
posed approach.

19 There are a plethora of tests to evaluate distributions based on QQ-plot of the PIT. The choice of the KS was based 
solely on its simplicity to compute and any other test would suffice for evaluation.
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econometricians loss function. In particular, the PIT is the corresponding CDF of the density func
tion evaluated at the actual observation of the out-of-sample periods, yt+h:

gt+h= ∫yt+h

−∞ p(u ∣ yt+h)du = P(yt+h ∣ yt). (26)

The estimated predictive density is consistent with the true density when the CDF of gt+h form a 
45◦ line (Diebold et al., 1998), i.e. forms the CDF of a uniform distribution. Deviation from uni
formity is tested via the KS test.

The unsorted PIT-based test is very close to what is referred to as hit-rate test in the VaR litera
ture. An additional advantage of this test is that it allows one to gauge, whether quantile-crossing 
is a serious problem of the estimator. Ideally, we want the forecasted quantiles to be monotonically 
increasing. When this monotonicity is violated, our estimated density is invalid. Any violation of 
this monotonocity in our QQ-plot is a clear indication that the estimator yields quantiles that fre
quently cross.

Second, we compare density fit via average log-scores. Log-scores provide a strictly proper scor
ing rule in the sense of Gneiting and Raftery (2007) and take into account location, skewness, and 
kurtosis of the forecast distribution (Gelman et al., 2013). Since quantile-crossing may lead to non- 
sensical density forecasts, before calculating the log-scores we sort the estimated quantiles and per
form kernel smoothing to obtain p(yt+h). Average log-scores are then calculated as follows:

log Sh =
1

T − h − 1

􏽘T−h−1

t=1

log p(yt+h | yt). (27)

We break from the forecast density literature a bit, by not exclusively focusing on testing the whole 
density, but also evaluating specific quantiles’ performance as well. To appraise the HS-BQR com
pared to the alternative estimators, the pseudo-R2 for the quantiles is computed,20 following 
Koenker and Machado (1999). The pseudo-R2 of the following regression is obtained from:

Qyt+h (p |Vt+h,p) = β0 + β1Vt+h,p, (28)

where Vt+h,p is the fitted value of of the estimator for the pth quantile. Running the regression in 
equation (28) for the pth quantile gives an intuitive test for the ability of the estimated fitted value 
to capture the dynamics we are interested in. In particular, the pseudo-R2 is calculated the follow
ing way:

R2 = 1 −
RASW
TASW

(29)

where RASW is the residual absolute sum of weighted differences, so the residuals of equation (28) 
and TASW is the total absolute sum of weighted differences, so the residuals of equation (28), 
where β1 is constrained to 0. In essence, the pseudo-R2 shows how much information Vt,p adds 
to the regression compared to a quantile regression with only a constant.

To gain a visual understanding of how the forecast densities perform over time, Figure 8 plots in 
its left panel the one-step-ahead forecast densities of the HS-BQR, and the right panel shows all 
other competing estimators. The figure highlights that the HS-BQR provides better calibration es
pecially in the beginning period of the forecast evaluation during which upper, lower, and middle 
quantiles span a reasonable range of values despite the relative scarcity of observations to number 
of covariates. It is clear from the right panel that precisely in the early forecast periods, the 
Lasso-based priors offer too little regularisation, yielding far too extreme upper and lower quantile 

20 Since GaR is meant to be a VaR of growth, utilising tests designed to test the adequacy of VaR models is a natural 
extension for evaluation. Two popular tests to verify the performance of a specific quantile are the DQ test of Engle and 
Manganelli (2004) and the VQR test of Gaglianone et al. (2011). These tests provide a principled way of testing the null 
hypothesis of the selected quantile being correct. However, they do not offer a comparative measure as to how much bet
ter the proposed method provides better fit for a specific quantile.
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growth forecasts. As more data comes in, the right panel shows that the extreme variability of 
the Lasso-based estimators decreases somewhat over time, but the HS-BQR provides good 
fit throughout the entire evaluation period. The two-quarter, three-quarter, and four-quarter 
ahead forecast densities are presented in the online supplementary material and confirm these 
findings.

The visual inspection is corroborated by the more formal PIT-based KS statistics and average 
forecast log-scores in Table 5: the KS statistics show that the HS-BQR is the only estimator to pro
vide forecasts densities whose PIT are statistically indistinguishable from a uniform CDF at the 
10% significance level, and whose log-scores are highest for all but the two-quarter ahead horizon. 
As expected, the test statistics as well as the QQ-plots of the PITs plotted in online supplementary 
material indicate that as the forecast horizon increases to two and three quarters, density calibra
tion deteriorates somewhat for all estimators. Contrary to Carriero et al. (2020) and Mazzi and 
Mitchell (2019), however, we find that density fit increases again at the fourth horizon, which sug
gests that the HS-BQR is useful not only for short-term density forecasts but also for medium-term 
forecasts.

An additional feature of the HS-BQR forecasts is that they exhibit limited quantile-crossing 
problem. The HS-BQR’s forecasted quantiles exhibit very little quantile-crossing, especially 
when comparing it to the alternative estimators. In fact, in the one-step-ahead case, the 
HS-BQR is the only estimator that yields non-crossing quantiles.

To quantify the relative performance of the estimators in capturing tail risks, we show in the 
third panel of Table 5 estimates of the pseudo-R2 which are calculated as in equation (28) for 
the extreme and middle quantiles. It is apparent that not only does the HS-BQR provide better 
quantile fit at all shown quantiles, but that the largest margin (compared to the other estimators) 
is at the lowest and highest quantiles at all horizons which echos the results from the simulations. 
This is corroborated by the PIT graphs, which show that the HS-BQR’s tail quantiles are consist
ently the closest to the ideal 45◦ line.

The proposed estimator also provides competitive point forecasts which are shown in the right 
panel of Table 6 for the 50th quantile. As shown by He et al. (1990), median quantile forecasts are 
more robust to outliers than conditional mean forecasts. Table 6 clearly shows that the HS-BQR 
offers sizeable improvements in root mean squared forecast error over the competing quantile 
models of 25%–66%, which are all statistically significant as per the Diebold and Mariano 
(2002) test. Table 7 additionally shows that with the whole sample, the HS-BQR has no problems 
and high effective sample sizes, which are similarly to the simulation results much more efficient 
the the competing priors. Since the model sizes clearly also do not diverge to K, we can also safely 
dismiss any problems coming from scaling of the global shrinkage parameter, τ.

To showcase how these improvements translate to actual events of importance to policymakers, 
we plotted density forecasts at all horizons right before NBER marked recession or trough dates. 
We concentrate on the quarters before the height of each individual crisis, as the recent GaR lit
erature highlights the usefulness of quantile methods to detect vulnerabilities to parts of the econ
omy before these vulnerabilities materialise (Adrian et al., 2019). Representative for all other 

Figure 8. One-step-ahead forecast distributions for the L1QR, BQR, BALQR, and HS-BQR. Shaded areas 
correspond to plots of all 19 quantiles.
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pre-crisis period shown in online supplementary material, Figure 9 shows forecast densities for Q2 
2008. The actual realisation is marked by a vertical grey line. Two points emerge from this graph: 
the HS-BQR provides the largest mass at the actual realisation of growth (which translates to the 
highest density fit for this realisation as measured by the log-score) and it provides a bi-modal dis
tribution which yields a policy relevant characterisation of forecasted risk. The second mode hov
ers over negative growth outcomes, thereby giving a clear indication of risks of a recession. 
Compared to the HS-BQR, the competing quantile methods do provide mass on negative growth 
outcomes which is corroborated by Carriero et al. (2020) and Mazzi and Mitchell (2019) however, 
provide little, or close to no mass on the actual realisation. In fact, consulting Figure 8, one can see 
that the Lasso-based BQR methods throughout the entire forecast evaluation period provide mass 
on negative growth outcomes, in other words forecast positive probability of recessions. This is 
less confidence inspiring than the forecast densities of the HS-BQR which are more conservative 
with mass on negative growth outcomes. To argue that this is not an artefact of the kernel smooth
ing, we provide forecast densities for relatively ‘tranquil’ economic times, namely 2005 Q1, in the 
online supplementary material. For these forecast densities, the HS-BQR combines to a uni-modal, 

Table 6. Average log-scores and RMSFE on the median of the different estimators for h-step-ahead quantile 
forecasts

Average log-scores Median RMSFE

h  =  1 h = 2 h = 3 h = 4 h = 1 h = 2 h = 3 h = 4

HS-BQR 3.432 3.282 3.472 3.534 0.006 0.004 0.004 0.004

LBQR 3.235 3.294 3.396 3.431 0.010∗∗∗ 0.012∗∗∗ 0.008∗∗∗ 0.008∗∗∗

BQRENET 2.999 3.369 3.426 3.430 0.009∗∗∗ 0.007∗∗∗ 0.007∗∗∗ 0.008∗∗∗

BALQR 1.839 2.069 2.154 2.133 0.015∗∗∗ 0.012∗∗∗ 0.010∗∗∗ 0.007∗∗∗

SPF 3.083 3.276 3.285 3.185 0.005 0.004 0.004 0.004

Note. Density is approximated by a normal kernel of the 19 forecasted quantiles. For the RMSFE stars indicate statistical 
difference to the HS-BQR median forecasts based on the Diebold–Mariano test (1998) at 1% (***) significance, 
respectively. HS-BQR = horseshoe Bayesian quantile regression; LBQR = Bayesian Lasso QR; BQRENET = Bayesian 
elastic net QR; BALQR = Bayesian adaptive Lasso QR; SPF = Survey of Professional Forecasters.

Figure 9. Q2 2008: Smoothed forecast densities of all competing estimators and the Survey of Professional 
Forecasters. Densities are estimated via a Gaussian kernel of 19 equidistant forecasted quantiles. The growth 
realisation is marked by a vertical thick line.
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non-skewed, normal looking forecast density with high mass on the realisation. This highlights an 
advantage of quantile smoothing compared to Adrian et al. (2019) approach of fitting the quan
tiles to a t-distribution. By smoothing the 19 forecasted quantiles via a kernel, we impose no re
strictions on the number of modes of degree of skewness of the combined density. Finally, to 
compare the utility of the HS-BQR approach to a widely used forecast density constructed by sur
vey expectations, we plotted the Survey of Professional Forecasters distribution (SPF) into the 
same density graphs.21 From Figure 9, one can see that the HS-BQR not only outperforms the 
SPF but provides a better indication of the looming recession indicated by larger mass on negative 
growth outcomes.

Lastly, Table 7 shows that while none of the priors showcase bad convergence of the MCMC 
chains, the horseshoe model clearly outperforms the other models in terms of efficiency of the al
gorithm, which corroborates the findings from the simulation study. Likewise, we do not observe 
any problems with respect to the effect of the global shrinkage parameters as effective model sizes 
point clearly to a sparse set of indicators having non-zero coefficients. Similar to Kohns and 
Szendrei (2021), we observe that model sizes vary across quantiles.

The ability to produce well-calibrated density forecasts and, especially accurate downside risk 
measures in the face of large data contexts makes the HS-BQR a powerful tool for nowcasting ap
plications or variable selection of large amount of competing uncertainty indexes.

5 Conclusion
In this paper, we have extended the widely popular horseshoe prior of Carvalho et al. (2010) to the 
BQR and provided a new algorithm to sample the shrinkage coefficients via slice sampling for the 
independent prior and a fast sampling algorithm that speeds up computation significantly in high 
dimensions.

In our simulations, we considered a variety of sparse, dense, and block designs with different 
error distributions which revealed three points about the HS-BQR. First, the HS-BQR provides 
better or comparable performance in terms of both coefficient bias and forecast risk where best 
performance can be expected for sparse designs. Second, the aggressive shrinkage profile of the 
HS-BQR leads to especially good performance in tail estimation (0.1 and 0.9). Finally, an issue 
that all BQR methods share is simultaneously identifying the correct location and scale effects 
in high-dimensional setting.

Our empirical application shows that the HS-BQR provides considerable gains in calibra
tion, density fit and even point estimates compared to double exponential-based priors at all 
horizons, especially so at short-term, h = 1, and medium-term, h = 4, horizons. Local meas
ures of fit confirmed that HS-BQR’s fitted quantiles provide the best goodness of fit. The 
HS-BQR proved especially useful right before NBER marked recession and trough dates, pro
viding forecast densities foreshadowing crises. This shows that the HS-BQR is an adequate 
method to give credible VaR estimates. We expect therefore that the HS-BQR performs 
well in nowcasting settings such as Carriero et al. (2020) and Mazzi and Mitchell (2019)
which we leave for future research.

The results show that the HS-BQR is a competitive estimator for which especially good behav
iour can be expected in sparse designs with few observations. However, there are multiple fronts 
on which the proposed HS-BQR can be improved upon. For instance, the simulations highlighted 
that in dense and block designs, the HS prior tends to shrink the constant too aggressively. Hence, 
extensions which allow for differing shrinkage terms for subsets of the regressors might be able to 
alleviate this problem. Extensions to the HS-BQR should also address the problems of simultan
eously estimation location and scale effects as this is needed to attain oracle properties in quantile 
regression. Further, the analysis of the approximate degree of sparsity via effective model sizes 
prompts an extension to make priors about effective model sizes explicit via a regularised horse
shoe prior akin to Piironen and Vehtari (2017) for Generalized Linear Models (GLM). Such a pri
or would scale π(ν) appropriately with a prior guess on the number of active coefficients. And 
lastly, it would be useful to extend the analysis of this paper to the plethora of other global–local 
priors such as Bhadra et al. (2019) and Cadonna et al. (2020).

21 Smooth densities have been estimated based on a normal kernel over 19 equidistant quantiles of the survey.
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Appendix A
A.1 Derivation of Algorithm 1

Proof. Using the Sherman–Morrison–Woodbury identity and some further algebra, we 
get μ = DΦ′(ΦDΦ′ + IT)−1(α − ξZ). Plugging in the identity from step 2 into step 
3, we obtain θ = u + DΦ′(ΦDΦ′ + IT)−1(α − ζ − ξZ). Since by definition 
ζ ∼ N(0, ΦDΦ′ + IK), θ follows a normal distribution with mean 
DΦ′(ΦDΦ′ + IK)(α − ξZ) = μ. As cov(u, ζ) = DΦ′, it follows that cov(θ) = D − 
DΦ′(ΦDΦ′ + IK)−1ΦD which by the Sherman–Morrison–Woodbury identity is 
equal to Θ. The provided algorithm is not specific to the horseshoe prior and fol
lows through for any prior of the form in equation (10). The computational advan
tage provided in Algorithm 1 compared to Cholesky-based decompositions is that 
we can cheaply sample from (u, ζ)′ which via data augmentation yields samples 
from the desired distributions.                                                                                            □

We now give further details on the derivation of Algorithm 1. The goal of the algorithm is to 
circumvent having to compute large K × K matrices by redefining auxiliary variables which under 
certain linear combination result in draws of the desired distribution N(βp, Λ−1

∗ ). As above, by the 
Sherman–Morrison–Woodbury theorem (see, e.g. Hager, 1989), Θ and μ can be expanded as

Θ = (Φ′Φ + D−1)−1 = D − DΦ′(ΦDΦ′ + IT)−1ΦD,

μ = DΦ′(ΦDΦ′ + IT)−1α, 

where the second equality follows from applying the push-through identify after some 
re-arranging of terms. This expansion per se would not help in sampling from N(0, Θ). Letting 
ζ and u being defined as above, ω = (ζ ′, u′)′ ∈ RT+K follows a multivariate normal distribution 
centred on 0 with covariance

Ω = P S
S′ D

􏼒 􏼓

,
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where it is easily verified that P = (ΦDΦ′ + IT) and S′ can be derived as:

Cov(ζ , u) = Cov(D1/2ϵ, Φu)

= E(D1/2ϵu′X′U1/2)

= E(D1/2ϵϵ′D1/2X′U1/2)

= DX′U1/2

= DΦ′, 

where ϵ ∼ N(0, IK). The second equality follows from the fact that both quantities are independ
ently centred on 0. Rewriting Ω into its LDU decomposition (see, e.g. Hamilton, 1994) as

P S
S′ D

􏼒 􏼓

= IT 0
S′P−1 IK

􏼒 􏼓

􏽼�������􏽻􏽺�������􏽽
L

P 0
0 D − S′P−1S

􏼒 􏼓

􏽼�����������􏽻􏽺�����������􏽽
Γ

IT P−1S
0 IK

􏼒 􏼓

􏽼�������􏽻􏽺�������􏽽
L′

, 

where the lower K × K block in Γ is equal to Θ using the Sherman–Morrison–Woodbury identity. 
To retrieve the lower part, we isolate Γ which is easily obtained because L is lower triangular and 
thus the inverse is readily available as

L−1 = IT 0
−S′P−1 IK

􏼒 􏼓

.

Since ω has already been sampled from N(0, Ω) in steps 2 and 3 of the algorithm, the transform
ation ω∗ = L−1ω is distributed N(0, Γ). Collecting the lower block of ω∗ yields a sample from 
N(0, Θ). Finally, by adding the α term in step 3 of the algorithm, we centre the combined distribu
tion on μ which completes the algorithm.

A.2 Slice sampling
Slice sampling generates pseudo-random numbers from any distribution function f (y) by sampling 
uniformly from horizontal slices through the PDF. Advantages of the algorithm include its simplicity, 
that it involves no rejections, and that it requires no external parameters to be set. Define ηj = 1/λ2

j and 
ψj = βj/ν. The conditional posterior distribution of ηj, given all other parameters is given by

p(ηj | ν, Θ, ψj, θ, τ, X, Y, Z) ∝ exp −
ψ2

j

2
ηj

􏼠 􏼡
1

1 + ηj
.

Slice sampling can now be implemented to draw from equation (14): 

1. Sample (uj | ηj) uniformly in the interval (0, 1/(1 + ηj)).
2. Sample ηj |ψj, uj ∼ Ex(2/ψ2

j ) from an exponential density truncated to have zero probability 
outside (0, (1 − uj)/uj)).

Taking the inverse square root of the sample of (2), one receives back the estimate for λj. By re
placing η = 1/ν and ψ2

j by 
􏽐K

j=1 (βj/λj)
2/2, ν can be sampled in a similar manner.

A.3 Proofs for propositions
Here, we give further details for the proofs for Propositions 1 and 2.

A.3.1 Proposition 1
With a few steps of algebra, write (X′ΣX + Λ−1)−1X′ΣX(Y − ξZ) as 
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ν2Λ(ν2Λ + (X′ΣX)−1)−1(X′ΣX)−1X′Σ(Y − ξZ).

Notice that (X′ΣX)−1X′Σ(Y − ξZ) can be viewed as a conditional maximum likelihood estimator 
for βp, which is well defined whenever X is full column rank. To arrive at equation (1), assume that 

X′ΣX ≈ diag(
􏽐T

t=1
x2

1,t

τ2σzt
, . . . ,

􏽐T
t=1

x2
K,t

τ2σzt
), then βp,j ≈ (1 − κp,j)β̂p,j.

Under the simplifying assumption that zt ≈ z = 1
T

􏽐T
t=1 zt, then κp,j = 1

Tν2λ2
j sj

, where 

sj = 1
τ2σz var(Xj). This makes the connection to shrinkage coefficients for GLMs as derived by 

Piironen and Vehtari (2017) more apparent. Since we have found that the above approximation 
holds well in any of the simulations and empirical applications, we implement this in our code.

A.3.2 Proposition 2
From Proposition 1, κp,j = 1

1+ν2λ2
j sj

. Now apply change of variables λj 7! κp,j, where the probability 

density function for λj is 1π
1

1+λ2
j 

for λj > 0:

1
aj

×

1
κp,j

+
1 − κp,j

κp,j
���������
1 − κp,j

κp,j

􏽳 ×
1
π

1

1 +

���������
1 − κp,j

κp,j

􏽳
1
a2

j

, 

where aj = ν
��
s
√

j. Then equation (31) simplifies to (2).

References
Adams P., Adrian T., Boyarchenko N., & Giannone D. (2021). Forecasting macroeconomic risks. International 

Journal of Forecasting, 37(3), 1173–1191. https://doi.org/10.1016/j.ijforecast.2021.01.003
Adrian T., Boyarchenko N., & Giannone D. (2019). Vulnerable growth. American Economic Review, 109(4), 

1263–89. https://doi.org/10.1257/aer.20161923
Alhamzawi R., & Ali H. T. M. (2020). Brq: An R package for Bayesian quantile regression. Metron, 78(3), 

313–328. https://doi.org/10.1007/s40300-020-00190-6
Alhamzawi R., & Yu K. (2013). Conjugate priors and variable selection for Bayesian quantile regression. 

Computational Statistics & Data Analysis, 64, 209–219.
Alhamzawi R., Yu K., & Benoit D. F. (2012). Bayesian adaptive Lasso quantile regression. Statistical Modelling, 

12(3), 279–297. https://doi.org/10.1177/1471082X1101200304
Bai J., & Ng S. (2008). Forecasting economic time series using targeted predictors. Journal of Econometrics, 

146(2), 304–317. https://doi.org/10.1016/j.jeconom.2008.08.010
Bhadra A., Datta J., Polson N. G., & Willard B. (2019). Lasso meets horseshoe: A survey. Statistical Science, 

34(3), 405–427. https://doi.org/10.1214/19-STS700
Bhattacharya A., Chakraborty A., & Mallick B. K. (2016). Fast sampling with Gaussian scale mixture priors in 

high-dimensional regression. Biometrika, 103(4), 985–991. https://doi.org/10.1093/biomet/asw042
Bondell H. D., & Reich B. J. (2012). Consistent high-dimensional Bayesian variable selection via penalized cred

ible regions. Journal of the American Statistical Association, 107(500), 1610–1624. https://doi.org/10.1080/ 
01621459.2012.716344

Cadonna A., Frühwirth-Schnatter S., & Knaus P. (2020). Triple the gamma—A unifying shrinkage prior for vari
ance and variable selection in sparse state space and tvp models. Econometrics, 8(2), 20. https://doi.org/10. 
3390/econometrics8020020

Carriero A., Clark T. E., & Marcellino M. G. (2020). Nowcasting tail risks to economic activity with many 
indicators. FRB of Cleveland Working Paper No. 20-13R2. https://doi.org/10.26509/frbc-wp-202013

Carvalho C. M., Polson N. G., & Scott J. G. (2010). The horseshoe estimator for sparse signals. Biometrika, 
97(2), 465–480. https://doi.org/10.1093/biomet/asq017

Chen C. W., Dunson D. B., Reed C., & Yu K. (2013). Bayesian variable selection in quantile regression. Statistics 
and its Interface, 6(2), 261–274. https://doi.org/10.4310/SII.2013.v6.n2.a9

Chen C. W., Gerlach R., Hwang B. B., & McAleer M. (2012). Forecasting value-at-risk using nonlinear regression 
quantiles and the intra-day range. International Journal of Forecasting, 28(3), 557–574. https://doi.org/10. 
1016/j.ijforecast.2011.12.004

218                                                                                                                                    Kohns and Szendrei
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/article/73/1/193/7336940 by Aalto U
niversity user on 31 January 2024

https://doi.org/10.1016/j.ijforecast.2021.01.003
https://doi.org/10.1257/aer.20161923
https://doi.org/10.1007/s40300-020-00190-6
https://doi.org/10.1177/1471082X1101200304
https://doi.org/10.1016/j.jeconom.2008.08.010
https://doi.org/10.1214/19-STS700
https://doi.org/10.1093/biomet/asw042
https://doi.org/10.1080/01621459.2012.716344
https://doi.org/10.1080/01621459.2012.716344
https://doi.org/10.3390/econometrics8020020
https://doi.org/10.3390/econometrics8020020
https://doi.org/10.26509/frbc-wp-202013
https://doi.org/10.1093/biomet/asq017
https://doi.org/10.4310/SII.2013.v6.n2.a9
https://doi.org/10.1016/j.ijforecast.2011.12.004
https://doi.org/10.1016/j.ijforecast.2011.12.004


De Mol C., Giannone D., & Reichlin L. (2008). Forecasting using a large number of predictors: Is Bayesian 
shrinkage a valid alternative to principal components? Journal of Econometrics, 146(2), 318–328. https:// 
doi.org/10.1016/j.jeconom.2008.08.011

Diebold F. X., Gunther T. A., & Tay A. S. (1998). Evaluating density forecasts with applications to financial risk 
management. International Economic Review, 39(4), 863–883. https://doi.org/10.2307/2527342

Diebold F. X., & Mariano R. S. (2002). Comparing predictive accuracy. Journal of Business & Economic 
Statistics, 20(1), 134–144. https://doi.org/10.1198/073500102753410444

Engle R. F., & Manganelli S. (2004). Caviar: Conditional autoregressive value at risk by regression quantiles. 
Journal of Business & Economic Statistics, 22(4), 367–381. https://doi.org/10.1198/073500104000000370
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He X., Jurečková J., Koenker R., & Portnoy S. (1990). Tail behavior of regression estimators and their break

down points. Econometrica: Journal of the Econometric Society, 58(5), 1195–1214. https://doi.org/10. 
2307/2938306

Jordà Ò., Schularick M., & Taylor A. M. (2015). Leveraged bubbles. Journal of Monetary Economics, 76, 
S1–S20. https://doi.org/10.1016/j.jmoneco.2015.08.005

Khare K., & Hobert J. P. (2012). Geometric ergodicity of the gibbs sampler for Bayesian quantile regression. 
Journal of Multivariate Analysis, 112, 108–116. https://doi.org/10.1016/j.jmva.2012.05.004

Kim H. H., & Swanson N. R. (2014). Forecasting financial and macroeconomic variables using data reduction 
methods: New empirical evidence. Journal of Econometrics, 178, 352–367. https://doi.org/10.1016/j. 
jeconom.2013.08.033

Koenker R. (2005). Quantile regression. Cambridge University Press.
Koenker R., & Bassett G. (1978). Regression quantiles. Econometrica, 46(1), 33–50. https://doi.org/10.2307/ 

1913643
Koenker R., Chernozhukov V., He X., & Peng L. (2017). Handbook of quantile regression (1st). Chapman and 

Hall/CRC. https://doi.org/10.1201/9781315120256
Koenker R., & Machado J. A. (1999). Goodness of fit and related inference processes for quantile regression. 

Journal of the American Statistical Association, 94(448), 1296–1310. https://doi.org/10.1080/01621459. 
1999.10473882

Kohns D., & Szendrei T. (2021). ‘Decoupling shrinkage and selection for the Bayesian quantile regression’, arXiv, 
arXiv:2107.08498, preprint: not peer reviewed.

Korobilis D. (2017). Quantile regression forecasts of inflation under model uncertainty. International Journal of 
Forecasting, 33(1), 11–20. https://doi.org/10.1016/j.ijforecast.2016.07.005

Kozumi H., & Kobayashi G. (2011). Gibbs sampling methods for Bayesian quantile regression. Journal of 
Statistical Computation and Simulation, 81(11), 1565–1578. https://doi.org/10.1080/00949655.2010. 
496117

Li H., & Pati D. (2017). Variable selection using shrinkage priors. Computational Statistics & Data Analysis, 
107, 107–119. https://doi.org/10.1016/j.csda.2016.10.008

Li Q., Xi R., & Lin N. (2010). Bayesian regularized quantile regression. Bayesian Analysis, 5(3), 533–556. https:// 
doi.org/10.1214/10-BA521

Makalic E., & Schmidt D. F. (2015). A simple sampler for the horseshoe estimator. IEEE Signal Processing 
Letters, 23(1), 179–182. https://doi.org/10.1109/LSP.2015.2503725

Mazzi G. L., & Mitchell J. (2019). Nowcasting euro area gdp growth using quantile regression. Manuscript.
McCracken M., & Ng S. (2020). Fred-qd: A quarterly database for macroeconomic research (Technical Report). 

National Bureau of Economic Research.
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