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Electron-transport properties in nanostructures can be modeled, for example, by using the semiclassical
Wigner formalism or the quantum-mechanical Green’s function formalism. We compare the performance and
the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two
methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner
formalism is based on the finite-difference scheme whereas for the Green’s function formalism the finite-
element method is used. As a specific application, we consider the device studied by Slobodskyyet al. fPhys.
Rev. Lett. 90, 246601 s2003dg and analyze their experimental results. The Wigner and Green’s function
formalisms give similar electron densities and potentials but, surprisingly, the former method requires much
more computer resources in order to obtain numerically accurate results for currents. Both of the formalisms
can be used to model magnetic resonant tunneling diode structures.

DOI: 10.1103/PhysRevB.71.235301 PACS numberssd: 73.63.2b, 75.47.2m

I. INTRODUCTION

The future spintronics technology requires controlled spin
injection into semiconductor materials. The problem can be
solved using different techniques and constructionsssee, for
example, Refs. 1–5d. The magnetic resonant tunneling diode
sRTDd suggested by Egues on the basis of model
calculations23 and demonstrated experimentally by Slobod-
skyy et al.6 is one of the most promising solutions. The mag-
netic RTD is based on the quantum well made of dilute mag-
netic semiconductor ZnMnSe between two ZnBeSe barriers
and surrounded by highlyn-type ZnSe. In the presence of a
magnetic field there is a giant Zeeman splitting between the
spin-up and spin-down electron states in the quantum well
region. The corresponding resonance peaks in the electron
current separate as a function of the bias voltage, and the
device controls the electron spin states using the bias voltage
rather than external magnetic fields. This is a useful property
for possible practical applications.

In a typical nanoscale transport problem two or more
electrodes are connected to a functional nanostructure. An
important nanosystem is the RTD composed of layers of
semiconducting materials. The offsets between the band
edges of the materials give rise to the two potential barriers
seen by carriers. In the quantum well between the barriers,
resonance states with finite energy width and enhanced am-
plitude are formed. The electron current increases rapidly
when a resonance state appears in the conducting window,
determined by the overlap of the occupied source and unoc-
cupied drain conduction electron bands. When the resonance
state drops with increasing bias voltage below the source
conduction band, the current diminishes causing a region of
negative resistance. In addition to being technologically in-
teresting the RTD is also important as a simple test case for
different formalisms and computational schemes.

Theoretical modeling and computational simulation are
essential for the development of functional nanostructures.
Electron transport properties can be modeled using different
formalisms at different levels of sophistication. Two methods
widely used are the Wigner functionsWFd7,9 and the Green’s

function sGFd formalism.9 The WF approach is a semiclassi-
cal transport formalism that enables the study of systems
exhibiting quantum interference and tunneling effects. The
electron density and the current are obtained from the
Wigner function, which is in turn calculated by solving the
Liouville-von Neumann equation. The GF formalism is a
fully quantum-mechanical scheme with an increased com-
plexity with respect to the WF formalism. Both the WF and
GF formalisms enable self-consistent nonequilibrium calcu-
lations corresponding to a finite bias voltage between the
electrodes.

RTD’s can be modeled as structures which are translation-
ally invariant parallel to the layers. This makes the compu-
tations one-dimensional. The WF and GF formalisms are
very popular schemes in their modelingssee, for example,
Refs. 10–13d. In this work we study the feasibility of the WF
and GF formalisms within the context of the self-consistent
spin-density-functional theorysSDFTd and its local spin-
density approximation to model magnetic RTD’s. Our imple-
mentation of the WF formalism is based on the usual discre-
tation of the partial differential equations on position and
momentum point grids. Our implementation of the GF for-
malism employs the finite-element methodsFEMd. We have
already published our FEM scheme for two-dimensional
nanostructures14 and used it in applications.15 In this work
we critically compare the performance and the results of the
WF and GF implementations for quasi-one-dimensional
RTDs. Moreover, we choose the structure parameters of our
test system to correspond the magnetic RTD device by Slo-
bodskyyet al.6 Thus, we can compare our results also with
experiments and actually analyze the results of the measure-
ments.

Below we use the effective atomic units which are derived
by setting the fundamental constantse="=me=1, and the
material constantsm* = e=1. m* and e are, respectively, the
relative effective electron mass and the relative dielectric
constant to be used in the effective mass approximation. For
ZnSem* =0.145 ande=9.1.16,17 We have used same values
also for the other materials of the magnetic RTD. The effec-
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tive atomic units can be transformed to the usual atomic and
SI units using the relations

Length: 1a0
* = 1

e

m*
a0 < 3.32 nm,

Energy: 1 Ha * = 1
m*

e2 Ha< 47.6 meV,

Current: 1 a.u. * = 1
m*

e2 a.u.< 11.6mA.

Above, Ha denotes the Hartree energy unit.
In Sec. II we introduce the model for the magnetic

RTD and explain the use of the SDFT in the calculations.
In Sec. III we briefly explain the GF and WF formalisms.
In Sec. IV we give the results of the comparisons between
the two formalisms and compare the calculated and
measured results and obtain information on the electronic
structure of the device in question. Section V contains our
conclusions.

II. MODEL

A. Structure of magnetic RTD

The model for the magnetic RTD is shown in Fig. 1. We
assume the semiconducting layers to be infinitely wide in the
lateral directions so that the system is translationally invari-
ant in the direction perpendicular to the current. The doped
regionssshadowed areas in Fig. 1d are modeled by a uniform
positive background charge. The potential barriers due to the
discontinuity of the conduction band between two materials
are described by constant external potentials.

The system is divided into the central regionV and the
outside regionsVL andVR. All the structural variations and
interesting phenomena take place in regionV which is cho-
sen large enough so that the effect of the RTD device on the
electron density has vanished at the boundaries]VL/R. VL/R
are the semi-infinite leads where the electron density and the
potential are constant. The bottom of the conduction band
and the Fermi-levelmR in the right lead are shifted by the
bias voltageVSD with respect to the corresponding values in
the left leadssee Fig. 1d. In our model the electron transport

is ballistic with no phonon or defect scattering. This means
that the total potential drop takes place withinV.

In addition,V is divided into nine smaller parts S1,…,S9
as shown in Fig. 1. These regions describe different semicon-
ductor material layers. The parameters of the layers are
given in Table I. We have chosen the widths and the doping
densities of our magnetic RTD structure similar to those
in the actual device made by Slobodskyyet al.6 The positive
background charge densities in regions S1 and S9 are
equal to that inVL/R, in S2 and S8 they are much smaller,
and next to the potential barriers there is no background
charge at all.

The regions S4 and S6 are the potential barriers. Because
there is no definitive information about the barrier height we
estimate it by comparing the shapes of the calculated current-
voltage curves to the measured ones. By the shape we mean
mainly the widths of the resonances; the positions of the
resonances are quite insensitive to the barrier height. The
barrier height is the only structural parameter which we have
to determine by fitting. We find that the barrier height of 23%
of the band gap difference18,19 between ZnSe and ZnBeSe
results in a good fit. Moreover, in order to estimate effects of
the impurity band formation in the highly doped regions we
have in some test calculations tried to shift the bottom of the
bandssand Fermi levelsd in the highly doped regions with
respect to those in the insulating ones.

The quantum well S5 is made of the dilute magnetic semi-
conductor ZnMnSe. An external magnetic field causes a gi-
ant Zeeman effect, splitting the spin-up and spin-down elec-
tron states. In the other parts of the RTD the spin splitting is
small and assumed to vanish. We calculate the spin splitting
DE in S5 as Slobodskyyet al.,6 i.e.,

DE = N0axs0BsS sgmBB

kBsT + Teffd
D . s1d

Above, N0a is thes-d exchange integral,x the Mn concen-
tration, g is the Landé factor,mB the Bohr magneton,Bs is
the Brillouin function of spins, s0 is the effective Mn spin,
and Teff is the effective temperature. The values of the pa-
rameters are N0a=0.26 eV, x=8%, s=5/2, g=2.00,
s0=1.13, andTeff=2.24 K. The values of theDE for the rel-
evant magnetic fields and temperaturessSec. Vd are collected
into Table II.

FIG. 1. Magnetic RTD model. The shaded areas denote positive
background charge. The detailed information about the different
layers S1,…,S9 are given in Table I.

TABLE I. Parameters of the different layers S1,…,S9 used in
the calculations.

Region Material
Width
snmd

Doping level
scm−3d

Potential
VW smeVd

S1, S9 ZnSe 25 1531018 0

S2, S8 Zn0.97Be0.03Se 15 131018 0

S3, S7 ZnSesid 10 0 0

S4, S6 Zn0.7Be0.3Se 5 0 92

S5 Zn0.96Mn0.08Se 9 0 ± 1
2DE
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B. Spin-density-functional theory

In order to model electron-electron interactions we use the
SDFT within the local-density approximation. The electronic
structures and currents are calculated using the GF or the
WF formalisms, which we will explain later in Sec. III. In
both formalisms the spin-upss= ↑ d and spin-downss= ↓ d
electron densitiesn↑,↓sxd correspond to the effective
potentials

Veff
s sxd = VCsxd + Vxc

s sxd + VW
s sxd, s2d

wherex is the coordinate perpendicular to the layers,VC is
the Coulomb potential, Vxc

s the exchange-correlation
potential,20 and VW

s the external potential including the bar-
riers and the giant Zeeman spin splittingDE ssee Table IId.
The spin densities and the effective potentials are solved
self-consistently.

The Coulomb potentialVC is calculated using the modi-
fied Poisson equation21

¹2VC
i+1sxd − k2VC

i+1sxd = − 4pfn + sxd − n−
i sxdg − k2VC

i sxd,

s3d

where n−sxd=n↑sxd+n↓sxd is the total electron density and
n+sxd is the positive background charge. Indexi counts the
self-consistency iterations, so thatVC

i sxd is the solution from
the previous self-consistency iteration. Above,k is a param-
eter which controls the screening of the potential fluctuations
due to the charge sloshing between the iterations. A
reasonable choice of thek parameter is of the order of the
Thomas-Fermi wave vector, in which case the solution
does not depend onk and the number of the self-consistency
iterations needed is remarkably reduced. In addition, the
stability obtained by the use of the modified Poisson
equation, we stabilize the iterations also by mixing the old
effective potentialVeff

i with that obtained from Eqs.s2d and
s3d. That is,

Veff
i+1 = aVeff + s1 − adVeff

i , s4d

where the feedback parametera is typically 0.2 in our cal-
culations.

We calculate the currents due to the spin-up and spin-
down electrons through the magnetic RTD as a function of
the voltage. The calculation always starts from the zero bias
voltage VSD. When the self-consistent nonbiasedsequilib-

riumd result is reached, we increaseVSD in small steps and
iterate at every value until convergence. The effective poten-
tial corresponding to the previousVSD value is used as the
starting point of the iterations. This ensures the stability of
the process. Actually we found that the resulting current volt-
age curve does not depend on the sweep direction of the bias
voltage. This is due to the very small electron density in the
quantum well region S5 even in the case of occupied reso-
nance states. This insensitivity is in accord with the findings
by Slobodskyyet al.6

III. FORMALISMS

In this section we present the GF and WF formalisms by
ignoring the spin dependence for simplicity. The generaliza-
tion to the spin-dependent forms, which we use in the actual
calculations, is straightforward.

A. Green’s function formalism

The GF formalism used in the electron density and trans-
port calculations is explained in detail in Ref. 9. We have
implemented this formalism using the finite-element method
sFEMd. Our FEM formulation for two-dimensional nano-
structures is discussed in Ref. 14.

Our present magnetic RTD system is translationally in-
variant in directions perpendicular to the electron current.
The total electron energyvtot can then be divided into two
parts

vtot = v + v', s5d

where v' is the kinetic energy in the perpendicular direc-
tions andv includes the kinetic energy along the current and
the sone-dimensionald potential energy. Now we can write a
one-dimensional equation for the single-particle retarded
Green’s function in the real space using spatial coordinates,x
andx8 in the direction perpendicular to the layers

sv − ĤdGrsx,x8;vd = dsx − x8d, s6d

whereĤ is the Hamiltonian

Ĥ = −
1

2
¹2 + Veffsxd. s7d

Above, v has a small imaginary part, i.e.,v=v8+ ih. This
distinguishes between the retarded and the advanced Green’s
functions. Equations6d is solved using open boundary con-
ditions at]VL and]VR. This means that electron wave func-
tions penetrate the boundaries without reflection. In order to
restrict the numerical calculations into the central regionV
Eq. s6d is written in the form

fv − Ĥ0 − SL
r svd − SR

r svdgGrsx,x8;vd = dsx − x8d, s8d

whereSL/R
r svd are the self-energies of the leadsVL/R andĤ0

is the Hamiltonian of the isolated regionV.
The electron density is obtained from the so-called lesser

Green functionG, by integrating overv:

TABLE II. Values of the spin splittingDE in the cases consid-
ered in Sec. V.

Magnetic fieldsTd TemperaturesKd DE smeVd

0 4.2 0.0

2 4.2 10.4

4 4.2 16.7

6 4.2 19.8

6 0 23.2

6 8 16.2

6 30 6.7
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n−sxd =
− 1

2p
E

−`

`

ImfG,sx,x;vdgdv. s9d

Notice that we assume the parabolic free electron states in
the perpendicular directions and a constant two-dimensional
density of states is used. When no bias voltage is applied the
system is in equilibrium andG, is calculated as

G,sx,x8;vd = 2FL/RsvdGrsx,x8;vd. s10d

Above,FL/R are related to the Fermi distributions inVL/R and
in the equilibrium they are equal. The effects of the perpen-
dicular directions in our computationally one-dimensional
system are included inFL/R by integrating the Fermi distri-
butions overv'

FL/Rsvd =
1

p
E

0

` 1

1 + esv+v'−mL/Rd / kBT
dv'

=
1

p
kBT lns1 + emL/R−v / kBTd. s11d

Notice that we assume above parabolic free electron states in
the perpendicular directions and a constant two-dimensional
density of states is used. When the bias voltageVSD is ap-
plied, FLsvd andFRsvd are split byVSD on the energy axis.
In this caseG, has to be calculated as

G,sx,x8;vd = − iFRsvdGrsx,xR;vdGRsxR,xR8 ;vdGasxR8,x8;vd

− iFLsvdGrsx,xL;vdGLsxL,xL8 ;vdGasxL8,x8;vd,

s12d

wherexL/R are the coordinates of the boundaries]VL/R and
GL/R are defined as

iGL/R = SL/R
r − SL/R

a = 2i ImsSL/R
r d. s13d

Equation s12d is valid also in equilibrium, but only when
there are no bound states. Namely, in this form the electron
density inV is composed of scattering electron states coming
from VL andVR.

To perform the energy integral in Eq.s9d is the heaviest
part of the calculations. The calculation ofG, at several
energiesv takes CPU time but cannot be avoided due to the
sharp resonance peaks in our RTD system. In order to reduce
the number ofv values needed we move parts of the integral
to the complex plane where the changes inG, are smooth.
The move of the integration part away from the real axis
requires that the integrand is analytic above the real axis. To
fulfill this we first approximate Eq.s11d as

FL/Rsvd <
mL/R − v

p
. s14d

This is exactly true at zero temperature and a good approxi-
mation at energies fewkBT below the Fermi levelsmL/R.
Next we write Eq.s12d in the form

G,sx,x8d = − iFLfGrsx,xRdGRsxR,xR8dGasxR8,x8d

+ Grsx,xLdGLsxL,xL8dGasxL8,x8dg, s15d

− ifFR − FLgGrsx,xRdGLsxR,xR8dGasxR8,x8d,

where thev dependences are not shown for the clarity.
Now we can split the integrals9d into three partsn−1, n−2,
andn−3 shown in Fig. 2. The slightly complicated division is
due to the proper inclusion of the perpendicular kinetic en-
ergy component. Here and below we assume thatmLømR. In
the first partn−1 comes from the first term in Eq.s15d, where
the form ofG, in Eq. s10d is used and the integral

n−1 =E
v0

mL−DkBT 1

p
smL − vdImfGrsx,x8;vdgdv s16d

is moved to the complex plane. Above,D is about 3,…,5 so
that Eq.s14d is approximately valid. The integral starts at the
energyv0, which is below the bottom of the conduction band
of the left lead so that the contribution of possible bound
states is also included. The integral ends at a couple ofkBT
below the Fermi levelmL.

The second term in Eq.s15d yields the integral.

n−2 =E
v0+mR−mL

mL−DkBT 1

p
smR − mLd

3 Grsx,xR;vdGRsxR,xR8 ;vdGasxR8,x8;vddv. s17d

fNote: GRsvd=0 for v,VSD.g Because Eq.s12d has to be
used the integrand is not analytic on the complex plane and
the integration has to be performed along the real axis. The
integral n−2 vanish whenVSD=0 andVSD.mL fthe case of
Fig. 2sadg.

The integraln−3 starts at a couple ofkBT below mL and
ends at a couple ofkBT abovemR. It is obtained as

n−3 =
1

2p
E

mL−DkBT

mR+DkBT

fFRsvdGrsx,xR;vdGRsxR,xR8 ;vd

3GasxR8,x8;vd + FLsvdGrsx,xL;vd

3GLsxL,xL8 ;vdGasxL8,x8;vdgdv. s18d

WhenVSD is larger than the width of the occupied conduc-
tion band in the leadsVL/R fthe case of Fig. 2sbdg electron
states frommL+DkBT to VSD are not occupied.

FIG. 2. Integration paths for the electron density calculations.
The paths are divided into three partsn−1, n−2, andn−3. sad andsbd
correspond to the casesVSD,mL andVSD.mL, respectively.
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The electron tunneling probability throughV is calculated
using the Green’s functions as

Tsvd = GLsxL,xL8 ;vdGrsxL8,xR;vdGRsxR,xR8 ;vdGasxR8,xL;vd,

s19d

and the current is obtained by integrating overv, i.e.,

I =
1

p
E

−`

`

TsvdfFRsvd − FLsvdgdv. s20d

This whole integral has to be calculated on the real axis,
which is not a problem because the integral is evaluated only
once after the self-consistent solution of the electron density
is reached.

B. Finite-element implementation of the GF formalism

We have implemented the GF formalism using the FEM.
For the FEM implementation we need to write the equations
to be solved in the variational form. We start from Eq.s6d
and multiply both sides by a continuous well-behaving func-
tion vsxd and integrate overV. After modifications the equa-
tion obtains the form

E
V
H− ¹ vsxd

1

2
¹ Grsx,x8;vd

+ vsxdfv − Vef fsxdgGrsx,x8;vdJdx

+ vsxLdŜL
r sxL,xL;vdGrsxL,xL;vd

+ vsxRdŜR
r sxR,xR;vdGrsxR,xR;vd = vsx8d. s21d

Here the self-energy operatorsŜR/L
r have the analytic

solutions14

ŜL/R
r sx,x8;vd =

1

4

]2gL/R
e sx,x8;vd
]x ] x8

, s22d

wheregL/R
e are the retarded Green’s functions in the isolated

leadsVL/R so that they vanish at the boundaries]VL/R. In our
model the potential is constant in the leads so that

gL/R
e sx,x8;vd = −

i
Î2v

seiÎ2vsx−x8d − eiÎ2vsx+x8−2xL/Rdd.

s23d

In the FEM the retarded Green’s function is expanded in the
basisfi,

Grsx,x8;vd < o
i,j=1

N

gijsvdf jsxdfisx8d. s24d

This is an approximation due to the finite numberN of the
basis functions. Equations24d is inserted into Eq.s21d. The
values of the coefficientsgij are then calculated by choosing
vsxd=fksxd.

We use a basis consisting of the linear functionsf0 and
f1 and of high-order polynomialsf j.22 That is,

f0sxd =
1

2
s1 − xd, f1sxd =

1

2
s1 + xd,

f jsxd =Î 1

2s2j − 1d
fPjsxd − Pj−2sxdg, j = 2,3,…,

s25d

where Pjsxd’s are the Legendre functions of the orderj .
f jsxd’s are given in the reference element withx=f−1,1g.
The linear functions span the region of two elements,
whereas thej .1 functions are localized within one element
only. The inclusion of the high-order basis functions reduces
the number of basis functions needed in order to obtain ac-
curate results. This has a remarkable effect in GF electron
structure calculations even for one-dimensional systems. The
calculation of theGrsx,x8 ;vd requires the inversion of a ma-
trix of the size ofN3N. The derivatives of the functions
with j .1 are orthogonal to each other. This makes their use
numerically stable and we have implemented elements up to
the fifth order.

C. Wigner function formalism

We have also implemented the WF formalism for the
electron density and the current calculations. Reviews of the
WF formalism for studies of open systems can be found in
Refs. 7 and 8. There are similarities between our GF and WF
implementations in the treatment of the one-dimensional
equations resulting from the translational invariance in the
directions perpendicular to the electron current. They show
up, for example, in the boundary conditions as will be dis-
cussed below.

The WF fsq,pd is defined as the Fourier transform of the
density matrixrsx,x8d, i.e.,

fsp,qd =E
−`

`

e−iprrSq +
1

2
r,q −

1

2
rDdr, s26d

whereq= 1
2sx+x8d andr =sx−x8d are the new coordinates and

the well known phase-space representationfsq,pd is ob-
tained.

In order to use the WF formalism in transport theory we
must study the time evolution of the WF. It is calculated
from the quantum-mechanical Liouville-von Neumann equa-
tion

i
]r

]t
= fĤ,rg ; Lr, s27d

whereĤ is the Hamiltonian of the system andL is the Liou-
ville superoperator. In the WF this equation has the form

] fsq,pd
]t

= − p
] fsq,pd

]q
−E

−`

` 1

2p
Vsq,p − p8dfsq,p8ddp8,

s28d

where
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Vsq,pd = 2E
0

`

sinsprdFVeffSq +
1

2
rD − VeffSq −

1

2
rDGdr

s29d

is a one-dimensional potential kernel. The effect ofVeff is
nonlocal, incorporating quantum interference effects.
Namely, the potential kernelVsq,p−p8d spreads according to
Eq. s28d the WF fsq,pd among different values ofp and adds
the interference between alternative paths to the formulation.

The electron densityn−sqd and current densityJsqd are
calculated as

Jsqd =
1

2p
E

−`

`

fsq,pdp dp s30d

and

n−sqd =
1

2p
E

−`

`

fsq,pddp. s31d

In an open system we need to make a difference between the
incoming and outgoing particles to account for the irrevers-
ibility. Our system is one-dimensional, so that 0øqøWV,
and there are two boundaries atq=0 andq=WV. Here,WV

=xR−xL is the width of the central regionV. Since the char-
acteristics are first-order equations only one boundary value
is needed. Moreover, since particles which havep.0 are
moving in the positive direction on theq axis, we must sup-
ply the boundary conditions on the left-hand side boundary
]VL from where they are originating with the momentum
distribution in the reservoir. Similarly particles withp,0 are
moving in the negative direction on theq axis so that the
boundary conditions must be specified on the right-hand side
boundary]VR. This scheme invokes the boundary conditions

fs0,pdp.0 = FLS1

2
p2D ,

fsWV,pdp,0 = FRS1

2
p2D , s32d

where FL/R are as defined in Eq.s11d and take again the
integration over the perpendicular energy components into
account.

We solve the Wigner transport equation for the steady
state with ]f /]t=0 numerically using the discretization
scheme explained in Ref. 7. The position coordinateq is
simply discretized asNq equally spaced points with the spac-
ing Dq=WV / sNq−1d. OnceDq is fixed the Fourier complete-
ness relation gives the grid spacingDp as a function ofDq as

pk =
p

Dq
Sk − 1

Np
−

1

2
D, k = 1,2,…,Np. s33d

The derivative offsq,pd with respect toq in the transport
equations28d has been calculated using the second-order dif-
ferencing schemesSDSd. That is

] fsq,pd
]q

= ± F3fsq,pd − 4fsq ± Dq,pd + fsq ± 2Dq,pd
2Dq

G ,

s34d

where the different signs are chosen according to the signs of
pk in such a way that the proper boundary conditions given
by Eq.s32d are coupled to the transport equation. It has been
shown by Buot and Jensen24,25 that the SDS gives consider-
ably better results than the conventional upwind-downwind
differencing schemesUDSd.

D. Differences between the Green’s function and Wigner
function formalisms

The GF and WF formalisms are related. Namely, we can
first calculate the density operator in the GF formalism as

rsx,x8d = − iE
−`

`

G,sx,x8;vddv. s35d

Then the coordinate transformation is performed and we get
the WF fsp,qd. If fsp,qd is calculated in this way Eqs.s30d
and s31d of the WF formalism give exactly the same results
as Eqs.s9d and s20d of the GF formalism.

The differences in the results of the two formalisms are
caused by the calculation offsp,qd in the WF formalism by
using the Liouville-von Neumann equation. For an infinite
system the results would still be equal but a finite calculation
region causes the differences. Namely, the WF formalism
does not have similar totally open boundary conditions as the
GF formalism. Differences arise in this case also because
there is no energy dependence in the Liouville-von Neumann
equation whereasG, depends onv.

Using the GF formalism typically means that we have to
calculate a lot of information which is of no further use. The
calculation of GRsx,x8 ;vd using N basis functions means
inverting a N3N matrix. This requires the solution ofN
linear equations each havingN unknown variables. The co-
efficient matrix is sparse, including only overlapping terms
of the basis functions. In order to calculate the electron den-
sity we have to integrate overv, which results in calculating
Grsx,x8 ;vd many times. Luckily, in the integralsn−2 andn−3

fEqs. s17d and s18dg we need only two linear equations for
GrsxL ,xd andGrsxR,xd.

In the WF formalism we need to solve for the Wigner
function, which depends on two variablesp andq. Because
of the use of the discretization form of Eq.s34d the depen-
dence between these variables is more complicated than that
betweenx andx8 in the GF formalism. This means that we
solve a set of linear equations which includesNp3Nq un-
known variables. The coefficient matrix has a belt type filling
where the width of the belt is large. This makes the linear
equation hard to solve.

IV. RESULTS

In this section we give results of our electronic structure
and electron current calculations for the magnetic RTD struc-
ture described in Sec. II A. We concentrate on the feasibility
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of the GF and WF formalisms to model this kind of systems.
In the first subsection this is done by comparing the results of
the two formalisms with each other. In the second subsection
we compare our results with those measured by Slobodskyy
et al.6 and thereby analyze the electronic structure of the
actual device. Finally, we make predictions for the spin-
polarized current when structure parameters of the magnetic
RTD are varied.

A. Comparison between the Green’s function and Wigner
function formalisms

The electron density and the effective potential corre-
sponding to the 0.15 V bias voltage and calculated using the
GF and the WF formalisms are shown in Figs. 3 and 4,
respectively. The two formalisms give very similar results.
There are Friedel oscillations in the electron density in the
leads but their amplitude is so small that they are not visible
on the scale used. The electron density drops close to zero in
the undoped regions. For this value ofVSD some of the low-
energy resonance states are occupied. However, these states
cause only a small density increment between the potential
barriers. The electron density shows in both formalisms a
small asymmetric behavior which becomes clearer with in-
creasingVSD.

The effective potential in Fig. 4 rises strongly at the in-
terfaces between the doped and undoped materials. Within
the undoped region the potential changes then rather linearly
due to the applied bias voltage. The spin splitting of the
potential due to the external term of Eq.s1d does not propa-
gate out of the quantum well region. Our GF and WF calcu-
lations do not include inelastic scattering. That would be
important for finding self-consistent solutions if, on the
higher potential side of the barriers, there are “notch” states
below the band of occupied electron states.7 In our case

“notch” states do not appear because of the strong potential
rise due to the undoped material layers.

The current through our magnetic RTD structure is shown
in Fig. 5 as function of the bias voltageVSD. The spin-up and
spin-down contributions, split strongly by the magnetic field
of 6 T, show the typical RTD behavior. The most prominent
peaks at around 0.14–0.18 V actually correspond to the sec-
ond lowest resonance states in energy. Most of the conduc-
tion takes place close to the right Fermi levelmR because the
large undoped region diminishes strongly the tunneling prob-
ability at lower energies. For this reason also the current

FIG. 3. Electron density calculated using the GFssolid lined and
the WF sbroken lined formalisms. The values of the temperature,
magnetic field, and bias voltage used are 4.2 K, 6 T, and 0.15 V,
respectively. The gray areas denote level of positive back ground
charge.

FIG. 4. Effective potential calculated using the GFssolid lined
and the WFsdashed lined formalisms. The values of the tempera-
ture, magnetic field, and bias voltage used are 4.2 K, 6 T, and 0.15
V, respectively. The effective potentials for spin-up and spin-down
electrons differ remarkably only between the potential barriers.

FIG. 5. Current through the magnetic RTD structure as a func-
tion of the bias voltage. The contributions due to spin-downssolid
lined and spin-upsdashed lined electrons are shown. The results in
the upper and lower panels are calculated using the GF and the WF
formalisms, respectively. The values of the temperature and mag-
netic field used are 4.2 K and 6 T, respectively.
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peaks due to the lowest-energy resonances at around 0.03–
0.07 V are hardly visible in the GF results. They are clearer
in the WF results, but this is partly due to numerical diffi-
culties as will explain below. In the WF formalism the cur-
rent may even change its direction and have negative values
as seen in the lower panel of Fig. 5.

The two resonance states per spin in the voltage region of
0–0.25 V can be clearly seen in the local density of states
sLDOSd calculated in the GF formalism. Figure 6 shows the
LDOS for the zero-magnetic field and the zero-bias voltage
case. In the absence of the magnetic field, there is no differ-
ence between the spin-up and spin-down electron states. The
first and the second resonance correspond to the quantum
well states with zero and one node plane parallel to the layer
structure, respectively. We can also see that especially at low
energies the LDOS enhances just outside the undoped re-
gion.

The GF and the WF formalisms give almost equal elec-
tron densities and effective potentials as demonstrated in
Figs. 3 and 4. However, the requirements to reach similar
numerical convergences are very different. In the GF calcu-
lations we have used 36 fifth-order elements corresponding
to 181 basis functions. A further increase of the number of
elements does not change the results. In the WF calculations
we have used as many asNq=320 andNp=300 discretization
points. This means that the number of unknown variables in
the linear equations to be solved is of the order of 105. If we
reduce the number of discretization points from this magni-
tude, the effective potential in the RTD region moves down
becoming saggy. The very different numerical characteristics
of our WF and the GF calculations demonstrate the effi-
ciency of the high-order polynomial basis used in our GF
implementation.

In the current-voltage curves of Fig. 5 the differences be-
tween the WF and GF formalisms are more visible than in
the electron density of Fig. 3 although the formalisms give
the same qualitative behavior. The resonance peaks of the
WF results are located at slightly lower bias voltagessener-
giesd than those in the GF results. This is in accordance with

the lower effective potential in the WF calculationsssee Fig.
4d. The GF formalism always gives by definition a positive
current whereas the current calculated by using the WF for-
malism may become negative. This is a well-known artifact
of the WF formalism. If we reduce the number of discreta-
tion points the current attains even more negative values.
This implies that the WF results of Fig. 5 are not numerically
fully convergent. However, with the present computer
memory limits we cannot increase the number of discretiza-
tion points much beyond 105. At this stage the WF calcula-
tion begins to require also more CPU time than the GF cal-
culations. This is somewhat surprising because one would
think that the less approximative GF formalism would be
computationally heavier. The use of a more accurate differ-
encing scheme could improve the WF results without in-
creasing the number of the discretization points, but this
would increase the filling of the coefficient matrix to be in-
verted and the CPU time needed.

The numerical problems in the WF calculations are
caused by the narrow resonance peaks. A Fourier transforma-
tion has to be evaluated over electron energies, and the reso-
nance peaks require a remarkable increase of discretation
points. Indeed, Fig. 5 shows that the current from the WF
calculations for both spins oscillates strongly in the region of
the first resonance peak, which is very narrow. The problem
is not faced in the electron density calculations, because the
contributions of the resonance states to the total electron den-
sity are small. Our real-space GF implementation can handle
the narrow resonance peaks better because we use the adap-
tive Simpson integral routine to calculate the density inte-
gralsn−2, n−3, and the current integral along the realv axis
and because the integraln−1 is performed in the complex
plane where the resonance peaks are broadened.

B. Comparison to the experiments

We compare our calculated results with the recent mea-
surements by Slobodskyyet al.6 In particular, we have cal-
culated the current vs bias voltage curves using the same
magnetic field and temperature values as they have used.

The results of the WF and GF calculations for the current
as a function of the bias voltage are shown in Fig. 7 corre-
sponding to different magnetic fields and in Fig. 8 to differ-
ent temperatures. As was mentioned above we have chosen
the height of the potential barriers so that the widths of the
two prominent spin-up and spin-down peaks from our GF
calculations agree at low temperatures and high magnetic
fields with experiment as well as possible. With this fitting
only, our predictions for the magnetic field and temperature
dependences are rather similar to experiments. The spin-up
and spin-down contributions separate in similar ways with
increasing magnetic field and merge together with an in-
creasing temperature. These overall features are related to
the dependence of the spin splittingDE on magnetic field
and temperature in Eq.s1d. One should note that the dis-
tances between the spin-up and spin-down peaks in the cur-
rent are by a factor of 2 larger thanDE ssee the values in
Table IId. The reason is that part of the voltage is dropped
over the first potential barrier. This fact was taken into ac-

FIG. 6. LDOS of the GF formalism as a function of the position
x along direction of the current and the energyv. The values of the
temperature and magnetic field are 4.2 K and 0 T, respectively.
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count by Slobodskyyet al.6 by a lever arm of 2.1 when
comparing the measured voltage splitting with the theoretical
DE. Our simulations confirm the magnitude of the lever arm.

Even if the shapes of the calculated current-voltage curves
are similar to those in the experiment, the calculated current
vales are up to five orders in magnitude too large.sWe as-
sume that the area of the experimental device is 100mm
3100 mm.d The current amplitudes predicted by our WF and
GF calculations agree reasonably well and they are similar in
magnitude to currents calculated for typical RTD structures
in Refs. 7 and 8. This indicates that the reason for the theory-
experiment disagreement is in fundamental approximations.
It is well known that the density-functional theory gives
about two orders of magnitude too large tunneling currents
through molecules in comparison with experiments.26 We

have also used the effective mass approximation which is
also expected to affect the magnitude of the current.

However, the present large discrepancy calls for investi-
gation of other assumptions we have done. One reason could
be that the high doping in the leads results in the impurity
band formation which we have not taken into account, but
used the parabolic free energy band with the effective mass
of the conduction band. If the improved description of the
bands moved the first resonance peak to be the relevant one
in the correct bias voltage region, the current magnitude
might also decrease. We cannot easily use different effective
masses in the different regions of the computations. There-
fore we mimic the effect of the formation of the impurity
band by lowering the external potential in the leads with
respect to that in the undoped regions. However, even a low-
ering of the order of the bandwidth in the leads does not

FIG. 7. Current through the magnetic RTD structure as a func-
tion of the bias voltage and different values of the magnetic field.
The structure is defined in Fig. 1 and in Table I. The results in the
panelssad and sbd are calculated using the WF and the GF formal-
isms, respectively. The temperature is 4.2 K. For clarity, the succes-
sive curves are shifted by 2.53104 A/cm2 with respect to each
other.

FIG. 8. Current through the magnetic RTD structure as a func-
tion of the bias voltage in different temperatures. The structure is
defined in Fig. 1 and in Table I. The results in the panelssad andsbd
are calculated using the WF and the GF formalisms, respectively.
The magnetic field is 6 T. For clarity, the successive curves are
shifted by 2.53104 A/cm2 with respect to each other.
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result in an appreciable shift of the total effective potential
between the lead and the central region. This is because in
our self-consistent calculations the ensuing charge transfer
causes a change in the electrostatic potential opposing the
shift of the external potential. Thus, the positions of the reso-
nance peaks on the bias voltage axis are mainly derived from
the width of the quantum well and from the fact that in
equilibrium the first resonance state has to be mostly unoc-
cupied, i.e., slightly above the Fermi level.

The remaining difference of about 30 mV between the
positions of the theoretical current peakssFigs. 7 and 8d and
those of the measured ones, so that the theoretical peaks are
at higher voltages, may be due to several effects. First of all,
uncertainty in the thickness of the quantum well affects
strongly the resonance positions. The value of the series con-
tact resistance in the measurements, the lack of inelastic scat-
tering, and the use of a constant effective electron mass in
our modeling may also shift the peaks. However, the energy
shifts due to these uncertainties are expected to be smaller
than the distances between the resonances for each spin di-
rection: the distance between the first and the second reso-
nance is about 100 mVssee Fig. 6d. Therefore our conclusion
is that the current peaks seen in the measurements by Slo-
bodskyyet al. correspond to the second resonance state in
energy. The fact that there are no traces of the first reso-
nances in the experiment is in agreement with the small in-
tensity of the first peaks in comparison with that of the sec-
ond peaks in our GF calculations.

C. Effects of the width of the potential well

In the previous sections we have concentrated on model-
ing and analyzing the magnetic RTD structure by Slobod-

skyy et al. Next we predict how the geometry of the device
affects the spin polarization of the current. The obvious pa-
rameter to be varied is the width of the quantum well be-
cause it determines the positions of the resonances on the
energy axis and affects strongly even the qualitative features
of the current-voltage curves. Thus, in the following we keep
the width and height of the potential barriers the same as in
the previous calculations and vary the widthLS5 of the po-
tential well using the valuesLS5=0.25LS5

0 , 0.5LS5
0 , and 2LS5

0 ,
whereLS5

0 is the original width of 9 nmsTable Id.
The current as a function of the bias voltage for the dif-

ferent widths of the potential well is shown in Fig. 9. We see
that the narrowing of the well moves resonance states to-
wards higher voltages and the first resonance peak for each
spin becomes active, i.e., its contribution to the total current
becomes evident. We also note that the magnitude of the
current increases rapidly with decreasing potential well
width. The increase of the potential well width to 2LS5
causes the resonances to come closer to each other and over-
lap more strongly. This might be an undesirable feature for
device applications.

Another view of the functioning of the magnetic RTD
structure as a spin switch is given in Fig. 10 showing the
relative polarization of the current, i.e., the difference be-
tween the spin-up and spin-down electron currents divided
by the total current. For structures with very narrow potential
wells the polarization is reduced, although the magnitude of
the current is largesFig. 9d. For structures with wide poten-
tial wells the spin splitting for a given magnetic field strength
may become comparable with the distances between the
resonances. This causes a complicated polarization structure
as a function of the bias voltage as can be seen in Fig. 10 for
the widest potential well of 2LS5. In conclusion, for a given
magnetic field strength there is an optimum potential well
width with good polarization properties and high current in-
tensity. In the structures studied above and in the strong field
of 6 T it would be approximately 0.3–0.5 times the original
width LS5

0 .

FIG. 9. Current through a magnetic RTD structure as a function
of the bias voltage. The structure is defined in Fig. 1 and in Table I
with the exception that the width of the quantum wellsregion S5d is
scaled relative to the original widthLS5

0 . The results are calculated
using the GF formalism and they correspond to the the magnetic
field of 6 T and zero temperature. For clarity, the successive curves
are shifted by 3.53104 A/cm2. The lowest curve for 0.253LS5

0 is
scaled by a factor of 1/10.

FIG. 10. Relative polarization of the current through a magnetic
RTD structure as function of the bias voltage. The curves corre-
spond to the total currents shown in Fig. 9. See also the caption of
Fig. 9.
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V. CONCLUSIONS

We have used the semiclassical Wigner function formal-
ism and the quantum-mechanical Green’s function formalism
to model spin-dependent electron transport through a mag-
netic resonant-tunneling diode structure. Our calculations are
based on the self-consistent solution of the electronic struc-
tures and currents within the density-functional theory. Both
formalisms give very similar results for the electron density,
but the current is more sensitive to the formalism used. We
have traced the differences to be largely due to the numerical
accuracy which is costly to achieve in the conventional
implementation of the Wigner function formalism. Surpris-
ingly, the Green’s function formalism implemented by using
the finite-element method requires less computer resources
and numerically converged results are obtained.

Using the two schemes, especially the Green’s function
formalism, we have analyzed the recent measurements by
Slobodskyyet al.6 for an actual magnetic resonant-tunneling

diode. The magnetic-field and temperature dependencies in
the measured current-bias-voltage curves are well repro-
duced. The two-peak structure is found to result from the
spin-split resonance second lowest in energy. We show that
for a given strength of the magnetic field causing the spin
splitting there exists an optimum width for the quantum well
so that high spin polarization and current intensity are
achieved.
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