' Aalto University

Havu, P.; Tuomisto, N.; Vaananen, R.; Puska, M.J.; Nieminen, R.M.
Spin dependent electron transport through a magnetic resonant tunneling diode

Published in:
Physical Review B

DOI:
10.1103/PhysRevB.71.235301

Published: 02/06/2005

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
Unspecified

Please cite the original version:

Havu, P., Tuomisto, N., Vaananen, R., Puska, M. J., & Nieminen, R. M. (2005). Spin dependent electron
transport through a magnetic resonant tunneling diode. Physical Review B, 71(23), 1-11. Article 235301.
https://doi.org/10.1103/PhysRevB.71.235301

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.


https://doi.org/10.1103/PhysRevB.71.235301
https://doi.org/10.1103/PhysRevB.71.235301

PHYSICAL REVIEW B 71, 235301(2005

Spin-dependent electron transport through a magnetic resonant tunneling diode

P. Havu, N. Tuomisto, R. Vaananen, M. J. Puska, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland
(Received 23 November 2004; revised manuscript received 11 February 2005; published 2 June 2005

Electron-transport properties in nanostructures can be modeled, for example, by using the semiclassical
Wigner formalism or the quantum-mechanical Green’s function formalism. We compare the performance and
the results of these methods in the case of magnetic resonant-tunneling diodes. We have implemented the two
methods within the self-consistent spin-density-functional theory. Our numerical implementation of the Wigner
formalism is based on the finite-difference scheme whereas for the Green’s function formalism the finite-
element method is used. As a specific application, we consider the device studied by Slokeidskyyhys.

Rev. Lett. 90, 246601 (2003] and analyze their experimental results. The Wigner and Green’s function
formalisms give similar electron densities and potentials but, surprisingly, the former method requires much
more computer resources in order to obtain numerically accurate results for currents. Both of the formalisms
can be used to model magnetic resonant tunneling diode structures.

DOI: 10.1103/PhysRevB.71.235301 PACS nun®er73.63—b, 75.47—m

I. INTRODUCTION function (GP) formalism? The WF approach is a semiclassi-

The future spintronics technology requires controlled spir@l transport formalism that enables the study of systems
injection into semiconductor materials. The problem can beéXxhibiting quantum interference and tunneling effects. The
solved using different techniques and constructitee, for ~ electron density and the current are obtained from the
example, Refs. 195The magnetic resonant tunneling diode Wigner function, which is in turn calculated by solving the
(RTD) suggested by Egues on the basis of modeLiouville-von Neumann equation. The GF formalism is a
calculation$® and demonstrated experimentally by Slobod-fully quantum-mechanical scheme with an increased com-
skyy et al8 is one of the most promising solutions. The mag-plexity with respect to the WF formalism. Both the WF and
netic RTD is based on the quantum well made of dilute magGF formalisms enable self-consistent nonequilibrium calcu-
netic semiconductor ZnMnSe between two ZnBeSe barrieriations corresponding to a finite bias voltage between the
and surrounded by highlg-type ZnSe. In the presence of a electrodes.
magnetic field there is a giant Zeeman splitting between the RTD’s can be modeled as structures which are translation-
spin-up and spin-down electron states in the quantum wellly invariant parallel to the layers. This makes the compu-
region. The corresponding resonance peaks in the electrdations one-dimensional. The WF and GF formalisms are
current separate as a function of the bias voltage, and theery popular schemes in their modelifigee, for example,
device controls the electron spin states using the bias voltageefs. 10—13 In this work we study the feasibility of the WF
rather than external magnetic fields. This is a useful propertand GF formalisms within the context of the self-consistent
for possible practical applications. spin-density-functional theorySDFT) and its local spin-

In a typical nanoscale transport problem two or moredensity approximation to model magnetic RTD’s. Our imple-
electrodes are connected to a functional nanostructure. Amentation of the WF formalism is based on the usual discre-
important nanosystem is the RTD composed of layers ofation of the partial differential equations on position and
semiconducting materials. The offsets between the banchomentum point grids. Our implementation of the GF for-
edges of the materials give rise to the two potential barriersnalism employs the finite-element meth@EM). We have
seen by carriers. In the quantum well between the barrierglready published our FEM scheme for two-dimensional
resonance states with finite energy width and enhanced amanostructuréd and used it in application'S. In this work
plitude are formed. The electron current increases rapidlyve critically compare the performance and the results of the
when a resonance state appears in the conducting windowF and GF implementations for quasi-one-dimensional
determined by the overlap of the occupied source and unodQRTDs. Moreover, we choose the structure parameters of our
cupied drain conduction electron bands. When the resonandest system to correspond the magnetic RTD device by Slo-
state drops with increasing bias voltage below the sourcbodskyyet al® Thus, we can compare our results also with
conduction band, the current diminishes causing a region afxperiments and actually analyze the results of the measure-
negative resistance. In addition to being technologically in1ments.
teresting the RTD is also important as a simple test case for Below we use the effective atomic units which are derived
different formalisms and computational schemes. by setting the fundamental constas/#=m,=1, and the

Theoretical modeling and computational simulation arematerial constantm* = e=1. m* and e are, respectively, the
essential for the development of functional nanostructuregelative effective electron mass and the relative dielectric
Electron transport properties can be modeled using differentonstant to be used in the effective mass approximation. For
formalisms at different levels of sophistication. Two methodsZnSem* =0.145 ande=9.1161"We have used same values
widely used are the Wigner functidVF)”° and the Green’s also for the other materials of the magnetic RTD. The effec-
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Q aflh TABLE |. Parameters of the different layers S1S9 used in
1 the calculations.
1
1
' Width  Doping level  Potential
' Region Material (nm) (cm™3) Vy (meV)
]
S S1, S9 ZnSe 25 18 10'8 0
S2,S8  ZpgBeyoSe 15 1x 10'8 0
0 S3, S7 ZnSe) 10 0 0
: L] L) L] 1) T L) L] L] S4’ 86 2678%386 5 0 92
S1 S2 S3 S4S5S86 S7 S8 S9 S5 71 0gMiNg oSE 9 0 t%AE

FIG. 1. Magnetic RTD model. The shaded areas denote positive

background charge. The detailed information about the different S ) )
layers S1..,S9 are given in Table I. is ballistic with no phonon or defect scattering. This means

that the total potential drop takes place witlfn
tive atomic units can be transformed to the usual atomic and " addrqon,Q is divided Into nine sma}ller parts 51'59.
Sl units using the relations as shown in E|g. 1. These regions describe different semicon-
ductor material layers. The parameters of the layers are
x € given in Table I. We have chosen the widths and the doping
Length: laozlﬁa‘oz 3.32 nm, densities of our magnetic RTD structure similar to those
in the actual device made by Slobodskstyal® The positive
background charge densities in regions S1 and S9 are

*
Energy: 1 Ha* = ]l:rLHax 47.6 meV, equal to that inQ) g, in S2 and S8 they are much smaller,
é and next to the potential barriers there is no background
charge at all.
m* The regions S4 and S6 are the potential barriers. Because

Current. 1 a.u.* =17 au~116uA. there is no definitive information about the barrier height we

estimate it by comparing the shapes of the calculated current-

Above, Ha denotes the Hartree energy unit. voltage curves to the measured ones. By the shape we mean
In Sec. Il we introduce the model for the magnetic mainly the widths of the resonances; the positions of the

RTD and explain the use of the SDFT in the calculationsresonances are quite insensitive to the barrier height. The
In Sec. Il we briefly explain the GF and WF formalisms. parrier height is the only structural parameter which we have
In Sec. IV we give the results of the comparisons betweeg determine by fitting. We find that the barrier height of 23%

the two formalisms and compare the calculated andf the band gap differené®!® between ZnSe and ZnBeSe

measured results and obtain information on the electronigesuylts in a good fit. Moreover, in order to estimate effects of
structure of the device in question. Section V contains oukhe impurity band formation in the highly doped regions we

conclusions. have in some test calculations tried to shift the bottom of the
bands(and Fermi levelsin the highly doped regions with
Il. MODEL respect to those in the insulating ones.
The quantum well S5 is made of the dilute magnetic semi-
A. Structure of magnetic RTD conductor ZnMnSe. An external magnetic field causes a gi-

The model for the magnetic RTD is shown in Fig. 1. We ant Zeeman effect, splitting the spin-up and spin-down elec-
assume the semiconducting layers to be infinitely wide in théron states. In the other parts of the RTD the spin splitting is
lateral directions so that the system is translationally invarismall and assumed to vanish. We calculate the spin splitting
ant in the direction perpendicular to the current. The doped\E in S5 as Slobodskygt al.® i.e.,
regions(shadowed areas in Fig) &re modeled by a uniform
positive background charge. The potential barriers due to the
discontinuity of the conduction band between two materials
are described by constant external potentials.

The system is divided into the central regibhand the
outside region€), andQg. All the structural variations and
interesting phenomena take place in regidmwhich is cho-  Above, Nya is the s-d exchange integral the Mn concen-
sen large enough so that the effect of the RTD device on th&ation, g is the Landé factorug the Bohr magnetonBg is
electron density has vanished at the bounda#fesg. 0 ,r  the Brillouin function of spins, s, is the effective Mn spin,
are the semi-infinite leads where the electron density and thend T is the effective temperature. The values of the pa-
potential are constant. The bottom of the conduction bandameters are Noa=0.26 eV, x=8%, s=5/2, g=2.00,
and the Fermi-levelug in the right lead are shifted by the s,=1.13, andT.=2.24 K. The values of thAE for the rel-
bias voltageVsp with respect to the corresponding values in evant magnetic fields and temperatui®sc. \j are collected
the left lead(see Fig. 1 In our model the electron transport into Table II.

M) "

AE= NoastBS< ke(T + Tur)
B e
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TABLE I1. Values of the spin splittingAE in the cases consid- rium) result is reached, we increasgp in small steps and

ered in Sec. V. iterate at every value until convergence. The effective poten-
tial corresponding to the previolésp value is used as the
Magnetic field(T) TemperaturgK) AE (meV) starting point of the iterations. This ensures the stability of
the process. Actually we found that the resulting current volt-
0 4.2 0.0 . . .
age curve does not depend on the sweep direction of the bias
2 4.2 104 voltage. This is due to the very small electron density in the
4 4.2 16.7 quantum well region S5 even in the case of occupied reso-
6 4.2 19.8 nance states. This insensitivity is in accord with the findings
6 0 23.2 by Slobodskyyet al®
6 8 16.2
6 30 6.7
Ill. FORMALISMS

In this section we present the GF and WF formalisms by
ignoring the spin dependence for simplicity. The generaliza-
In order to model electron-electron interactions we use theion to the spin-dependent forms, which we use in the actual
SDFT within the local-density approximation. The electroniccalculations, is straightforward.
structures and currents are calculated using the GF or the
WEF formalisms, which we will explain later in Sec. Ill. In
both formalisms the spin-upor=1) and spin-down(c=|) A. Green’s function formalism

electro_n densitiesn; ,(x) correspond to the effective The GF formalism used in the electron density and trans-

potentials port calculations is explained in detail in Ref. 9. We have
V(%) = V(%) + VI(X) + VI (x), ) implemented this formalism using the fin_ite-ele.ment method

(FEM). Our FEM formulation for two-dimensional nano-

wherex is the coordinate perpendicular to the layérs,is  structures is discussed in Ref. 14.

the Coulomb potential, V. the exchange-correlation  Our present magnetic RTD system is translationally in-

potential?® and Vi, the external potential including the bar- variant in directions perpendicular to the electron current.

riers and the giant Zeeman spin splittidd: (see Table ).~ The total electron energyy, can then be divided into two

The spin densities and the effective potentials are solve@arts

self-consistently.

The Coulomb potential/c is calculated using the modi- O =0t o, (5)

fied Poisson equatidh where w, is the kinetic energy in the perpendicular direc-
21+ _ 2y it ) = ()= L2\ tions andw includes the kinetic energy along the current and
VAV (0 =kVe 09 = = 4ain + () =L ()] = kVel), the (one-dimensionalpotential energy. Now we can write a
€) one-dimensional equation for the single-particle retarded
Green’s function in the real space using spatial coordinates,
andx’ in the direction perpendicular to the layers

B. Spin-density-functional theory

where n_(x)=n;(x)+n(x) is the total electron density and
n.(x) is the positive background charge. Indegounts the
self-consistency iterations, so thdt(x) is the solution from (w- Q)Gr(x X' @) = (x - X') (6)
the previous self-consistency iteration. Abokeas a param- o ’

eter which controls the screening of the potential fluctuationgyhereH is the Hamiltonian

due to the charge sloshing between the iterations. A

reasonable choice of the parameter is of the order of the H=- }V2+V () 7)
Thomas-Fermi wave vector, in which case the solution 2 effi >

does not depend dhnand the number of the self-consistency

iterations needed is remarkably reduced. In addition, th Clistinquishes b h ded and the ad 4G ,
stability obtained by the use of the modified Poisson Istinguishes between the retarded and the advanced Green's
functions. Equatior(6) is solved using open boundary con-

equation, we stabilize the iterations also by mixing the Oldd't' 0 andaOe. Thi that elect f
effective potentiaV 4 with that obtained from Eqg2) and itons atal?, andolip. 1NIS Means that electron wave func-

bove, w has a small imaginary part, i.ans=w’+i%. This

tions penetrate the boundaries without reflection. In order to

(3. That s, ‘ _ restrict the numerical calculations into the central regibn
Vgﬁl = aVeii + (1 — @) Vg, (4) Eq. (6) is written in the form

where the feedback parameteris typically 0.2 in our cal- [w- |:|O_§[(w) - 3H(@)]G (XX ;0) = 8x-x'), (8)

culations.

We calculate the currents due to the spin-up and spinwhereX| o(w) are the self-energies of the leads;z andH,
down electrons through the magnetic RTD as a function ofs the Hamiltonian of the isolated regid.
the voltage. The calculation always starts from the zero bias The electron density is obtained from the so-called lesser
voltage Vgp. When the self-consistent nonbiasésfjuilib-  Green functionG= by integrating ovenw:

235301-3
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o)

n_(x) = ;—1 IM[G=(x,X; w) |dw. (9)

T

Notice that we assume the parabolic free electron states in
the perpendicular directions and a constant two-dimensional
density of states is used. When no bias voltage is applied the % 0
system is in equilibrium ané= is calculated as

G=(x,X"; ) = 2F )r(0) G (X, X" ; ®). (10)

Above, F g are related to the Fermi distributions@l ;s and
in the equilibrium they are equal. The effects of the perpen- R CY T e Sy
dicular directions in our computationally one-dimensional @ 0 Pr Va Pr Re(®)
system are included iR g by integrating the Fermi distri-
butions overw |

FIG. 2. Integration paths for the electron density calculations.
The paths are divided into three pants, n_,, andn_s. (a) and(b)

1 (* 1 correspond to the cas&gp< . andVgp> w, respectively.
F =—
URle) 77[0 1 +elorermr /keT @ . r AYe 1AV
L —i[Fr— FLIG (X, Xp)T"L (X, Xp) G¥(Xg,X") ,
=—kgTIn(1 +eture/keTy (11 where thew dependences are not shown for the clarity.
a

Now we can split the integral9) into three parts1_;, n_,,

Notice that we assume above parabolic free electron states #ldn- Shown in Fig. 2. The slightly complicated division is
the perpendicular directions and a constant two-dimension&lue to the proper inclusion of the perpendicular kinetic en-
density of states is used. When the bias voltygg is ap- €9y component. Here and below we assume hat ug. In
plied, F (») andFg(w) are split byVgp on the energy axis. the first partn_, comes from the first term in E415), where

In this caseG< has to be calculated as the form of G< in Eq. (10) is used and the integral
) , A L —AkgT
G=(xX'; ) = = IFR(@)G' (X, Xg; ) TR(Xg, X; 0) G3(X, X' ; @) n—lzf o —(u — ©)IM[G'(x,Xx";w)]do  (16)
—iF ()G (x,x; )T (X, X ; 0)GA(X| X'; ), w 7

(12) is moved to the complex plane. Abov&,is about 3,..,5 so
. . that Eq.(14) is approximately valid. The integral starts at the
wherex  are the coordinates of the boundari#3,,r and  energyw,, which is below the bottom of the conduction band
I'ur are defined as of the left lead so that the contribution of possible bound
. N o r states is also included. The integral ends at a coupleDf
TUr=21 R~ 20R= 21 IMELR)- (13 pelow the Fermi levep,.

Equation(12) is valid also in equilibrium, but only when The second term in Eq15) yields the integral.
there are no bound states. Namely, in this form the electron p-BkgT ¢
density in{) is composed of scattering electron states coming n_,= J —(ur— )
from Q, and Q.

To perform the energy integral in E() is the heaviest r ) . ar .
part of the calculations. The calculation G~ at several X G(XXR; ) Ir(Xp, Xg; ) GXp X' ) dw. (17)
energiesw takes CPU time but cannot be avoided due to thgNote: T'y(w)=0 for w<Vgp] Because Eq(12) has to be
sharp resonance peaks in our RTD system. In order to reduggsed the integrand is not analytic on the complex plane and
the number of values needed we move parts of the integrakhe integration has to be performed along the real axis. The
to the complex plane where the changessin are smooth. integraln_, vanish whenVgp=0 andVsp> . [the case of
The move of the integration part away from the real axisrig. x(a)].

requires that the integrand is analytic above the real axis. To The integraln_, starts at a couple dfsT below x, and

oot LR ML

fulfill this we first approximate Eq(11) as ends at a couple df;T aboveur. It is obtained as
MR- @ 1 (Hr*AksT
Fur(w) =~ = —. (14 Ng=-— [Fr(@)G" (X, Xg; ) I'r(Xg, Xg; )
21 ) 4y -AkgT
This is exactly true at zero temperature and a good approxi- X Gy X' @) + F ()G (%X @)
mation at energies fewgT below the Fermi levelsu . R T
Next we write Eq.(12) in the form XL (X, X @)G3(X( X' w)]dw. (18
G=(x%,X") = —iF [G' (X, Xp) T r(Xg XR) G3(Xf2, X") WhenVgp is larger than the width of the occupied conduc-
. ) tion band in the lead$) i [the case of Fig. )] electron
+ G (xx)TL (3, XD GHX,X)], (15 states fromu, +AkgT to Vsp are not occupied.

235301-4
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The electron tunneling probability throudhis calculated 0 1 L 1
using the Green’s functions as ¢ ()= 5(1 -X), ¢ ()= 5(1 +X),

T(w) =TL(X0 X @) G (X, Xg; ) TR(XR, Xg; @) G (XR X, ; @),

. 1 _
(19 0= 2(2-—_1)[Pj()() -Pi0], 1=2,3,..,
and the current is obtained by integrating oweri.e., J
(25
1 o]
|:;f_ T(w)[Fr(w) ~ Fi(w)]do. (20 where Pj(x)'s are the Legendre functions of the order

¢dl(x)’s are given in the reference element wig[-1,1].
This whole integral has to be calculated on the real axisThe linear functions span the region of two elements,
which is not a problem because the integral is evaluated onlwhereas thg > 1 functions are localized within one element
once after the self-consistent solution of the electron densitpnly. The inclusion of the high-order basis functions reduces

is reached.

B. Finite-element implementation of the GF formalism

the number of basis functions needed in order to obtain ac-
curate results. This has a remarkable effect in GF electron
structure calculations even for one-dimensional systems. The
calculation of theG'(x, X ; w) requires the inversion of a ma-

We have implemented the GF formalism using the FEM.Irix of the size ofNXN. The derivatives of the functions
For the FEM implementation we need to write the equationgvith j>1 are orthogonal to each other. This makes their use

to be solved in the variational form. We start from E6)

numerically stable and we have implemented elements up to

and multiply both sides by a continuous well-behaving func-the fifth order.

tion v(x) and integrate ovef). After modifications the equa-

tion obtains the form
1

j {— Vo(x)= VG(x,X;w)
Q 2

+v(X)[ @ = Verf(¥) 1G"(X,X'; w)}dx

+ U(XL)irL(XL! X5 0)G' (X, X ; w)

+ U(XR)iEQ(xR,xR; 0)G (Xg,Xg,0) =v(X'). (21)

Here the self-energy operator‘é'R,L have the analytic
solutiong*

1PgiR(x X w)

, 22
4 X ax' (22)

SUROGX @) =

C. Wigner function formalism

We have also implemented the WF formalism for the
electron density and the current calculations. Reviews of the
WEF formalism for studies of open systems can be found in
Refs. 7 and 8. There are similarities between our GF and WF
implementations in the treatment of the one-dimensional
equations resulting from the translational invariance in the
directions perpendicular to the electron current. They show
up, for example, in the boundary conditions as will be dis-
cussed below.

The WFf(q,p) is defined as the Fourier transform of the
density matrixp(x,x’), i.e.,

f(p.q)=f e‘iprp(q+%r,q-%r)dr, (26)

whereg; i are the retarded Green’s functions in the isolated/vhereq:%(x+x’) andr=(x-x’") are the new coordinates and

leads() g so that they vanish at the boundari, . In our
model the potential is constant in the leads so that

i PN RGN ’_
gE/R(X!X/ : w) - _ /_(eIVZw(X x") _ e|\2w(x+x 2XL/R))_
V2w

(23)

In the FEM the retarded Green'’s function is expanded in the

basis¢;,

N
G'(xx';0) = X gj(w) () i(X). (24)

ij=1

This is an approximation due to the finite numtéiof the
basis functions. Equatiof24) is inserted into Eq(21). The

values of the coefficientg;; are then calculated by choosing

v(X)=(X).
We use a basis consisting of the linear functigtfsand
¢* and of high-order polynomialg!.?? That is,

the well known phase-space representatfog,p) is ob-
tained.

In order to use the WF formalism in transport theory we
must study the time evolution of the WF. It is calculated
from the quantum-mechanical Liouville-von Neumann equa-
tion

.d A
i =[A,p1= p,

ot 27

whereH is the Hamiltonian of the system artis the Liou-
ville superoperator. In the WF this equation has the form

at(q,p) of(q,p) f‘” 1
=- - S-Vap-p)f@p)dp,
P P P om (@,p-p")f(q,p")dp
(28)
where

235301-5
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* 1 1 af(q, 3f(g,p) —4f(gx A, p) + f(q+ 24,
V(q,p):zfo sin(pr){veﬁ<q+§r> —Veﬁ<q—§r>:|dr %: + (q p) (q zgqp) (q q p) ,

(29 (34)

is a one-dimensional potential kemel. The effect\f; is where the different signs are chosen according to the signs of

: : . [ h a way that the proper boundary conditions given
nonlocal, incorporatin uantum interference effects Pk ' SUC .
Namely, the poteFr)niaI kegrné,?(q p—p') spreads according to by Eq.(32) are coupled to the transport equation. It has been

! shown by Buot and Jens&rt® that the SDS gives consider-
Eq. (28) the WFf(q, p) among dlﬁe_rent values gi and adds_ ably better results than the conventional upwind-downwind
the interference between alternative paths to the formUIat'orBifferencing schemeuDS)

The electron densityr_(q) and current densityi(q) are
calculated as

D. Differences between the Green'’s function and Wigner

1 (~ function formalisms
o= Z—J-x f@pp dp (30) The GF and WF formalisms are related. Namely, we can
first calculate the density operator in the GF formalism as
and %
L p(x,x") :—if G=(x,X";w)dw. (35)
n(a)=— f f(a,p)dp. (31) B
T -0

Then the coordinate transformation is performed and we get

i the WFf(p,q). If f(p,q) is calculated in this way Eq$30)
In an open system we need to make a difference between the, 39) of the WF formalism give exactly the same results
incoming and outgoing particles to account for the irrevers— g Eqs.(9) and (20) of the GF formalism.

ibility. Our system is one-dimensional, so thas@<W,,
and there are two boundariesgt0 andg=W,. Here, W,
=Xg—X_ is the width of the central regiof). Since the char-
acteristics are first-order equations only one boundary valu
is needed. Moreover, since particles which hae0 are
moving in the positive direction on thgaxis, we must sup-
ply the boundary conditions on the left-hand side boundar
Q) from where they are originating with the momentum
distribution in the reservoir. Similarly particles wigh< 0 are
moving in the negative direction on the axis so that the
boundary conditions must be specified on the right-hand SidSaI
boundarydQ . This scheme invokes the boundary conditions

The differences in the results of the two formalisms are
caused by the calculation éfp,q) in the WF formalism by
using the Liouville-von Neumann equation. For an infinite
gystem the results would still be equal but a finite calculation
region causes the differences. Namely, the WF formalism
does not have similar totally open boundary conditions as the
YGF formalism. Differences arise in this case also because
there is no energy dependence in the Liouville-von Neumann
equation wherea&~ depends onw.

Using the GF formalism typically means that we have to
culate a lot of information which is of no further use. The
calculation of GR(x,x";w) using N basis functions means
inverting a NX N matrix. This requires the solution af
p2), linear equations each havirgj unknown variables. The co-
efficient matrix is sparse, including only overlapping terms
of the basis functions. In order to calculate the electron den-
) sity we have to integrate over, which results in calculating

1
f(0.p)p=0= FL(E

(32)  G'(x,x';w) many times. Luckily, in the integrals_, andn_,
[Egs.(17) and (18)] we need only two linear equations for

where F_ are as defined in Eql1) and take again the G (X.,X) andG'(xg,x). _
integration over the perpendicular energy components into N the WF formalism we need to solve for the Wigner
account. function, which depends on two variablpsandg. Because

We solve the Wigner transport equation for the steady?f the use of the discretization form of E(@4) the depen-
state with gf/st=0 numerically using the discretization dence between these variables is more complicated than that
scheme explained in Ref. 7. The position coordingtés betweenx andx’ in the GF formalism. This means that we
simply discretized abl, equally spaced points with the spac- solve a set of linear equations which includgsx N un--
ing Aq=Wq/(Ng—1). Once, is fixed the Fourier complete- known variables. The coefficient matrix has a belt type filling

ness relation gives the grid spaciag as a function oft, as Where_ the width of the belt is large. This makes the linear
equation hard to solve.

1
f(Wo, p)p<o = FR( > p

_1<k__1_}> k=1.2. N (33)
AN, 2) e IV. RESULTS

The derivative off(q,p) with respect taq in the transport In this section we give results of our electronic structure
equation(28) has been calculated using the second-order difand electron current calculations for the magnetic RTD struc-
ferencing scheméSDS). That is ture described in Sec. Il A. We concentrate on the feasibility
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FIG. 3. Electron density calculated using the GBlid line) and FIG. 4. Effective potential calculated using the @Golid line)

the WF (broken ling formalisms. The values of the temperature, and the WF(dashed ling formalisms. The values of the tempera-
magnetic field, and bias voltage used are 4.2 K, 6 T, and 0.15 Mfure, magnetic field, and bias voltage used are 4.2 K, 6 T, and 0.15
respectively. The gray areas denote level of positive back ground¥, respectively. The effective potentials for spin-up and spin-down
charge. electrons differ remarkably only between the potential barriers.

of the GF and WF formalisms to model this kind of systems. Notch” states do not appear because of the strong potential
In the first subsection this is done by comparing the results ofisé due to the undoped material layers. _

the two formalisms with each other. In the second subsection The current through our magnetic RTD structure is shown
we compare our results with those measured by Slobodskyy? Fig: 5 as function of the bias voltagesp. The spin-up and

et al® and thereby analyze the electronic structure of theéSPin-down contributions, split strongly by the magnetic field
actual device. Finally, we make predictions for the spin-Of 6 T, show the typical RTD behavior. The most prominent

polarized current when structure parameters of the magnetReaks at around 0.14-0.18 V actually correspond to the sec-
RTD are varied. ond lowest resonance states in energy. Most of the conduc-

tion takes place close to the right Fermi leyg] because the
large undoped region diminishes strongly the tunneling prob-

A. Comparison between the Green’s function and Wigner ability at lower energies. For this reason also the current
function formalisms
4

The electron density and the effective potential corre- X2
sponding to the 0.15 V bias voltage and calculated using the
GF and the WF formalisms are shown in Figs. 3 and 4,
respectively. The two formalisms give very similar results. ot
There are Friedel oscillations in the electron density in the
leads but their amplitude is so small that they are not visible
on the scale used. The electron density drops close to zero i _»
the undoped regions. For this value\&§, some of the low- 0
energy resonance states are occupied. However, these stal
cause only a small density increment between the potentiag
barriers. The electron density shows in both formalisms a
small asymmetric behavior which becomes clearer with in-
creasingVsp.

The effective potential in Fig. 4 rises strongly at the in-
terfaces between the doped and undoped materials. Withil

4 GF

0 ==

0.05 0.1 0.15 0.2 0.25

S
<
=
1=
[

the undoped region the potential changes then rather linearl 0 0.05 04 Vo 0.'13 0.2 025
due to the applied bias voltage. The spin splitting of the oftage (V)
potential due to the external term of Hq) does not propa- FIG. 5. Current through the magnetic RTD structure as a func-

gate out of the quantum well region. Our GF and WF calCu+jon of the bias voltage. The contributions due to spin-ddwalid
lations do not include inelastic scattering. That would beline) and spin-up(dashed ling electrons are shown. The results in
important for finding self-consistent solutions if, on the the upper and lower panels are calculated using the GF and the WF
higher potential side of the barriers, there are “notch” statesormalisms, respectively. The values of the temperature and mag-
below the band of occupied electron statds. our case netic field used are 4.2 K and 6 T, respectively.
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the lower effective potential in the WF calculatiofsee Fig.

4). The GF formalism always gives by definition a positive

current whereas the current calculated by using the WF for-
malism may become negative. This is a well-known artifact
of the WF formalism. If we reduce the number of discreta-

08 tion points the current attains even more negative values.
§°~6 ) This implies that the WF results of Fig. 5 are not numerically
504 BT e e oy Imit we cannot mérease the nLmber of discretiza
gqo2 ‘ S S Qx“\\\\%@?}&&i =i tion points much beyond 20At this stage the WF calcula-

RIS = TR . . ) ) )

g k“s*e«i:f:f\‘i;.*““ &\&\\&*\@W“ﬁ tion begins to require also more CPU time than the GF cal
20 w\\\ g\i\\\\\\\\\\\\\\\\}%&%\\\\\\\g\ 03 culations. This is somewhat surprising because one would

40 \\\\\\\\WM\\ . think that_ the less approximative GF formalism would. be

Xy, M&Wﬁ*&:@“‘\“ 5o ¢ com_putatlonally heawe_r. The use of a more accurate dlffer-

Y 100 RNV 0~1°‘°‘\°“ encing scheme could improve the WF results without in-

120 0 e creasing the number of the discretization points, but this

would increase the filling of the coefficient matrix to be in-
FIG. 6. LDOS of the GF formalism as a function of the position y,erted and the CPU time needed.

x along direction of the current and the energyThe values of the The numerical problems in the WF calculations are
temperature and magnetic field are 4.2 K and 0 T, respectively. .5,5ed by the narrow resonance peaks. A Fourier transforma-

peaks due to the lowest-energy resonances at around 0.082n has to be evaluated over electron energies, and the reso-
0.07 V are hardly visible in the GF results. They are clearef@nce peaks require a remarkable increase of discretation
in the WF results, but this is partly due to numerical diffi- POints. Indeed, Fig. 5 shows that the current from the WF
culties as will explain below. In the WF formalism the cur- calcglatlons for both spins ospﬂlqtes strongly in the region of
rent may even change its direction and have negative valuége first resonance peak, which is very narrow. The problem
as seen in the lower panel of Fig. 5. is not faqed in the electron density calculations, because the
The two resonance states per spin in the voltage region &_ontnbunons of the resonance states to the totgl electron den-
0-0.25 V can be clearly seen in the local density of stateSity are small. Our real-space GF implementation can handle
(LDOS) calculated in the GF formalism. Figure 6 shows thethe narrow resonance peaks better because we use the adap-
LDOS for the zero-magnetic field and the zero-bias voItagé'Ve Simpson integral routine 'to calculate the denS|ty. inte-
case. In the absence of the magnetic field, there is no diffeldralSn-, n_s, and the current integral along the reakxis
ence between the spin-up and spin-down electron states. TR®d because the integral, is performed in the complex
first and the second resonance correspond to the quantupi@ne where the resonance peaks are broadened.
well states with zero and one node plane parallel to the layer
structure, respectively. We can also see that especially at low
energies the LDOS enhances just outside the undoped re-
gion. We compare our calculated results with the recent mea-
The GF and the WF formalisms give almost equal elecsurements by Slobodskyst al® In particular, we have cal-
tron densities and effective potentials as demonstrated inulated the current vs bias voltage curves using the same
Figs. 3 and 4. However, the requirements to reach similamagnetic field and temperature values as they have used.
numerical convergences are very different. In the GF calcu- The results of the WF and GF calculations for the current
lations we have used 36 fifth-order elements correspondings a function of the bias voltage are shown in Fig. 7 corre-
to 181 basis functions. A further increase of the number ofponding to different magnetic fields and in Fig. 8 to differ-
elements does not change the results. In the WF calculatiorent temperatures. As was mentioned above we have chosen
we have used as many big=320 andN,=300 discretization the height of the potential barriers so that the widths of the
points. This means that the number of unknown variables itwo prominent spin-up and spin-down peaks from our GF
the linear equations to be solved is of the order of 10we  calculations agree at low temperatures and high magnetic
reduce the number of discretization points from this magnifields with experiment as well as possible. With this fitting
tude, the effective potential in the RTD region moves downonly, our predictions for the magnetic field and temperature
becoming saggy. The very different numerical characteristicslependences are rather similar to experiments. The spin-up
of our WF and the GF calculations demonstrate the effiand spin-down contributions separate in similar ways with
ciency of the high-order polynomial basis used in our GFincreasing magnetic field and merge together with an in-
implementation. creasing temperature. These overall features are related to
In the current-voltage curves of Fig. 5 the differences bethe dependence of the spin splittidd= on magnetic field
tween the WF and GF formalisms are more visible than inand temperature in Eq1). One should note that the dis-
the electron density of Fig. 3 although the formalisms givetances between the spin-up and spin-down peaks in the cur-
the same qualitative behavior. The resonance peaks of thent are by a factor of 2 larger thakE (see the values in
WF results are located at slightly lower bias voltageser-  Table Il). The reason is that part of the voltage is dropped
gies than those in the GF results. This is in accordance wittover the first potential barrier. This fact was taken into ac-

B. Comparison to the experiments
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FIG. 7. Current through the magnetic RTD structure as a func- FIG. 8. Current through the magnetic RTD structure as a func-
tion of the bias voltage and different values of the magnetic fieldtion of the bias voltage in different temperatures. The structure is
The structure is defined in Fig. 1 and in Table I. The results in thedefined in Fig. 1 and in Table I. The results in the para@lsand(b)
panels(a) and (b) are calculated using the WF and the GF formal- are calculated using the WF and the GF formalisms, respectively.
isms, respectively. The temperature is 4.2 K. For clarity, the succesfhe magnetic field is 6 T. For clarity, the successive curves are
sive curves are shifted by 2510 A/cm? with respect to each shifted by 2.5< 10* A/cm? with respect to each other.
other. have also used the effective mass approximation which is
count by Slobodskyyet al® by a lever arm of 2.1 when also expected to affect the magnitude of the current.
comparing the measured voltage splitting with the theoretical However, the present large discrepancy calls for investi-
AE. Our simulations confirm the magnitude of the lever arm.gation of other assumptions we have done. One reason could

Even if the shapes of the calculated current-voltage curvebe that the high doping in the leads results in the impurity
are similar to those in the experiment, the calculated currertband formation which we have not taken into account, but
vales are up to five orders in magnitude too larg®e as- used the parabolic free energy band with the effective mass
sume that the area of the experimental device is 2@0 of the conduction band. If the improved description of the
X100 um.) The current amplitudes predicted by our WF andbands moved the first resonance peak to be the relevant one
GF calculations agree reasonably well and they are similar iim the correct bias voltage region, the current magnitude
magnitude to currents calculated for typical RTD structuregnight also decrease. We cannot easily use different effective
in Refs. 7 and 8. This indicates that the reason for the theorymasses in the different regions of the computations. There-
experiment disagreement is in fundamental approximationdore we mimic the effect of the formation of the impurity
It is well known that the density-functional theory gives band by lowering the external potential in the leads with
about two orders of magnitude too large tunneling currentsespect to that in the undoped regions. However, even a low-
through molecules in comparison with experime§tdéVe  ering of the order of the bandwidth in the leads does not
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FIG. 9. Current through a magnetic RTD structure as a functiony, 4 (6 the total currents shown in Fig. 9. See also the caption of
of the bias voltage. The structure is defined in Fig. 1 and in Table 'Fig. 9.

with the exception that the width of the quantum wedigion S35 is
scaled relative to the original width,. The results are calculated skyy et al. Next we predict how the geometry of the device
using the GF formalism and they correspond to the the magnetiaffects the spin polarization of the current. The obvious pa-
field of 6 T and zero temperature. For clarity, the successive curvegameter to be varied is the width of the quantum well be-
are shifted by 3.5 10* A/cm?. The lowest curve for 0.28L% is  cause it determines the positions of the resonances on the
scaled by a factor of 1/10. energy axis and affects strongly even the qualitative features
of the current-voltage curves. Thus, in the following we keep
result in an appreciable shift of the total effective potentialthe width and height of the potential barriers the same as in
between the lead and the central region. This is because the previous calculations and vary the widtly of the po-
our self-consistent calculations the ensuing charge transféential well using the values5=0.29.%, 0.8.%, and 2.%,
causes a change in the electrostatic potential opposing thehereLY is the original width of 9 nn{Table |).
shift of the external potential. Thus, the positions of the reso- The current as a function of the bias voltage for the dif-
nance peaks on the bias voltage axis are mainly derived frorferent widths of the potential well is shown in Fig. 9. We see
the width of the quantum well and from the fact that in that the narrowing of the well moves resonance states to-
equilibrium the first resonance state has to be mostly unocwards higher voltages and the first resonance peak for each
cupied, i.e., slightly above the Fermi level. spin becomes active, i.e., its contribution to the total current
The remaining difference of about 30 mV between thebecomes evident. We also note that the magnitude of the
positions of the theoretical current pedksgs. 7 and 8and  current increases rapidly with decreasing potential well
those of the measured ones, so that the theoretical peaks avédth. The increase of the potential well width td g
at higher voltages, may be due to several effects. First of alicauses the resonances to come closer to each other and over-
uncertainty in the thickness of the quantum well affectslap more strongly. This might be an undesirable feature for
strongly the resonance positions. The value of the series cogevice applications.
tact resistance in the measurements, the lack of inelastic scat- Another view of the functioning of the magnetic RTD
tering, and the use of a constant effective electron mass istructure as a spin switch is given in Fig. 10 showing the
our modeling may also shift the peaks. However, the energyelative polarization of the current, i.e., the difference be-
shifts due to these uncertainties are expected to be smalléween the spin-up and spin-down electron currents divided
than the distances between the resonances for each spin biy the total current. For structures with very narrow potential
rection: the distance between the first and the second reswlls the polarization is reduced, although the magnitude of
nance is about 100 m{éee Fig. 6. Therefore our conclusion the current is largéFig. 9). For structures with wide poten-
is that the current peaks seen in the measurements by Sltial wells the spin splitting for a given magnetic field strength
bodskyyet al. correspond to the second resonance state imay become comparable with the distances between the
energy. The fact that there are no traces of the first resaesonances. This causes a complicated polarization structure
nances in the experiment is in agreement with the small inas a function of the bias voltage as can be seen in Fig. 10 for
tensity of the first peaks in comparison with that of the secthe widest potential well of 2. In conclusion, for a given
ond peaks in our GF calculations. magnetic field strength there is an optimum potential well
width with good polarization properties and high current in-
tensity. In the structures studied above and in the strong field
In the previous sections we have concentrated on modebf 6 T it would be approximately 0.3—0.5 times the original
ing and analyzing the magnetic RTD structure by Slobod-width Lgs.

C. Effects of the width of the potential well

235301-10



SPIN-DEPENDENT ELECTRON TRANSPORT THROUGH. A PHYSICAL REVIEW B 71, 235301(2005

V. CONCLUSIONS diode. The magnetic-field and temperature dependencies in

We have used the semiclassical Wigner function formal{h® measured current-bias-voltage curves are well repro-
ism and the quantum-mechanical Green’s function formalisnluced. The two-peak structure is found to result from the
to model spin-dependent electron transport through a magPin-split resonance second lowest in energy. We show that
netic resonant-tunneling diode structure. Our calculations arir @ given strength of the magnetic field causing the spin
based on the self-consistent solution of the electronic strucSPlitting there exists an optimum width for the quantum well
tures and currents within the density-functional theory. BotrS© that high spin polarization and current intensity are
formalisms give very similar results for the electron density,2chieved.
but the current is more sensitive to the formalism used. We
have traced the differences to be Igrgely_ due to the numerical ACKNOWLEDGMENTS
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