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Abstract: In this paper, we solve the convex distributed optimization problems, which include
unconstrained optimization and a special constrained problem commonly known as a resource
allocation problem, over a network of agents among which the communication can be represented
by directed graphs (digraphs), by using the finite-time consensus-based and dual-based first-
order gradient descent (GD) techniques. The key point is that a special consensus matrix is
utilized for problem reformulation to make our dual-based algorithm suitable for digraphs.
By the property of distributed finite-time exact (not approximate) consensus, the classical
centralized optimization techniques (e.g., Nesterov accelerated GD) can be embedded into
our dual-based algorithm conveniently, which means our distributed algorithm can inherit
performance of classical centralized algorithms that has been proved to have optimal convergence
performance. As a result, our proposed algorithm has faster convergence rate related to the
optimization iteration number compared with other distributed optimization algorithms in
literature. Since there are finite consensus communication steps inside each consensus process,
when the time needed to communicate values between two neighbors is less than a threshold of
the time needed to perform local computations, our proposed algorithm is also faster related to
the time, as demonstrated in the simulations.
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1. INTRODUCTION

With the proliferation of emerging applications such as
wireless sensor networks and machine learning, distributed
optimization has attracted a lot of attention from the
research community. Many algorithms have been proposed
based on different assumptions related to the objective
functions and network communication graphs. There are
mainly two research lines in the literature: (i) primal-
based, e.g., gradient descent (GD) and (ii) dual-based,
e.g., alternating direction method of multipliers (ADMM)
and dual-based GD.

For primal-based methods, one research line goes from
proposing algorithms with sub-linear (e.g., O( ln k

k ) with
k being the optimization iteration number) convergence
rate, e.g., in Nedic and Ozdaglar (2009); Chen and
Ozdaglar (2012); Qu and Li (2018), to linear/geometric 1

convergence rate, e.g., EXTRA in Shi et al. (2015) and
DIGing in Nedic et al. (2017).

1 Suppose that a sequence xk converges to x∗ in some norm ∥ · ∥. It
is said that the convergence is (i) Q-linear if there exists λ ∈ (0, 1)

such that
∥xk+1−x∗∥
∥xk−x∗∥ ≤ λ,∀k; (ii) R-linear if there exists λ ∈ (0, 1)

and some positive constant c such that ∥xk − x∗∥ ≤ cλk,∀k. Both
of these rates are geometric (Nedic et al., 2017).

All aforementioned works are only applicable to undirected
or balanced graphs in the convenience of constructing
a doubly stochastic matrix 2 for average consensus. In-
spired by the push-sum technique (Kempe et al., 2003)
for digraphs, researchers integrated push-sum in GD based
algorithms for digraphs, e.g., Push-DIGing in Nedic et al.
(2017), AB in Xin and Khan (2018) and Push-Pull in Pu
et al. (2020). Since the dynamic average consensus tech-
nique used in AB/Push-Pull can only converge asymptot-
ically, AB/Push-Pull converge linearly with a sufficiently
small step-size. As having the maximum step-size is still an
open challenge from (Pu et al., 2020, Remark 5), Jiang and
Charalambous (2022) proposed Pull-FTERC algorithm in
order to have a larger step-size. However, only a sufficient
condition L < 3µ (L and µ are respectively the smooth
and strongly convex parameters (see Definitions 4 and
5)) can be provided to guarantee that the interval of
GD step-size is not empty. In other words, if the global
objective function is ill-conditioned, L < 3µ would not
hold anymore.

For dual-based methods, related to ADMM-based algo-
rithms, one research line also goes from making algorithms

2 A nonnegative matrix is such that all of its elements are nonnega-
tive. A row (column) stochastic matrix is a real square nonnegative
matrix of which each row (column) sums to 1. The doubly stochastic
matrix is both row and column stochastic.
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work for undirected and connected graphs (see, for exam-
ple, Wei and Ozdaglar (2012); Shi et al. (2014); Falsone
et al. (2020)) to making them for digraphs, e.g., in Khatana
and Salapaka (2020); Jiang and Charalambous (2021);
Jiang et al. (2022). For more details about the above al-
gorithms, please refer to Jiang et al. (2022) and references
therein. We do not go into details about ADMM-based
methods. However, the algorithm performance comparison
will be demonstrated in simulations.

This work focuses on the dual-based GD methods for un-
constrained and constrained optimization problems. Sim-
ilarly, previously, researchers, e.g., Scaman et al. (2017),
proposed algorithms for undirected graphs. By using
the finite-time exact ratio consensus (FTERC) technique
from Charalambous et al. (2013, 2015) and constructing
a consensus matrix, the dual-based algorithm (we call it
Dual-FTERC) proposed in this paper can be applied for
digraphs, which is an improvement. Another contribution
is that classical centralized optimization techniques in lit-
erature (e.g., Nesterov accelerated GD) can be embedded
into our Dual-FTERC directly which, as a result, makes
Dual-FTERC capable of having a large value for GD step-
size (compared to other distributed methods which can
only have linear convergence rate with a sufficiently small
step-size) and converge faster related to the optimization
iteration number k.

2. PRELIMINARIES

Notation: the sets of real, integer, and positive integer
numbers are denoted as R,Z,Z+, respectively and Rn

denotes the n-dimensional real space. AT and xT are
respectively the transpose of matrix A and vector x. 1
and I represent respectively the all-ones vector and the
identity matrix (of appropriate dimensions). ej is a column
vector of all 0s but a 1 in the jth entry. ⟨a, b⟩ denotes the
Euclidean inner product aTb. ∥x∥ denotes the Euclidean
norm of a vector x.

Graph theory: in a graph G(V, E) of order n, the set
of nodes and edges are V = {v1, v2, . . . , vn} and E ⊆
V × V, respectively. An edge from node vi to node vj is
represented as εji = (vj , vi) ∈ E which means node vj can
receive information from node vi. A graph is undirected
if and only if εji ∈ E implies εij ∈ E . A directed graph
(digraph) is said to be strongly connected if there exists
a path from each node vi to each other node vj (vj ̸=
vi). The graph diameter D is the longest shortest path
between any two nodes in the network. Nodes that can
send information to node vj directly are the in-neighbors
of node vj , denoted by N−

j = {vi ∈ V | εji ∈ E , i ̸= j}.
Nodes that receive information from node vj belong to
the set of out-neighbors of node vj and belong to the
set N+

j = {vl ∈ V | εlj ∈ E , l ̸= j}. The cardinality of

N+
j , is called the out-degree of node vj and is denoted as

D+
j =

∣∣N+
j

∣∣.
Ratio Consensus:

Assumption 1. The directed communication graph G(V, E)
is strongly connected.

Lemma 1. (Domı́nguez-Garćıa and Hadjicostis (2010)).
∀vj ∈ V under Assumption 1 and t = 0, 1, 2, . . ., ytj and xt

j
are the result of the following ratio consensus iterations

yt+1
j =pjjy

t
j +

∑

vi∈N−
j

pjiy
t
i , (1a)

xt+1
j =pjjx

t
j +

∑

vi∈N−
j

pjix
t
i, (1b)

where plj = 1
1+D+

j

for vl ∈ N+
j ∪ {vj} (zeros otherwise);

y0 = (y01 y02 . . . y0n)
T ≜ y0 and x0 = 1 are the

initial conditions. As a result, the solution to the average
consensus problem can be obtained asymptotically as

lim
t→∞

µt
j =

1

n

∑
vi∈V

y0i , ∀vj ∈ V, where µt
j = ytj/x

t
j .

Finite-Time Exact Ratio Consensus (FTERC): In
what follows, Charalambous et al. (2013, 2015) propose
the FTERC algorithm in which every node can compute
µj ≜ limt→∞ µt

j in a minimum number of iteration steps.

Lemma 2. (Charalambous et al. (2013)). ∀vj ∈ V under
Assumption 1 and t = 0, 1, 2, . . ., ytj and xt

j are the

result of the iteration (1), where P = [pji] ∈ Rn×n is
a primitive column stochastic weight matrix adhere to
the graph structure. Then, the solution to the average
consensus problem for each node vj can be distributively
obtained in finite-time by

µj ≜ lim
t→∞

ytj
xt
j

=
ϕy(j)

ϕx(j)
=

yT
Mj

βj

xT
Mj

βj
, (2)

where the details of ϕy(j), ϕx(j) and βj (the coefficient
vector) can be referred to Section II-C in Jiang and
Charalambous (2022).

Distributed FTERC in Networked Systems;

From (2), we know βj and Mj can be different for each
node vj . To implement FTERC for networked systems in a
distributed way, all nodes need to know when to terminate
ratio consensus (1); also, Assumption 1 and the following
assumption are also needed.

Algorithm 1 Distributed FTERC

1: Initialization: n′ (upper bound on n)
2: Input: Node vj ∈ V sets y0j and k = 0
3: if k = 0 then
4: Run FTERC for 2n′ steps to compute y1j and

determine Mj and βj

5: else if k = 1 then
6: Run max−consensus from Mj + 1, vj ∈ V to deter-

mine Mmax; run ratio consensus (1) for n′ steps to
compute y2j with the same βj

7: else
8: Run ratio consensus (1) for tmax := Mmax + 1 steps

with the same βj to compute yk+1
j

9: end if
10: Output: Node vj obtains the inforamtion: 1

n

∑
vi∈V y0i

Assumption 2. Each node vj ∈ V knows an upper bound
on the number of nodes in the network n′ (i.e., n′ ≥ n).

Here, we describe Algorithm 1 that we proposed in Jiang
and Charalambous (2021) for distributed FTERC termi-
nation:
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1) When k = 0, node vj computes y1j by using FTERC
algorithm which runs for 2n′ steps. At that moment,
it is guaranteed that every node has computed its final
value y1j , which needs computing βj and as a result, Mj

is determined.
2) When k = 1, node vj runs ratio consensus (1) for

n′ steps and computes y2j with the same βj obtained
at k = 0 (i.e., there is no need to compute the de-
fective Hankel matrices again). Simultaneously, it runs
a max−consensus algorithm with the initial condition
u0
j = Mj + 1. Note that the max−consensus algorithm

converges in s steps (s ≤ D ≤ n − 1 < n′). Hence, at
the n′ step for ratio consensus (1), node vj not only
computes y2j , but also the maximum number of steps
needed tmax := Mmax + 1 by each node vj to compute

their yk+1
j , k ≥ 2.

3) When k ≥ 2, each node vj computes yk+1
j via ratio

consensus (1) for tmax steps with the same βj .

Algorithm 1 guarantees that the ratio consensus step at
every k, k ≥ 2 is the minimum (see properties of FTERC)
and that the solution is precise.

3. MAIN RESULTS

3.1 Dual of unconstrained optimization

In this work, we investigate a networked system with n
agents whose objective is to address the following additive
cost optimization problem collaboratively over a digraph
in a distributed fashion:

min
y∈Rp

n∑
i=1

fi(y), (3)

where y ∈ Rp is a common decision variable and each
individual cost fi : Rp → R is only known to the node vi.

Assumption 3. The cost function fi : Rp → R is convex,
Li-smooth and µi-strongly convex.

Definition 4. A function fi : Rp → R is Li-smooth if fi is
differentiable and its gradient is Li-Lipschitz continuous,
i.e., ∀x, y ∈ Rp,

∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥. (4)

Definition 5. A function fi : Rp → R is µi-strongly convex
if ∀x, y ∈ Rp,

fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩+ µi

2
∥y − x∥2. (5)

Denote y = [yT
1 , . . . , y

T
n ]

T. Then, it is equal to solve the
following problem:

min
y∈Rnp : y1=...=yn

F (y) :=

n∑
i=1

fi(yi). (6)

Denote a matrix

Γ := (In − 1

n
11T)× Ip. (7)

It is easy to see that 0 is a simple eigenvalue of In− 1
n11

T

with 1 as the corresponding right eigenvector, and 1 is the
other eigenvalue with multiplicity n − 1. Then, it follows
in (Li et al., 2013, Theorem 1) that Γy = 0 if and only if
y1 = y2 = . . . = yn. As a result, one can regard the matrix
Γ as consensus matrix and problem (3) is transformed to

min
y∈Rnp : Γy=0

F (y). (8)

Remark 1. There are some works on solving the uncon-
strained problem (3) over undirected graphs, e.g., see Sca-
man et al. (2017). For the convenience of comparison
presentation here, suppose the common decision variable
y ∈ R as a scalar and thus y ∈ Rn accordingly, the
idea behind the above two works is to construct a matrix
Γ̄ satisfying the following conditions: (I) Γ̄ is an n × n
symmetric matrix; (II) Γ̄ is positive semi-definite; (III) The
kernel of Γ̄ is the set of constant vectors: ker(Γ̄) = span(1);
(IV) Γ̄ is defined on the edges of the network: Γ̄ij ̸= 0
only if i = j or (i, j) ∈ E . In addition, Γ̄ is used for
consensus requirement as Γ̄y = 0 by using the one-step
or multi-step gossiping algorithm (Boyd et al., 2006). Due
to the requirement Γ̄y = 0 and the condition (IV) which
links Γ̄ to the graph structure, the graph considered in
those papers are undirected. As one can see, by proposing
the specific matrix In − 1

n11
T in the consensus matrix Γ

in (7), the conditions (I-III) are naturally satisfied and
we decouple the design of Γ from the graph structure
(i.e., get rid of condition (IV)). In such a way, we can
have a freedom to use another matrix (P in Lemma 2)
in the FTERC technique to achieve the consensus stage
(In − 1

n11
T)y = 0, thus enabling our work for digraphs.

Define the Lagrangian associated with problem (8) as

L(yi, x) =

n∑
i=1

fi(yi) + xTΓy, (9)

where x ∈ Rnp is the Lagrange multiplier (or dual variable)
associated with (8). Denote Γi ∈ Rnp×p as a matrix
constructed from the ((i− 1)p+1)-th column to the ((i−
1)p + p)-th column of Γ ∈ Rnp×np in (7). Thus, it is easy
to derive the Lagrangian dual function as follows:

inf
yi∈Rp

L(yi, x) =− sup
yi

n∑
i=1

((−ΓT
i x)

Tyi − fi(yi))

=−
n∑

i=1

f∗
i (−ΓT

i x), (10)

where f∗
i is the Legendre-Fenchel conjugate 3 of fi. Since

fi is convex from Assumption 3 and there is no inequality
constraint in problem (8), Slater’s condition holds (Boyd
et al., 2004, Section 5.2.3) which means strong duality
holds from Slater’s theory, i.e., the duality gap is zero.
As a result, the Lagrangian dual of problem (8) becomes

max
x∈Rnp

−F ∗ := −
n∑

i=1

f∗
i (−ΓT

i x). (11)

Then, the Lagrangian dual (11) can be changed to

min
x∈Rnp

F ∗ :=

n∑
i=1

f∗
i (−ΓT

i x). (12)

From the construction of Γ in (7), one can see each node
needs to know the network size n. Similar as Assumption 1,
there are distributed methods to compute the network size;
see, e.g., Shames et al. (2012).

3.2 Constrained optimization problem transformation

The following type of problem is considered:
3 Let ϕ(y) : Rp → R. The function ϕ∗ : Rp → R defined as
ϕ∗(x) = supy∈Rp (xTy−ϕ(y)) is called the conjugate of the function
ϕ(y).
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1) When k = 0, node vj computes y1j by using FTERC
algorithm which runs for 2n′ steps. At that moment,
it is guaranteed that every node has computed its final
value y1j , which needs computing βj and as a result, Mj

is determined.
2) When k = 1, node vj runs ratio consensus (1) for

n′ steps and computes y2j with the same βj obtained
at k = 0 (i.e., there is no need to compute the de-
fective Hankel matrices again). Simultaneously, it runs
a max−consensus algorithm with the initial condition
u0
j = Mj + 1. Note that the max−consensus algorithm

converges in s steps (s ≤ D ≤ n − 1 < n′). Hence, at
the n′ step for ratio consensus (1), node vj not only
computes y2j , but also the maximum number of steps
needed tmax := Mmax + 1 by each node vj to compute

their yk+1
j , k ≥ 2.

3) When k ≥ 2, each node vj computes yk+1
j via ratio

consensus (1) for tmax steps with the same βj .

Algorithm 1 guarantees that the ratio consensus step at
every k, k ≥ 2 is the minimum (see properties of FTERC)
and that the solution is precise.

3. MAIN RESULTS

3.1 Dual of unconstrained optimization

In this work, we investigate a networked system with n
agents whose objective is to address the following additive
cost optimization problem collaboratively over a digraph
in a distributed fashion:

min
y∈Rp

n∑
i=1

fi(y), (3)

where y ∈ Rp is a common decision variable and each
individual cost fi : Rp → R is only known to the node vi.

Assumption 3. The cost function fi : Rp → R is convex,
Li-smooth and µi-strongly convex.

Definition 4. A function fi : Rp → R is Li-smooth if fi is
differentiable and its gradient is Li-Lipschitz continuous,
i.e., ∀x, y ∈ Rp,

∥∇fi(x)−∇fi(y)∥ ≤ Li∥x− y∥. (4)

Definition 5. A function fi : Rp → R is µi-strongly convex
if ∀x, y ∈ Rp,

fi(y) ≥ fi(x) + ⟨∇fi(x), y − x⟩+ µi

2
∥y − x∥2. (5)

Denote y = [yT
1 , . . . , y

T
n ]

T. Then, it is equal to solve the
following problem:

min
y∈Rnp : y1=...=yn

F (y) :=

n∑
i=1

fi(yi). (6)

Denote a matrix

Γ := (In − 1

n
11T)× Ip. (7)

It is easy to see that 0 is a simple eigenvalue of In− 1
n11

T

with 1 as the corresponding right eigenvector, and 1 is the
other eigenvalue with multiplicity n − 1. Then, it follows
in (Li et al., 2013, Theorem 1) that Γy = 0 if and only if
y1 = y2 = . . . = yn. As a result, one can regard the matrix
Γ as consensus matrix and problem (3) is transformed to

min
y∈Rnp : Γy=0

F (y). (8)

Remark 1. There are some works on solving the uncon-
strained problem (3) over undirected graphs, e.g., see Sca-
man et al. (2017). For the convenience of comparison
presentation here, suppose the common decision variable
y ∈ R as a scalar and thus y ∈ Rn accordingly, the
idea behind the above two works is to construct a matrix
Γ̄ satisfying the following conditions: (I) Γ̄ is an n × n
symmetric matrix; (II) Γ̄ is positive semi-definite; (III) The
kernel of Γ̄ is the set of constant vectors: ker(Γ̄) = span(1);
(IV) Γ̄ is defined on the edges of the network: Γ̄ij ̸= 0
only if i = j or (i, j) ∈ E . In addition, Γ̄ is used for
consensus requirement as Γ̄y = 0 by using the one-step
or multi-step gossiping algorithm (Boyd et al., 2006). Due
to the requirement Γ̄y = 0 and the condition (IV) which
links Γ̄ to the graph structure, the graph considered in
those papers are undirected. As one can see, by proposing
the specific matrix In − 1

n11
T in the consensus matrix Γ

in (7), the conditions (I-III) are naturally satisfied and
we decouple the design of Γ from the graph structure
(i.e., get rid of condition (IV)). In such a way, we can
have a freedom to use another matrix (P in Lemma 2)
in the FTERC technique to achieve the consensus stage
(In − 1

n11
T)y = 0, thus enabling our work for digraphs.

Define the Lagrangian associated with problem (8) as

L(yi, x) =

n∑
i=1

fi(yi) + xTΓy, (9)

where x ∈ Rnp is the Lagrange multiplier (or dual variable)
associated with (8). Denote Γi ∈ Rnp×p as a matrix
constructed from the ((i− 1)p+1)-th column to the ((i−
1)p + p)-th column of Γ ∈ Rnp×np in (7). Thus, it is easy
to derive the Lagrangian dual function as follows:

inf
yi∈Rp

L(yi, x) =− sup
yi

n∑
i=1

((−ΓT
i x)

Tyi − fi(yi))

=−
n∑

i=1

f∗
i (−ΓT

i x), (10)

where f∗
i is the Legendre-Fenchel conjugate 3 of fi. Since

fi is convex from Assumption 3 and there is no inequality
constraint in problem (8), Slater’s condition holds (Boyd
et al., 2004, Section 5.2.3) which means strong duality
holds from Slater’s theory, i.e., the duality gap is zero.
As a result, the Lagrangian dual of problem (8) becomes

max
x∈Rnp

−F ∗ := −
n∑

i=1

f∗
i (−ΓT

i x). (11)

Then, the Lagrangian dual (11) can be changed to

min
x∈Rnp

F ∗ :=

n∑
i=1

f∗
i (−ΓT

i x). (12)

From the construction of Γ in (7), one can see each node
needs to know the network size n. Similar as Assumption 1,
there are distributed methods to compute the network size;
see, e.g., Shames et al. (2012).

3.2 Constrained optimization problem transformation

The following type of problem is considered:
3 Let ϕ(y) : Rp → R. The function ϕ∗ : Rp → R defined as
ϕ∗(x) = supy∈Rp (xTy−ϕ(y)) is called the conjugate of the function
ϕ(y).

min
zi∈Rni

n∑
i=1

ϕi(zi), s.t.

n∑
i=1

(Aizi − bi) = 0, (13)

where zi ∈ Rni is the common decision variable and each
individual cost ϕi : Rni → R is only known to the node vi
and is convex, closed and proper, Ai ∈ Rp×ni and bi ∈ Rp.
This kind of problem has many applications in reality,
e.g., distributed resource allocation in Banjac et al. (2019);
Jiang et al. (2022).

The objective in this subsection is to transform the con-
strained optimization problem (13) into the unconstrained
one (3). To achieve that, similarly, by using the Lagrangian
dual, its corresponding Lagrangian with the dual variable
y ∈ Rp is L(zi, y) =

∑n
i=1 ϕi(zi) + yT

∑n
i=1(Aizi − bi).

Similar as (10), the dual function is

f(y) = inf
zi

L(zi, y) = −
n∑

i=1

(ϕ∗
i (−AT

i y) + yTbi).

Also similar as Section 3.1, one can check the duality gap
is zero. Consequently, the dual problem is to maximize the
dual function as

max
y∈Rp

−
n∑

i=1

(ϕ∗
i (−AT

i y) + yTbi)︸ ︷︷ ︸
=:fi(y)

. (14)

Then, problem (14) is equal to the unconstrained prob-
lem (3) with the specific fi in the above.

Now, we need to check the smoothness and strongly
convexity of fi(y) in (14). Assume ϕi is strongly convex
and smooth, as a result, ϕ∗

i (−AT
i y) + yTbi is strongly

convex and smooth (Becker et al., 2011, Section 2.3).

Next, we will propose algorithms focusing on solving
problem (3), which goes down to solve problem (12).

3.3 Dual-FTERC algorithm

First, we recall the centralized GD method for uncon-
strained minimization of a function f(x) as

xk+1 = xk − α∇f(xk), (15)

where α is a fixed step-size parameter. When f(x) is L-
smooth (not necessarily convex) and α ∈ (0, 1/L), then
the sequence {xk} converges to a minimizer x⋆ at linear
rate (Xin et al., 2020).

Similarly, in distributed setting, for each node vi with
the function f∗

i (−ΓT
i xi) in (12), if each node updates as

centralized GD (15) as xk+1
i = xk

i −α∇f∗
i (−ΓT

i x
k
i )

4 , then,
when xk

i = x⋆, ∀i and for some k, we have

xk+1
i = x⋆ − α∇f∗

i (−ΓT
i x

⋆) ̸= x⋆, (16)

because ∇f∗
i (−ΓT

i x
⋆) ̸= 0, i.e., the minimizer x⋆ of the

global cost function
∑n

i=1 f
∗
i (−ΓT

i x) dose not necessarily
minimize the local functions f∗

i (−ΓT
i x) (Xin et al., 2020).

Therefore, to solve problem (12), if ∇f∗
i (−ΓT

i x
k
i ) in (16) is

replaced by
∑n

i=1 ∇f∗
i (−ΓT

i x
k
i ), then the issue disappears.

Next, we will show that this strategy is possible. We
propose Algorithm 2 to solve problem (12) as follows:
1) In Step 7 of Algorithm 2, node vi runs distributed

FTERC Algorithm 1(∇f∗
i (−ΓT

i x
k+1
i ), k). Then, after

finite iteration steps, vi will get
1
n

∑n
j=1 ∇f∗

j (−ΓT
j x

k+1
j ).

4 If f(y) is closed and strongly convex then its Lagrangian dual f∗

is differentiable with gradient as ∇f∗(x) = argminy(f(y)− xTy).

2) As a result, in Step 5 of Algorithm 2, for node vi, the
centralized GD method (15) or its accelerated versions
can be adopted for update.

Algorithm 2 Dual-FTERC

1: Initialization: n (network size), Γ (consensus ma-
trix), αk (step-size), βk (momentum parameter), kmax

( maximum number of iterations)
2: Input: Node vi ∈ V sets s0i , x

0
i and k = 0

3: Node vi does the following:
4: while k ≤ kmax do
5: xk+1

i ← Centralized (accelerated) GD algorithms ←
(xk

i , αk, (βk), ns
k
i )

6: Calculate ∇f∗
i (−ΓT

i x
k+1
i )

7: Put (∇f∗
i (−ΓT

i x
k+1
i ), k) as input to distributed

FTERC Algorithm 1 and get output sk+1
i

8: k ← k + 1
9: end while

10: Output: Node vi ∈ V obtains the dual solution: x⋆;
then, recovers the optimal solution y⋆ by calculating
∇f∗

i (−ΓT
i x

⋆)

Recall that Algorithm 2 is used to solve problem (3)
distributively. By using the finite-time characteristic and
exact average property of our distributed FTERC Al-
gorithm 1, traditional accelerated GD algorithms can
be adopted perfectly. For accelerated GD algorithms, in
literature, e.g., there are Nesterov accelerated gradient
(NAG) (Nesterov, 2004) and its variants, such as Sutskever
Nesterov Momentum and heavy-ball momentum. For ex-
ample, for NAG, Step 5 of Algorithm 2 becomes

rk+1
i =xk

i − αkns
k
i ,

xk+1
i =rk+1

i + βk(r
k+1
i − rki ), k ≥ 0,

(17)

where the initial condition for variable ri can be r0i = x0
i

and βk is the momentum parameter.

To prove the convergence of Algorithm 2, for example,
we take NAG (17) as the accelerated GD algorithm in
Step 5. Before presenting our convergence proof, denote
µ = minni=1 µi, L = maxni=1 Li. Then,

∑n
i=1 fi(y) in (3) is

µ-strongly convex and L-smooth (Ghadimi et al., 2013).
As a result,

∑n
i=1 f

∗
i (−ΓT

i x) in (12) is 1
L -strongly convex

and 1
µ -smooth (Becker et al., 2011, Section 2.3). Denote

F ∗⋆ as the minimal value of problem (12).

Theorem 1. Under Assumptions 1, 2 and 3, for Dual-
FTERC Algorithm 2 with NAG (17) used in Step 5, by

setting αk = µ and βk =
1−

√
µ/L

1+
√

µ/L
, F ∗ converges linearly

as

F ∗k − F ∗⋆ ≤ 1

µ
(1−

√
µ

L
)k∥x0 − x⋆∥2. (18)

With this convergence rate one can achieve an accuracy of

ϵ in O(
√

L
µ log 1

ϵ ).

Proof. In Step 7 of Algorithm 2, by using Algorithm 1,
we have nsk+1

i =
∑n

j=1 ∇f∗
j (−ΓT

j x
k+1
j ), ∀i in finite-time,

which means, Step 5 of Algorithm 2 equals to classical
NAG method (Nesterov, 2004). Thus, by setting αk = µ

and βk =
1−

√
µ/L

1+
√

µ/L
, the convergence rate (18) is achieved
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Fig. 1. Convergence rate (related to the iteration number
k) performance of (normalized) residuals from differ-
ent algorithms, i.e., D-ADMM-FTERC, Pull-FTERC,
Push-Pull, AB with different values of step-size α and
Dual-FTERC with αk = 1.0198, βk = 0.3134.

and is optimal in the sense of the lower complexity
bounds (O’donoghue and Candes, 2015, Section 2).

After the optimal solution x⋆ to the Lagrangian dual prob-
lem (12) is obtained in Dual-FTERC Algorithm 2, each
node can recover the optimal solution y⋆ to problem (3)
by calculating ∇f∗

i (−ΓT
i x

⋆) in Step 6 of Algorithm 2.

4. EXAMPLES

The distributed least squares problem is considered as

min
y∈Rp

n∑
i=1

1

2
∥Aiy − bi∥2, (19)

where n = 6, Ai ∈ Rq×p is only known to node vi,
bi ∈ Rq is the measured data and y ∈ Rp is the
common decision variable that needs to be optimized.
In this example, we take the same setting as in Jiang
and Charalambous (2022), except that we add our newly
proposed Dual-FTERC for comparison with algorithms:
D-ADMM-FTERC in Jiang and Charalambous (2021),
Pull-FTERC in Jiang and Charalambous (2022), Push-
Pull in Pu et al. (2020) and AB in Xin and Khan (2018).
For detailed settings of these algorithms, please refer
to Jiang and Charalambous (2022). For Dual-FTERC,
based on Theorem 1, we have αk = 1.0198, βk = 0.3134.

Fig. 1 shows the convergence rate performance compari-
son. One can see Dual-FTERC always outperforms other
algorithms. It is worth noting that it is not convincing
to compare the convergence rate between FTERC-based
algorithms and Push-Pull/AB directly in Fig. 1. The rea-
son is that there are multiple consensus steps inside each
FTERC iteration step (means multiple communication
rounds which consume more time) while only one consen-
sus step inside each Push-Pull/AB iteration step. Specif-
ically, FTERC stage consists of 2n′ = 28 (k = 0), n′ =
14 (k = 1) and tmax = 13 (k ≥ 2) communication steps
inside each Dual-FTERC iteration. Inspired by Scaman
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Fig. 2. Convergence (related to time) performance of
(normalized) residuals with different values of step-
size α with αk = 1.0198, βk = 0.3134.

et al. (2017), we denote τ (resp. 1) is the time needed to
communicate values between two neighbors (resp. perform
local computations). More specifically, we borrow from
(Scaman et al., 2017, Sec. 2.1) that assume:
1) Each computing unit can compute first-order charac-

teristics, such as the gradient of its own function. By
renormalization of the time axis, and without loss of
generality, we assume that this computation is per-
formed in one unit of time.

2) Each computing unit can communicate values (i.e.
vectors in Rp) to its neighbors. This communication
requires time τ (may be smaller or greater than 1).

Fig. 2 shows the performance of the compared algorithms.
Fig. 2a shows that when the communication time is smaller
than the computation time (τ ≪ 1), Dual-FTERC always
have a better performance. though it performs multiple
communication rounds per FTERC iteration. When τ ≫
1, Dual-FTERC is less efficiency in time compared with
Push-Pull and AB as shown in Fig. 2b.

5. CONCLUSIONS

A distributed finite-time consensus based dual gradient
descent algorithm is proposed to solve the additive cost
optimization problem over a digraph. Compared to the
newest algorithms in the literature, the proposed one
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Fig. 1. Convergence rate (related to the iteration number
k) performance of (normalized) residuals from differ-
ent algorithms, i.e., D-ADMM-FTERC, Pull-FTERC,
Push-Pull, AB with different values of step-size α and
Dual-FTERC with αk = 1.0198, βk = 0.3134.

and is optimal in the sense of the lower complexity
bounds (O’donoghue and Candes, 2015, Section 2).

After the optimal solution x⋆ to the Lagrangian dual prob-
lem (12) is obtained in Dual-FTERC Algorithm 2, each
node can recover the optimal solution y⋆ to problem (3)
by calculating ∇f∗

i (−ΓT
i x

⋆) in Step 6 of Algorithm 2.

4. EXAMPLES

The distributed least squares problem is considered as

min
y∈Rp

n∑
i=1

1

2
∥Aiy − bi∥2, (19)

where n = 6, Ai ∈ Rq×p is only known to node vi,
bi ∈ Rq is the measured data and y ∈ Rp is the
common decision variable that needs to be optimized.
In this example, we take the same setting as in Jiang
and Charalambous (2022), except that we add our newly
proposed Dual-FTERC for comparison with algorithms:
D-ADMM-FTERC in Jiang and Charalambous (2021),
Pull-FTERC in Jiang and Charalambous (2022), Push-
Pull in Pu et al. (2020) and AB in Xin and Khan (2018).
For detailed settings of these algorithms, please refer
to Jiang and Charalambous (2022). For Dual-FTERC,
based on Theorem 1, we have αk = 1.0198, βk = 0.3134.

Fig. 1 shows the convergence rate performance compari-
son. One can see Dual-FTERC always outperforms other
algorithms. It is worth noting that it is not convincing
to compare the convergence rate between FTERC-based
algorithms and Push-Pull/AB directly in Fig. 1. The rea-
son is that there are multiple consensus steps inside each
FTERC iteration step (means multiple communication
rounds which consume more time) while only one consen-
sus step inside each Push-Pull/AB iteration step. Specif-
ically, FTERC stage consists of 2n′ = 28 (k = 0), n′ =
14 (k = 1) and tmax = 13 (k ≥ 2) communication steps
inside each Dual-FTERC iteration. Inspired by Scaman

0 20 40 60 80 100 120 140

(a) time (t),  = 0.1

10
0

0 20 40 60 80 100 120 140

(b) time (t),  = 0.2

10
0

D-ADMM-FTERC

Dual-FTERC

Push-Pull

AB

0 20 40 60 80 100 120 140

(c) time (t),  = 0.3

10
0

0 20 40 60 80 100 120 140

(d) time (t),  = 0.4

10
0

0 20 40 60 80 100 120 140

(e)  time (t),  = 0.5

10
0

(a) Low communication time: τ = 0.1.

0 2000 4000 6000 8000 10000 12000 14000

(a) time (t),  = 0.1

10
0

0 2000 4000 6000 8000 10000 12000 14000

(b) time (t),  = 0.2

10
0

D-ADMM-FTERC

Dual-FTERC

Push-Pull

AB

0 2000 4000 6000 8000 10000 12000 14000

(c) time (t),  = 0.3

10
0

0 2000 4000 6000 8000 10000 12000 14000

(d) time (t),  = 0.4

10
0

0 2000 4000 6000 8000 10000 12000 14000

(e)  time (t),  = 0.5

10
0

(b) High communication time: τ = 10.

Fig. 2. Convergence (related to time) performance of
(normalized) residuals with different values of step-
size α with αk = 1.0198, βk = 0.3134.

et al. (2017), we denote τ (resp. 1) is the time needed to
communicate values between two neighbors (resp. perform
local computations). More specifically, we borrow from
(Scaman et al., 2017, Sec. 2.1) that assume:
1) Each computing unit can compute first-order charac-

teristics, such as the gradient of its own function. By
renormalization of the time axis, and without loss of
generality, we assume that this computation is per-
formed in one unit of time.

2) Each computing unit can communicate values (i.e.
vectors in Rp) to its neighbors. This communication
requires time τ (may be smaller or greater than 1).

Fig. 2 shows the performance of the compared algorithms.
Fig. 2a shows that when the communication time is smaller
than the computation time (τ ≪ 1), Dual-FTERC always
have a better performance. though it performs multiple
communication rounds per FTERC iteration. When τ ≫
1, Dual-FTERC is less efficiency in time compared with
Push-Pull and AB as shown in Fig. 2b.

5. CONCLUSIONS

A distributed finite-time consensus based dual gradient
descent algorithm is proposed to solve the additive cost
optimization problem over a digraph. Compared to the
newest algorithms in the literature, the proposed one

has a faster convergence rate related to the optimization
iteration number. When the time needed to communicate
values between two neighbors is less than a threshold of the
time needed to perform local computations, the proposed
one is also faster related to the consumed time.

Future work will target non-convex objective functions
and considering more (possible non-convex) constraints
such as additional inequality constraints. Also, quantized
optimization is very useful for decreasing communication
burdens. Consensus-based optimization methods with a
single gradient tracking step are also considered.
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